Provided is a battery capacity estimation device capable of estimating battery capacity in consideration of the influence of a crack. Provided is a battery capacity estimation device for estimating the battery capacity of a secondary battery having a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte. The battery capacity estimation device comprises: a deterioration state amount derivation unit (4) for deriving at least one of a deterioration state amount of the positive electrode active material due to a crack generated in the positive electrode active material as a result of a change in the volume of the positive electrode active material associated with charging and discharging of the secondary battery, and a deterioration state amount of an SEI coating film, formed on the surface of the negative electrode active material, due to a crack generated in the SEI coating film as a result of a change in the volume of the negative electrode active material associated with charging and discharging of the secondary battery; and a battery capacity estimation unit (5) for estimating the battery capacity after deterioration of the secondary battery on the basis of the deterioration state amount derived by the deterioration state amount derivation unit (4).
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
G01R 31/382 - Dispositions pour la surveillance de variables des batteries ou des accumulateurs, p. ex. état de charge
G01R 31/385 - Dispositions pour mesurer des variables des batteries ou des accumulateurs
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
2.
COMPOSITION FOR FORMING ELECTRODE ACTIVE MATERIAL LAYER FOR LITHIUM ION SECONDARY BATTERIES
The present invention provides a composition for forming an electrode active material layer for lithium ion secondary batteries, the composition comprising an electrode active material and a carbon nanotube, wherein the content of the carbon nanotube is 0.01 to 1.4 mass % and the content of electrode constituent materials other than the electrode active material and the carbon nanotube is 0 to 10.0 mass %, based on the total amount of the composition taken as 100 mass %. This composition for forming an electrode active material layer for lithium ion secondary batteries is capable of producing a battery with extended life. After discharging the battery from a state of charge (SOC) of 100% to an SOC of 90% at 25° C. and 2.5 C, the discharging is paused for 10 minutes and an increase in voltage at pause is measured. The internal resistance is calculated according to the following formula (2):
The present invention provides a composition for forming an electrode active material layer for lithium ion secondary batteries, the composition comprising an electrode active material and a carbon nanotube, wherein the content of the carbon nanotube is 0.01 to 1.4 mass % and the content of electrode constituent materials other than the electrode active material and the carbon nanotube is 0 to 10.0 mass %, based on the total amount of the composition taken as 100 mass %. This composition for forming an electrode active material layer for lithium ion secondary batteries is capable of producing a battery with extended life. After discharging the battery from a state of charge (SOC) of 100% to an SOC of 90% at 25° C. and 2.5 C, the discharging is paused for 10 minutes and an increase in voltage at pause is measured. The internal resistance is calculated according to the following formula (2):
Internal
resistance
=
(
Increase
in
voltage
at
pause
(
V
)
/
Current
value
during
discharge
(
A
)
)
×
Facing
area
between
positive
electrode
and
negative
elecrtrode
(
cm
2
)
,
(
2
)
The present invention provides a composition for forming an electrode active material layer for lithium ion secondary batteries, the composition comprising an electrode active material and a carbon nanotube, wherein the content of the carbon nanotube is 0.01 to 1.4 mass % and the content of electrode constituent materials other than the electrode active material and the carbon nanotube is 0 to 10.0 mass %, based on the total amount of the composition taken as 100 mass %. This composition for forming an electrode active material layer for lithium ion secondary batteries is capable of producing a battery with extended life. After discharging the battery from a state of charge (SOC) of 100% to an SOC of 90% at 25° C. and 2.5 C, the discharging is paused for 10 minutes and an increase in voltage at pause is measured. The internal resistance is calculated according to the following formula (2):
Internal
resistance
=
(
Increase
in
voltage
at
pause
(
V
)
/
Current
value
during
discharge
(
A
)
)
×
Facing
area
between
positive
electrode
and
negative
elecrtrode
(
cm
2
)
,
(
2
)
whereby uneven reaction distribution in the battery, which causes a rapid decrease of the capacity (secondary deterioration), can be assessed.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
3.
