A welded component for a substrate processing system includes a first component comprised of a first semiconductor material, a second component comprised of the first semiconductor material, a weld region defined between respective unwelded regions of the first component and the second component located on either side of the weld region, and a seam defined in the weld region between the first component and the second component. The weld region is comprised of the first semiconductor material of respective portions of the first component and the second component on either side of the seam that was melted and recrystallized to form the weld region.
Various compositions of a material resistant to etching when exposed to halogen plasma are disclosed. The compositions include silicon and a dopant, with silicon having a purity of at least 6N (i.e., including impurities other than silicon and the dopant of less than 1 ppm-mass), and the dopant having a purity of at least 4N (i.e., including impurities of less than 100 ppm-mass). The dopant can be selected from a group consisting of boron, gallium, phosphorous, arsenic, and antimony, Specific concentrations for each dopant are disclosed. At these concentrations, the material exhibits a relatively low etch rate when exposed to halogen plasma. Additionally, at these concentrations, no precipitates of the dopant are formed during crystal growth. Components of substrate processing chambers manufactured from the material exhibit relatively high resistivity to etching when exposed to halogen plasma in the substrate processing chambers.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
C30B 29/60 - Monocristaux ou matériaux polycristallins homogènes de structure déterminée caractérisés par leurs matériaux ou par leur forme caractérisés par la forme
3.
POROUS SHOWERHEADS FOR SUBSTRATE PROCESSING SYSTEMS
A porous showerhead includes a porous top surface, a porous bottom surface, and multiple layers. The layers are stacked between the porous top surface and the porous bottom surface. The layers are configured to connect to a distribution plate of a showerhead assembly of a substrate processing system. An uppermost one of the layers has the porous top surface. A bottommost one of the layers has the porous bottom surface. Each of the layers includes particles partially melted to form pores. The pores of the layers are at least one of laterally aligned with and fluidically coupled with pores in one or more adjacent ones of the layers to provide extended pores. The extended pores extend from the porous top surface to the porous bottom surface.
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
C23C 16/455 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour introduire des gaz dans la chambre de réaction ou pour modifier les écoulements de gaz dans la chambre de réaction
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
A waterjet nozzle assembly for a waterjet guided laser machining system includes a housing, a nozzle arranged within the housing, and a nozzle nut configured to retain the nozzle within the housing. The nozzle is configured to receive and inject a laser and a stream of water through a channel defined within the nozzle and the nozzle nut and out of an outlet of the waterjet nozzle assembly. A gas channel in fluid communication with the channel is defined within the waterjet nozzle assembly. A plate is arranged between the nozzle and the nozzle nut and is configured to separate the channel into a first portion within the nozzle and a second portion within the nozzle nut, allow gas to flow from the gas channel, through the plate, and into the nozzle, and prevent gas flow from the second portion of the channel into the first portion of the channel.
B23K 26/14 - Travail par rayon laser, p. ex. soudage, découpage ou perçage en utilisant un écoulement de fluide, p. ex. un jet de gaz, associé au faisceau laserBuses à cet effet
A method of performing 3D printing of a silicon component includes adding powdered silicon to a 3D printing tool. For each the powdered silicon, forming a layer of the powder bed to a pre-determined thickness, directing a high-powered beam in a pre-determined pattern into the powder-bed to melt the powdered silicon. After no further layers are needed, the silicon component is cooled at a pre-determined temperature ramp-down rate. In a fully dense printing method, buffer layers of silicon are initially printed on a steel substrate, and then layers of silicon for the actual component are printed on top of the buffer layers using a double printing method. In a fully dense and crack free printing method, one or more heaters and thermal insulation are used to minimize temperature gradient during Si printing, in-situ annealing, and cooling.
A welded component for a substrate processing system includes a first component comprised of a first semiconductor material, a second component comprised of the first semiconductor material, a weld region defined between respective unwelded regions of the first component and the second component located on either side of the weld region, and a seam defined in the weld region between the first component and the second component. The weld region is comprised of the first semiconductor material of respective portions of the first component and the second component on either side of the seam that was melted and recrystallized to form the weld region.