Deterioration-State Prediction Method, Deterioration-State Prediction Apparatus, and Deterioration-State Prediction Program
A deterioration-state prediction method is for calculating a cause-based deterioration state 25 for each cause of deterioration and predicting a deterioration state 26 of a secondary battery 1 based on a plurality of the cause-based deterioration states 25. Each of the cause-based deterioration states 25 is calculated based on: a previous cause-based deterioration state 21, which is the cause-based deterioration state 25 at a time point a first time period ago; and a unit cause-based deterioration state indicating deterioration during the first time period, while considering; time dependence varying depending on the cause of deterioration and following a power law with respect to an elapsed time of the cause-based deterioration state 25; and a deterioration rate varying depending on the cause of deterioration and determined based on a use condition 22 at the time of prediction.
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
G01R 31/36 - Dispositions pour le test, la mesure ou la surveillance de l’état électrique d’accumulateurs ou de batteries, p. ex. de la capacité ou de l’état de charge
G01R 31/367 - Logiciels à cet effet, p. ex. pour le test des batteries en utilisant une modélisation ou des tables de correspondance
G01R 31/3842 - Dispositions pour la surveillance de variables des batteries ou des accumulateurs, p. ex. état de charge combinant des mesures de tension et de courant
The method includes a preparation step of changing a current value or a voltage value of a power storage device; a first measurement step of obtaining a first internal resistance that is an internal resistance when a predetermined first period of time has elapsed from start of change in the current value or the voltage value in the preparation step; a second measurement step of obtaining a second internal resistance that is an internal resistance when a second period of time has elapsed from the start of change in the current value or the voltage value in the preparation step; a calculation step of calculating a resistance value difference by subtracting the first internal resistance from the second internal resistance; and a detection step of detecting generation of gas inside the power storage device based on the resistance value difference.
G01R 31/389 - Mesure de l’impédance interne, de la conductance interne ou des variables similaires
G01R 31/3842 - Dispositions pour la surveillance de variables des batteries ou des accumulateurs, p. ex. état de charge combinant des mesures de tension et de courant
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
This electrode for a lithium-ion secondary battery electrode comprises an electrode current collector, an undercoat layer, and an electrode active material layer, wherein: the electrode active material layer contains at least an electrode active material and carbon nanotubes; defining the total amount of the electrode active material as 100 mass%, the contained amount of carbon nanotubes is 0.01–1.4 mass%, the contained amount of conductivity aids other than the carbon nanotubes is 0–10.0 mass%, and the contained amount of electrode constituent materials excluding the electrode active material, the carbon nanotubes, and the conductivity aids other than the carbon nanotubes is 0–2.0 mass%; and the undercoat layer contains at least carbon nanotubes. The electrode for the lithium-ion secondary battery has high strength even if the contained amount of a binder, a thickener, a dispersant, or the like is reduced.
This lithium-ion secondary battery electrode is provided with an electrode current collector, an undercoat layer, and an electrode active material layer, wherein: the electrode active material layer contains at least an electrode active material and carbon nanotubes; and, defining the total amount of the electrode active material as 100 mass%, the content of carbon nanotubes is 0.01-1.4 mass%, the content of conductivity aids other than the carbon nanotubes is 0-10.0 mass%, and the content of electrode constituent materials excluding the electrode active material, the carbon nanotubes, and the conductivity aids other than the carbon nanotubes is 0-2.0 mass%. The lithium-ion secondary battery electrode has high strength even if the content of a binder, thickener, dispersant, and the like, is reduced.
Provided is a lithium ion secondary battery which uses, as a positive electrode active material, a lithium-containing metal oxide which contains nickel in an amount of 70 atomic % to 100 atomic %, with the total amount of metals other than lithium at 100 atomic %, wherein if charging is performed so that the positive electrode usage, as the volume of lithium extracted from the positive electrode active material in an initial cycle, is 50% to 70%, with the total volume of lithium contained in the positive electrode at 100%, then the negative electrode usage as the capacity that is charged in the initial cycle is adjusted to be 80% to 95%, with the negative electrode capacity as the maximum charge amount that can be inserted into the negative electrode at 100%. Consequently, the lithium ion secondary battery has an extremely long service life in comparison to conventional lithium ion secondary batteries. In addition, even if the capacity of the battery has deteriorated, the battery capacity can be recovered.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
8.
COMPOSITION FOR FORMING NEGATIVE ELECTRODE ACTIVE MATERIAL LAYER FOR LITHIUM-ION SECONDARY BATTERY
122 × D2122 represents the content (mass%) of a thickener and/or a dispersant; and D represents the average particle size (μm) of the negative electrode active material.)
The purpose of the present invention is to accurately determine, with a simple configuration, the suitability of a secondary battery (battery) according to the use thereof. A determination device according to the present invention, which determines a battery 1 suitable for a use 4 from among a plurality of batteries 1, is provided with: an information acquisition unit 12 for acquiring battery information 21 of the batteries 1; a degradation estimation unit 14 for estimating, for each of the batteries 1, cause-by-cause degradation information 6 indicating degradation statuses associated with individual degradation causes 7 from the battery information 21; a use input unit 15 for accepting the input of the use 4; and a determination unit 17 for determining the battery 1 suitable for the use 4 from among the plurality of batteries 1 on the basis of the estimated cause-by-cause degradation information 6 and the input use 4, in consideration of the degrees of influence of the individual degradation causes 7 on the use 4.
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
G01R 31/367 - Logiciels à cet effet, p. ex. pour le test des batteries en utilisant une modélisation ou des tables de correspondance
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
10.
CHARGING CONTROL DEVICE, CHARGING CONTROL METHOD, AND CHARGING CONTROL PROGRAM
The purpose of the present invention is to easily suppress deterioration of battery performance during charging. This charging control device controls the charging of a secondary battery 1 which is performed by supplying power from a power supply 3. The charging control device comprises: a control unit 18 that controls the power supplied from the power supply 3; and a resistance acquisition unit 17 that obtains the internal resistance 5 of the secondary battery 1. The power supply 3 can supply power to the secondary battery 1 by changing a charging current 6. The control unit 18 performs suppression control of the power supply 3 so that the product of the charging current 6 and the internal resistance 5 is no more than a predetermined threshold 8.
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
The present invention relates to a solvent for dissolving aromatic polyamides, the solvent including a tetraalkylammonium hydroxide, water, and dimethylsulfoxide, wherein the concentration of the tetraalkylammonium hydroxide is within the range of 0.5-40 wt%, the concentration of water is within the range of 0.5-45 wt%, and the concentration of the dimethylsulfoxide is within the range of 15-98 wt%. The present invention makes it possible to dissolve aromatic polyamides at a temperature around room temperature in a short time without requiring special pretreatment or sulfuric acid.
C08J 3/02 - Production de solutions, dispersions, latex ou gel par d'autres procédés que ceux utilisant les techniques de polymérisation en solution, en émulsion ou en suspension
C08G 69/02 - Polyamides dérivés, soit des acides amino-carboxyliques, soit de polyamines et d'acides polycarboxyliques
C08L 77/10 - Polyamides dérivés de groupes amino et carboxyle liés aromatiquement soit d'acides aminocarboxyliques, soit de polyamines et d'acides polycarboxyliques
The purpose of the present invention is to detect gas generation in a power storage device with an easy and practical technique and with high accuracy. The present invention comprises: a preparation step for changing a current value or a voltage value of a power storage device 1; a first measurement step for acquiring a first internal resistance R1 that is an internal resistance at the time at which a predetermined first time period has elapsed after the start of changing of the current value or the voltage value in the preparation step; a second measurement step for acquiring a second internal resistance R2 that is an internal resistance at the time at which a second time period, which is longer than the first time period by a predetermined time period or more, has elapsed after the start of changing of the current value or the voltage value in the preparation step; a calculation step for calculating a difference resistance value RG obtained by subtracting the first internal resistance R1 from the second internal resistance R2; and a detection step for detecting gas generation in the power storage device 1 on the basis of the difference resistance value RG.
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
G01R 31/389 - Mesure de l’impédance interne, de la conductance interne ou des variables similaires
H02J 7/00 - Circuits pour la charge ou la dépolarisation des batteries ou pour alimenter des charges par des batteries
H02J 7/04 - Régulation du courant ou de la tension de charge
13.