Various compositions of a material resistant to etching when exposed to halogen plasma are disclosed. The compositions include silicon and a dopant, with silicon having a purity of at least 6N (i.e., including impurities other than silicon and the dopant of less than 1 ppm-mass), and the dopant having a purity of at least 4N (i.e., including impurities of less than 100 ppm-mass). The dopant can be selected from a group consisting of boron, gallium, phosphorous, arsenic, and antimony. Specific concentrations for each dopant are disclosed. At these concentrations, the material exhibits a relatively low etch rate when exposed to halogen plasma. Additionally, at these concentrations, no precipitates of the dopant are formed during crystal growth. Components of substrate processing chambers manufactured from the material exhibit relatively high resistivity to etching when exposed to halogen plasma in the substrate processing chambers.
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 11/00 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger
8.
3D PRINTING OF FULLY DENSE AND CRACK FREE SILICON WITH SELECTIVE LASER MELTING/SINTERING AT ELEVATED TEMPERATURES
In a fully dense printing method, a plurality of buffer layers of silicon are initially printed on a steel substrate, and then layers of silicon for the actual component are printed on top of the buffer layers using a double printing method. In a fully dense and crack free printing method, one or more heaters and thermal insulation are used to minimize temperature gradient during Si printing, in-situ annealing, and cooling.
Textured silicon components of a semiconductor processing chamber having hillock-shaped or pyramid-shaped structures on its surface, and a method of texturing such silicon components. The silicon component can be selectively textured using chemical means to form the hillock-shaped structures to increase the surface area of the silicon component to improve polymer adhesion.
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p. ex. mandrins, pièces de serrage, pinces
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
A method of performing 3D printing of a silicon component includes adding powdered silicon to a 3D printing tool. For each layer of the 3D printing, the process includes forming a powder bed of the powdered silicon, forming a layer of the powder bed to a pre-determ ined thickness, directing a high-powered beam in a pre-determ ined pattern into the powder-bed to melt the powdered silicon. After no further layers are needed, the silicon component is cooled at a pre-determ ined temperature ramp-down rate. In a fully dense printing method, buffer layers of silicon are initially printed on a steel substrate, and then layers of silicon for the actual component are printed on top of the buffer layers using a double printing method. In a fully dense and crack free printing method, one or more heaters and thermal insulation are used to minimize temperature gradient during Si printing, in-situ annealing, and cooling.
In a fully dense printing method, a plurality of buffer layers of silicon are initially printed on a steel substrate, and then layers of silicon for the actual component are printed on top of the buffer layers using a double printing method. In a fully dense and crack free printing method, one or more heaters and thermal insulation are used to minimize temperature gradient during Si printing, in-situ annealing, and cooling.
A system comprises an apparatus having a nozzle. An element is arranged around the apparatus. A feeder is configured to supply a powder of a material into the apparatus. A gas source is configured to supply a precursor gas into the apparatus and to supply an inert gas to circulate through a space between the element and the apparatus and to exit around the nozzle. A plasma generator is arranged in the apparatus and is configured to ionize the precursor gas and atomize the powder and to eject through the nozzle a jet of particles composed of the atomized powder and the ionized precursor gas onto a substrate arranged adjacent to the nozzle.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
13.
L-shaped plasma confinement ring for plasma chambers
A plasma confinement ring for a plasma chamber comprises a ring-shaped element and a cylindrical element. The ring-shaped element of the plasma confinement ring surrounds a substrate support assembly in the plasma chamber and is arranged along a plane in which a substrate is arranged on the substrate support assembly. The ring-shaped element includes a plurality of orifices. The cylindrical element of the plasma confinement ring extends from an outer edge of the ring-shaped element in a direction perpendicular to the plane in which the substrate is arranged on the substrate support assembly in the plasma chamber. The plasma confinement ring is monolithic.
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
14.