DEGRADATION STATE PREDICTION METHOD, DEGRADATION STATE PREDICTION DEVICE, AND DEGRADATION STATE PREDICTION PROGRAM
The purpose of the present invention is to predict, with good accuracy, a degradation state of a secondary battery. In a degradation state prediction method, a per-cause degradation state 25 is calculated for each cause of degradation, and a degradation state 26 of a secondary battery 1 is predicted on the basis of a plurality of per-cause degradation states 25. The per-cause degradation states 25 are each calculated on the basis of a preceding per-cause degradation state 21, which is a per-cause degradation state 25 that precedes by a discretionary first amount of time, and a unit per-cause degradation state of the degradation occurring in the duration of the first amount of time, such calculation taking into consideration time-dependency in accordance with a power-law which varies by degradation cause and is to be applied to the elapsed time of a per-cause degradation state 25, and a degradation speed that varies by degradation cause and is determined by usage conditions 22 at the time of prediction.
G01R 31/392 - Détermination du vieillissement ou de la dégradation de la batterie, p. ex. état de santé
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
14.
COMPOSITION FOR FORMING ELECTRODE ACTIVE MATERIAL LAYER FOR LITHIUM ION SECONDARY BATTERIES
The present invention provides a composition for forming an electrode active material layer for lithium ion secondary batteries, the composition containing an electrode active material and carbon nanotubes, wherein the content of the carbon nanotubes is 0.01 to 1.4% by mass and the content of electrode constituent materials other than the electrode active material and the carbon nanotubes is 0 to 10.0% by mass if the total amount of the composition is taken as 100% by mass. This composition for forming an electrode active material layer for lithium ion secondary batteries enables the production of a battery which has a longer service life. In addition, if a battery is discharged from an SOC of 100% to an SOC of 90% at 25°C and 2.5 C and the discharge is subsequently suspended for 10 minutes, uneven distribution of the reaction within the battery, the uneven distribution causing a rapid decrease (secondary deterioration) of the capacity, can be evaluated by measuring the increase of the voltage during the suspension period and calculating the internal resistance by formula (2). Formula (2): (Internal resistance) = ((Voltage increase (V) during suspension period)/(Current value (A) during discharge)) × (Facing area (cm2) of positive and negative electrodes)
H01M 10/48 - Accumulateurs combinés à des dispositions pour mesurer, tester ou indiquer l'état des éléments, p. ex. le niveau ou la densité de l'électrolyte
15.
CARBON-MODIFIED BORON NITRIDE, METHOD FOR PRODUCING SAME, AND HIGHLY HEAT-CONDUCTIVE RESIN COMPOSITION
Provided is an energy-conserving carbon-modified boron nitride with good resin affinity having a sheet-like carbon layer on the particle surface. Also provided is a highly heat-conductive resin composition containing the carbon-modified boron nitride and a resin. This carbon-modified boron nitride has a sheet-like carbon layer on the boron nitride particle surface, a preferred sheet-like carbon layer being 1-20 layers of graphene oxide or 1-20 layers of reduced graphene oxide.
The present invention provides novel sulfuric acid esterification modified cellulose nanofibers. These cellulose nanofibers have an average fiber diameter of 1 nm to 500 nm; and the hydroxyl groups on the cellulose surfaces are modified by sulfuric acid esterification. The present invention also provides a method for producing cellulose nanofibers having high crystallinity and high aspect ratio and being in nano-size by means of an energy-saving chemical process that does not require physical pulverization and is carried out under mild conditions. The present invention also provides a method for producing modified cellulose nanofibers that are obtained by modifying the surfaces of these cellulose nanofibers by esterification or urethanization. The method for producing cellulose nanofibers according to the present invention comprises fibrillation of cellulose by having the cellulose impregnated with a fibrillation solution that contains dimethyl sulfoxide, at least one carboxylic acid anhydride selected from among acetic acid anhydride and propionic acid anhydride, and sulfuric acid.
Provided is a method for producing a cellulose fine fiber that has a nano size and high crystallinity and rarely undergoes the damage of a fiber shape, by impregnating cellulose with a formic acid-containing fiberizing solution and then fiberizing the cellulose, without requiring vigorous mechanical fragmentation of the cellulose. Also provided is a method for producing a surface-modified cellulose fine fiber in which the cellulose is modified. The method for producing a cellulose fine fiber according to the present invention involves impregnating cellulose with a fiberizing solution, i.e., formic acid, a formic acid-rich aqueous solution or a solution of formic acid or a formic acid-rich aqueous solution in an aprotic solvent having a number of donors of 26 or more and then fiberizing the cellulose. The method for producing a surface-modified cellulose fine fiber according to the present invention is characterized in that the fiberizing solution further contains a modification reaction agent and the method involves impregnating cellulose with the fiberizing solution and then modifying the microfibril surface of the cellulose while fiberizing the cellulose.
Provided is a method for producing fine cellulose fibers which are nano-sized, which have a high crystallinity degree, and which are less vulnerable to fiber shape damage, by impregnating cellulose with a defibrillation solution to defibrate the cellulose without mechanical pulverization, and modifying the cellulose. The fine cellulose fiber production method according to the present invention comprises a step for impregnating cellulose with a fibrillation solution that contains a carboxylic acid vinyl ester or an aldehyde and an aprotic solvent having a donor number of 26 or higher to defibrate the cellulose. This aldehyde is at least one selected from the group consisting of aldehydes represented by formula (1), paraformaldehyde, cinnamaldehyde, perillaldehyde, vanillin, and glyoxal. R1―CHO (1) (Wherein, R1 represents a hydrogen atom, an alkyl group having 1-16 carbon atoms, an alkenyl group, a cycloalkyl group or an aryl group.)
Cellulose is impregnated with a reactive spreading solution containing a catalyst that includes a base catalyst or an organic acid catalyst, a monobasic carboxylic acid anhydride, and an aprotic solvent having a donor number of 26 or higher; the cellulose is esterified and chemically spread; and modified cellulose fine fibers are produced. Through this method, modified cellulose fine fibers that are nanosized and that have a high degree of crystallization, little damage to the fiber shape, a high aspect ratio, and exceptional dispersibility in organic solvents are obtained easily and efficiently without forceful crushing. The catalyst may include pyridines. The monobasic carboxylic acid anhydride may be a C2-4 aliphatic monocarboxylic acid anhydride. The resulting modified cellulose fine fibers are modified by the monobasic carboxylic acid anhydride, have a degree of crystallization of 70% or higher, have an average fiber diameter of 20-800 nm, and have an average fiber length of 1-200 μm.
C08B 3/08 - Préparation d'esters cellulosiques d'acides organiques d'acides organiques monobasiques à 3, ou plus, atomes de carbone
C08B 3/10 - Préparation d'esters cellulosiques d'acides organiques d'acides organiques monobasiques à 3, ou plus, atomes de carbone à 5, ou plus, atomes de carbone
C08B 3/20 - Estérification avec maintien de la structure fibreuse de la cellulose
20.
BETAINE SILICON COMPOUND, METHOD FOR PRODUCING SAME, HYDROPHILIC COATING LIQUID COMPOSITION, AND COATING FILM
Provided is a betaine silicon compound or the like which exhibits the effect of hydrophilizating and defogging a surface. The present invention pertains to a betaine silicon compound represented by formula (1). {X13-m(CH3)mSi-R1-(Y1-R2)n}o-N+(R3)p(R4)q-Y2COO- (1) {In the formula: X1 represents a C1-5 alkoxy group or a halogen atom which may be identical to or different from one another; m represents 0 or 1; R1 represents a C1-5 alkylene group; Y1 represents -NHCOO-, -NHCONH-, -S-, or -SO2-; n represents 0 or 1; R2 represents a C1-10 alkylene group or -CH2CH2N+(CH3)(Y2COO-)CH2CH2OCH2CH2-; o represents 1, 2 or 3; R3 and R4 represent a C1-5 alkyl group which may be identical to or different from one another; Y2 represents -CH2- or the like; p and q represent 0 or 1; and o+p+q equals 3.}
C07F 7/18 - Composés comportant une ou plusieurs liaisons C—Si ainsi qu'une ou plusieurs liaisons C—O—Si
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
C09D 183/00 - Compositions de revêtement à base de composés macromoléculaires obtenus par des réactions créant dans la chaîne principale de la macromolécule une liaison contenant uniquement du silicium, avec ou sans soufre, azote, oxygène ou carboneCompositions de revêtement à base de dérivés de tels polymères
C09D 201/02 - Compositions de revêtement à base de composés macromoléculaires non spécifiés caractérisés par la présence de groupes déterminés
A predoping technique considered as highly practicable is an electrochemical method in which predoping is performed by assembling a battery such that an active material (electrode) and lithium are brought into direct contact with each other or short-circuited therebetween via an electric circuit, and by filling an electrolytic solution in the battery. However, in this case, much time is required, and there are problems such as the handling and the thickness accuracy of an extremely thin lithium metal foil that is not greater than 30 μm thick. By mixing a lithium-dopable material and lithium metal together in the presence of a solvent, such problems can be solved.
H01G 11/06 - Condensateurs hybrides avec une des électrodes permettant de doper les ions de façon réversible, p. ex. condensateurs lithium-ion
H01G 11/50 - Électrodes caractérisées par leur matériau spécialement adaptées aux condensateurs lithium-ion, p. ex. pour doper le lithium ou pour intercalation
22.
METHOD FOR PRODUCING POLYSACCHARIDE NANOFIBER DISPERSION, AND POLYSACCHARIDE NANOFIBER DISPERSION PRODUCED BY THE PRODUCTION METHOD
The purpose of the present invention is to provide a method for producing a polysaccharide nanofiber dispersion at a low cost in a simpler manner. A method for producing a polysaccharide nanofiber dispersion is employed, which comprises: a step of swelling and/or partially dissolving a polysaccharide contained in a polysaccharide-containing raw material using a solution containing a tetraalkylammonium acetate represented by formula (1) and an aprotic polar solvent; and a step of separating the swollen and/or partially dissolved polysaccharide. In the formula, R1, R2, R3 and R4 independently represent an alkyl group having 3 to 6 carbon atoms.
D01F 2/00 - Filaments, ou similaires, artificiels, à un seul composant, formés de cellulose ou de dérivés de la celluloseLeur fabrication
D01F 9/00 - Filaments, ou similaires, faits par l’homme, formés d’autres substancesLeur fabricationAppareils spécialement adaptés à la fabrication de filaments de carbone
D21H 11/18 - Fibres hautement hydratées, gonflées ou aptes à être fibrillées
The purpose of the present invention is to provide a solvent that can uniformly and rapidly dissolve a polysaccharide independent of the crystal form of the polysaccharide, a method for manufacturing a molded article and a method for manufacturing a polysaccharide derivative using this solvent. The solvent contains tetraalkylammonium acetate represented by the following formula and an aprotic polar solvent, where the content ratio of aprotic polar solvent is 35 wt% or higher; [Formula 1] where R1, R2, R3, and R4 each independently represent alkyl groups having 3 to 6 carbon atoms.
A predoping technology that is thought of as highly practical is an electrochemical method for carrying out predoping by assembling a battery such that an active material (electrode) and lithium are brought into direct contact or are shorted via an electrical circuit, and infusing an electrolyte. However, such cases require much time, and there are problems with precision in the thickness of ultrathin lithium metal foils of 30 µm or less and handling. These problems can be resolved by mixing a lithium-dopable material and lithium metal in the presence of a solvent.
Although anisotropic rare earth bonded magnets have superior magnetic properties to isotropic bonded magnets, there are currently issues with temperature properties, corrosion resistance, and magnet costs, and mass production is not widespread. Meanwhile, although methods are available for recycling sintered magnet scrap, such as dissolving and alloying scrap to obtain magnet alloys, and using oxide reduction, separation of SmCo and Nd magnets is unavoidable, and scrap must first be returned to a rare earth oxide state. A low-cost, highly-efficient recycling method has currently not been found. The present invention proposes a novel anisotropic rare earth bonded and a production method therefor that utilize this sintered magnet scrap to produce magnets that are superior to commercially-available isotropic bonded magnets, and that are easy on the environment due to energy saving and resource conservation. Anisotropic rare earth bonded magnets are produced by means of crushing, strain relief annealing heat treatment, kneading, and magnetic field forming.
H01F 1/08 - Aimants ou corps magnétiques, caractérisés par les matériaux magnétiques appropriésEmploi de matériaux spécifiés pour leurs propriétés magnétiques en matériaux inorganiques caractérisés par leur coercivité en matériaux magnétiques durs métaux ou alliages sous forme de particules, p. ex. de poudre comprimées, frittées ou agglomérées
B22F 1/00 - Poudres métalliquesTraitement des poudres métalliques, p. ex. en vue de faciliter leur mise en œuvre ou d'améliorer leurs propriétés
B22F 3/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
H01F 1/053 - Alliages caractérisés par leur composition contenant des métaux des terres rares
H01F 41/00 - Appareils ou procédés spécialement adaptés à la fabrication ou à l'assemblage des aimants, des inductances ou des transformateursAppareils ou procédés spécialement adaptés à la fabrication des matériaux caractérisés par leurs propriétés magnétiques
H01F 41/02 - Appareils ou procédés spécialement adaptés à la fabrication ou à l'assemblage des aimants, des inductances ou des transformateursAppareils ou procédés spécialement adaptés à la fabrication des matériaux caractérisés par leurs propriétés magnétiques pour la fabrication de noyaux, bobines ou aimants
Disclosed is a modified metal oxide sol that has a large hydrophilizing effect and charge prevention effect, can be produced at low cost and is capable of being a coating. Specifically disclosed is a modified metal oxide sol characterized by modification by a functional group represented by formula (1) at 0.55 - 5.5 mmol per 1 g of metal oxide sol. MOS(=0)2-R1-Si(CH3)n(-O-)3-n (1) {In the formula, M is a hydrogen ion, C1-4 alkyl group, metal ion or ammonium (NR24) group; R1 is a C1-10 alkylene group (may have urethane bonds or urea bonds in the main alkylene chain); R2 may be the same or different and is a C1-5 alkyl group or a hydrogen atom; and n represents 0 or 1.}
C07F 7/08 - Composés comportant une ou plusieurs liaisons C—Si
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
C09D 183/08 - Polysiloxanes contenant du silicium lié à des groupes organiques contenant des atomes autres que le carbone, l'hydrogène et l'oxygène
C09D 185/00 - Compositions de revêtement à base de composés macromoléculaires obtenus par des réactions créant dans la chaîne principale de la macromolécule une liaison contenant des atomes autres que le silicium, le soufre, l'azote, l'oxygène et le carboneCompositions de revêtement à base de dérivés de tels polymères
Disclosed is a polymerizable compound which can be obtained by a simpler process. The polymerizable compound is represented by formula (1) or (2). [Rf-{R1-X0-(CO)t-R2-}q]mX1-R3-Z (1) Rf-R1-X2-CO(NH)r-R3-Z (2) In the formulae, Rf represents a polyfluoroalkyl which may contain an ether bond; R1 represents a direct bond, an alkylene or an arylene; R2 represents a direct bond, an alkylene or an arylene; R3 represents a direct bond, a urethane bond, an alkylene which may contain a urea bond or an arylene; X0 and X2 each represents a direct bond or a group represented by -O-, -S- or -NH-; X1 represents a direct bond or a group represented by -S-, -SO2-, -O-, -NH- or ᡶN-; Z represents a polymerizable group selected from trialkoxysilyl, monomethyldialkoxysilyl, trihalogenosilyl, (meth)acryloxy, (meth)acryloylamino, vinyl or 1-methylvinyl; q, t and r each represents 0 or 1; and m represents 1 or 2.
C07C 43/176 - Éthers non saturés contenant des atomes d'halogène contenant des cycles aromatiques à six chaînons avec insaturation autre que celle des cycles aromatiques
C07C 271/16 - Esters des acides carbamiques ayant des atomes d'oxygène de groupes carbamate liés à des atomes de carbone acycliques avec les atomes d'azote des groupes carbamate liés à des atomes d'hydrogène ou à des atomes de carbone acycliques à des atomes de carbone de radicaux hydrocarbonés substitués par des atomes d'oxygène liés par des liaisons simples
C07C 317/18 - SulfonesSulfoxydes ayant des groupes sulfone ou sulfoxyde et des atomes d'oxygène, liés par des liaisons simples, liés au même squelette carboné avec des groupes sulfone ou sulfoxyde liés à des atomes de carbone acycliques du squelette carboné
C07C 317/22 - SulfonesSulfoxydes ayant des groupes sulfone ou sulfoxyde et des atomes d'oxygène, liés par des liaisons simples, liés au même squelette carboné avec des groupes sulfone ou sulfoxyde liés à des atomes de carbone de cycles aromatiques à six chaînons du squelette carboné
C07C 317/40 - Y étant un atome d'hydrogène ou de carbone
C07C 323/12 - Thiols, sulfures, hydropolysulfures ou polysulfures substitués par des halogènes, des atomes d'oxygène ou d'azote ou par des atomes de soufre ne faisant pas partie de groupes thio contenant des groupes thio et des atomes d'oxygène, liés par des liaisons simples, liés au même squelette carboné ayant les atomes de soufre des groupes thio liés à des atomes de carbone acycliques du squelette carboné le squelette carboné étant acyclique et saturé
C07C 323/20 - Thiols, sulfures, hydropolysulfures ou polysulfures substitués par des halogènes, des atomes d'oxygène ou d'azote ou par des atomes de soufre ne faisant pas partie de groupes thio contenant des groupes thio et des atomes d'oxygène, liés par des liaisons simples, liés au même squelette carboné ayant l'atome de soufre d'au moins un des groupes thio lié à un atome de carbone d'un cycle aromatique à six chaînons du squelette carboné avec des atomes d'oxygène, liés par des liaisons simples, liés à des atomes de carbone du même cycle aromatique à six chaînons non condensé
C07C 323/41 - Y étant un atome d'hydrogène ou de carbone acyclique
C07C 323/52 - Thiols, sulfures, hydropolysulfures ou polysulfures substitués par des halogènes, des atomes d'oxygène ou d'azote ou par des atomes de soufre ne faisant pas partie de groupes thio contenant des groupes thio et des groupes carboxyle liés au même squelette carboné ayant les atomes de soufre des groupes thio liés à des atomes de carbone acycliques du squelette carboné le squelette carboné étant acyclique et saturé
C07F 7/18 - Composés comportant une ou plusieurs liaisons C—Si ainsi qu'une ou plusieurs liaisons C—O—Si
C08G 77/24 - Polysiloxanes contenant du silicium lié à des groupes organiques contenant des atomes autres que le carbone, l'hydrogène et l'oxygène groupes contenant des halogènes
C09K 3/18 - Substances non couvertes ailleurs à appliquer sur des surfaces pour y minimiser l'adhérence de la glace, du brouillard ou de l'eauSubstances antigel ou provoquant le dégel pour application sur des surfaces
28.
SEPARATION MODULE AND PROCESS FOR PRODUCING SEPARATION MODULE
A nanocluster structure which has excellent water vapor stability and is capable of the separation/purification of various reaction products, such as high-efficiency high-temperature hydrogen separation; and a separation module employing the structure. The separation module has a network structure having permeable holes and constituted of 4- to 6-membered oxygen rings derived from a silica-based crystalline material. It is preferable that 8- to 12-membered oxygen rings derived from the silica-based crystalline material be impermeable. Also provided is a process for separation module production which comprises: a step in which a silica-based crystalline material is dissolved in an acid or alkali solution to obtain cut pieces having permeable holes and comprising 4- to 6-membered oxygen rings derived from the silica-based crystalline material; and a step in which the cut pieces having permeable holes are applied two or more times to a support to thereby stack these cut pieces having permeable holes.
B82B 1/00 - Nanostructures formées par manipulation d’atomes ou de molécules, ou d’ensembles limités d’atomes ou de molécules un à un comme des unités individuelles
B82B 3/00 - Fabrication ou traitement des nanostructures par manipulation d’atomes ou de molécules, ou d’ensembles limités d’atomes ou de molécules un à un comme des unités individuelles
C01B 3/56 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des solidesRégénération des solides usés
C01B 33/46 - Silicates amorphes, p. ex. zéolites dites "amorphes"
29.
FUNCTIONAL FILLER AND RESIN COMPOSITION CONTAINING SAME
Disclosed is a functional filler which is excellent in dispersibility or interaction in a polylactic acid as the matrix polymer and enables to improve heat resistance, moldability and mechanical strength of the polylactic acid. Also disclosed is a resin composition containing such a functional filler. The functional filler is characterized in that it is composed of a raw material filler and a polylactic acid and the surface or ends of the raw material filler are modified with the polylactic acid.