L-SHAPED PLASMA CONFINEMENT RING FOR PLASMA CHAMBERS
A plasma confinement ring for a plasma chamber comprises a ring-shaped element and a cylindrical element. The ring-shaped element of the plasma confinement ring surrounds a substrate support assembly in the plasma chamber and is arranged along a plane in which a substrate is arranged on the substrate support assembly. The ring-shaped element includes a plurality of orifices. The cylindrical element of the plasma confinement ring extends from an outer edge of the ring-shaped element in a direction perpendicular to the plane in which the substrate is arranged on the substrate support assembly in the plasma chamber. The plasma confinement ring is monolithic.
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
C23C 16/458 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour supporter les substrats dans la chambre de réaction
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p. ex. mandrins, pièces de serrage, pinces
A crucible includes an outer element and an inner element. The outer element includes a first portion that is horizontal at a bottom end of the crucible and a second portion that ascends radially outwardly from the bottom end of the crucible to a top end of the crucible at a first acute angle to a vertical axis. The inner element includes a conus with a cylinder at a base of the conus. The conus descends radially outwardly from the top end of the crucible to the bottom end of the crucible at a second acute angle to the vertical axis. The inner element includes a base portion of the cylinder attached to the first portion of the outer element using a sealant to form a hollow mold between an inner portion of the outer element and an outer portion of the inner element.
C30B 11/00 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger
C04B 35/584 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de borures, nitrures ou siliciures à base de nitrure de silicium
C04B 35/653 - Procédés comportant une étape de fusion
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
A furnace includes a pedestal, a crucible, first and second heaters, and a controller. The crucible is arranged on a pedestal that is movable downwardly and is rotatable. The first and second heaters are spaced vertically along an outer wall of the crucible and are arranged around the crucible to heat pieces of solid material deposited in the crucible. A third heater is arranged above the crucible if the crucible includes a solid cylindrical mold or in a hollow cylindrical space of the crucible if the crucible includes a hollow cylindrical mold. The controller is configured to control the first and second heaters to heat the pieces of the solid material to form a melted liquid. The controller is configured to control the rotational and downward movements of the pedestal relative to the first and second heaters during solidification of the melted liquid to form an ingot.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
F27B 14/14 - Aménagement des dispositifs de chauffage
A furnace includes a pedestal, a crucible, first and second heaters, and a controller. The crucible is arranged on a pedestal that is movable downwardly and is rotatable. The first and second heaters are spaced vertically along an outer wall of the crucible and are arranged around the crucible to heat pieces of solid material deposited in the crucible. A third heater is arranged above the crucible if the crucible includes a solid cylindrical mold or in a hollow cylindrical space of the crucible if the crucible includes a hollow cylindrical mold. The controller is configured to control the first and second heaters to heat the pieces of the solid material to form a melted liquid. The controller is configured to control the rotational and downward movements of the pedestal relative to the first and second heaters during solidification of the melted liquid to form an ingot.
A crucible includes an outer element and an inner element. The outer element includes a first portion that is horizontal at a bottom end of the crucible and a second portion that ascends radially outwardly from the bottom end of the crucible to a top end of the crucible at a first acute angle to a vertical axis. The inner element includes a conus with a cylinder at a base of the conus. The conus descends radially outwardly from the top end of the crucible to the bottom end of the crucible at a second acute angle to the vertical axis. The inner element includes a base portion of the cylinder attached to the first portion of the outer element using a sealant to form a hollow mold between an inner portion of the outer element and an outer portion of the inner element.
A system comprises a silicon seed arranged on a pedestal, where the silicon seed is ring shaped and is configured to receive melted silicon at a feed rate to form an ingot, and where the pedestal is configured to rotate at a rotational speed. A controller is configured to, while the silicon seed receives the melted silicon and while the ingot is forming: receive feedback regarding a diameter of the ingot and regarding an angle of a meniscus of the ingot, and control the rotational speed of the pedestal and the feed rate of the melted silicon based on the feedback to control the diameter of the ingot and the angle of the meniscus of the ingot.
C30B 15/02 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 11/10 - Constituants solides ou liquides, p. ex. méthode de Verneuil
C30B 11/00 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger