A robot element for a robot arm where the robot element is connectable to at least another robot element via a connecting flange having a central axis, wherein the robot element comprises: # an annular light source array comprising a plurality of light sources arranged around the central axis and where the plurality of light sources is configured to emit light in a direction along the central axis; # at least one optical component arranged above the light source array and configured to direct at least a part of the light in a direction away from the central axis.
B25J 19/00 - Accessoires adaptés aux manipulateurs, p. ex. pour contrôler, pour observerDispositifs de sécurité combinés avec les manipulateurs ou spécialement conçus pour être utilisés en association avec ces manipulateurs
The invention relates to as a cap removably connectable to a robot arm element, the robot arm element comprises a housing having an outer surface and an inner surface. The cap is removably connectable to the outer surface via an upper cavity connectable to an upper protrusion and via at least a first lower cavity connectable to a first lower protrusion. When the cap is connected to the robot arm element, the upper protrusion is fixed in an engaged position in the upper cavity and the first lower protrusion is fixed in an engaged position in the at least first lower cavity by a flexible suspension element.
The invention relates to a method for configuring a robot system, wherein said robot system comprises a robot arm and a robot controller configured to control operation of said robot arm. The method comprises the steps of: communicatively connecting each of at least one peripheral device to a respective peripheral port of a plurality of peripheral ports of said robot system: interactively engaging said at least one peripheral device to establish a test sequence of device states based on inputs of said at least one peripheral device to said plurality of peripheral ports: monitoring said inputs of said at least one peripheral device to said plurality of peripheral ports to identify one or more input-receiving peripheral ports of said plurality of peripheral ports; and configuring a robot system control process of said robot system based on said device states of said test sequence and based on said one or more input-receiving peripheral ports. The invention further relates to a robot system.
An example robotic system includes a robotic arm configured to move in multiple degrees of freedom and a control system including one or more processing devices. The one or more processing devices are programmed to perform operations including: identifying an object in the environment accessible to the robotic arm based on sensor data indicative of the environment; determining that a component associated with the robotic arm is within a predefined distance of the object; and controlling the robotic arm to move the component toward or into alignment with the object in response to the component being within the predefined distance of the object.
The invention relates to a method for AR assisted adjustment of a safety plane for a robot via a portable AR device comprising a physical display and a camera. The method comprises the steps of establishing a spatial reference system defined with reference to said robot. Connecting said portable AR device to a robot controller. Recording the surroundings of said portable AR device including said robot. Displaying said recording of said surroundings on said physical display. Establishing a virtual environment according to said spatial reference system overlaying said recorded surroundings, wherein said virtual environment comprises at least on safety plane. Manually perform, via said physical display, a safety plane displacement of said safety plane in said spatial reference system in said virtual environment, and transfer said displaced location of said safety plane to said robot controller.
A robot system comprising a robot arm, a robot controller for controlling the robot arm and a safety system monitoring the robot arm, where the safety system is configured to bring the robot arm into a safe mode based on at least one safety function evaluated by the safety system. The robot controller is configured to
specify at least one user-defined safety parameter range;
provide the user-defined safety parameter range to the safety system;
generate at least one user-defined safety parameter based on at least one user-defined safety function;
provide the user-defined safety parameter to the safety system;
where the safety system comprises a safety range safety monitoring function configured to:
evaluating if the at least one user-defined safety parameter is within the user-defined safety range; and
bringing the robot arm into a safe mode in case the user-defined safety parameter is outside the user-defined safety range.
The invention relates to a robot system for detection of an operation anomaly. The robot system comprises: an industrial robot; a robot controller configured to control operation of said industrial robot; a robot operation program which is executable by said robot controller to operate said industrial robot according to a robot operation cycle; respective program nodes integrated in said robot operation program, wherein each of said respective program nodes is associated with a separate operational element of said robot operation cycle; wherein said robot controller is configured to obtain reference data based on operation parameters associated with execution of said robot operation program; and an anomaly detection block which for at least one of said respective program nodes is configured to evaluate an operation anomaly of said robot operation parameters relative to a representation of said reference data.
A strain wave gear includes an outer ring and an inner ring rotatably arranged in the outer ring. The inner ring includes an internally toothed gear and a flex spline is arranged in the inner ring and includes a flexible part that includes an external toothed gear. A wave generator is rotatable in relation to the flex spline and is configured to flex the flexible part in a radial direction to partly mesh the external toothed gear with the internally toothed gear causing rotation of the inner ring in relation to the outer ring. A part of the inner ring extends out of the outer ring and includes an outwardly protruding output flange. An encoder reader can be disposed on the outer ring and an encoder track can disposed on the inner ring. A robot joint that includes the strain wave gear is also disclosed.
G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
G01D 5/26 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens optiques, c.-à-d. utilisant de la lumière infrarouge, visible ou ultraviolette
An example system includes an apparatus (i) configured for connection to a robot or (ii) integrated into the robot. The apparatus includes at least one structure configured for connection to one or more corresponding accessories. The at least one structure includes (i) a protrusion that extends outwardly relative to a surface associated with the robot or (ii) an indentation that extends inwardly relative to the surface associated with the robot. The at least one structure may include one or more faces that are tapered such that each of the one or more faces decreases in width farther away from the surface associated with the robot.
The invention relates to a robot arm comprising a plurality of robot joints mechanically connecting a robot base to a robot tool flange wherein a robot controller is configured for controlling movement of said plurality of robot joints and thereby movement of said robot tool flange. The robot controller is connected to an interface device comprising an input device via which a user is able to communicate with said robot controller and thereby change mode of operation of the robot arm. The input device is a mechanical multifunctional input device and in response to a first predetermined sequence of activation applied to the input device, the robot controller is arranged to change mode of operation to a stop mode, and in response to a second predetermined sequence of activation applied to the input device, the robot controller is arranged to change mode of operation to a second mode of operation.
G05B 19/409 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par l'utilisation de l'entrée manuelle des données [MDI] ou par l'utilisation d'un panneau de commande, p. ex. commande de fonctions avec le panneauCommande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par les détails du panneau de commande ou par la fixation de paramètres
The invention relates to a robot system comprising: a robot arm, a robot controller configured to execute a robot control In process based on a robot control software program and an auxiliary control process based on an auxiliary control software program; and a peripheral device communicatively connected to the 5 robot controller. Execution of the robot control process is performed by the robot controller resulting in operation of the robot arm. Execution of the auxiliary control process is performed by the robot controller resulting in establishing of a logic signal based on an application input signal received from the robot control process or the peripheral device. The auxiliary control process is configured to 10 establish a logic output signal based on the logic signal and, based on the logic output signal, configured to control operation of any of the robot control process and the peripheral device.
The invention relates to a method for monitoring a robot system comprising a robot arm and a peripheral device, the method comprising the steps of: providing a communicative peripheral connection between the peripheral device and a robot controller; establishing an operation signal history in a digital storage wherein the operation signal history is based on operation representations; executing a robot operation process on the robot controller; establishing a peripheral signal associated with the peripheral connection; recording the peripheral signal to obtain a peripheral signal representation; updating the operation signal history by providing the peripheral signal representation as an operation representation of the operation representations; and tracking operation of the robot system based on the operation signal history. The invention further relates to a robot system.
G05B 19/406 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le contrôle ou la sécurité
A robot controller for controlling a robot arm includes a first space shaping module configured to provide a shaped first space target motion by convolving a first space target motion with an impulse train, where the first space target motion defines a target motion in a first reference space; a second space shaping module configured to provide a shaped second space target motion by convolving a second target motion with the impulse train; where the second target motion defines the target motion in a second reference space; and a motor controller module to generate motor control signals to the joint motors based on the shaped first space target motion and the shaped second space target motion.
A method and robot controller configured to obtain an inertia-vibration model of the robot arm. The inertia-vibration model defines a relationship between the inertia of the robot arm and the vibrational properties of said robot arm and have been by setting the robot arm in a plurality of different physical configurations and for each of said physical configurations of said robot arm obtaining the vibrational properties and the inertia the robot arm. The inertia-vibration model makes it possible to in a simple and efficient way to obtain the vibrational properties of different physical configurations of the robot arm whereby the robot arm can be controlled according to the vibrational properties of the robot arm. This makes it possible to reduce the vibrations of the robot arm during movement of the robot arm.
B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p. ex. à la vue ou au toucher
G01L 5/16 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques pour la mesure de plusieurs composantes de la force
G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
G05B 19/416 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par la commande de vitesse, d'accélération ou de décélération
19.
METHOD OF SUPPRESSING VIBRATIONS OF A ROBOT ARM WITH EXTERNAL OBJECTS
A method and a robot controller for controlling a robot arm, where the robot arm comprises a plurality of robot joints connecting a robot base and a robot tool flange, where each of the robot joints comprises an output flange movable in relation to a robot joint body and a joint motor configured to move the output flange in relation to the robot joint body. The robot arm is controlled based on vibrational properties of at least one external object connected to the robot arm, where the vibrational properties are received via an external object installation interface by generating control signals for said robot arm based on a target motion and the received vibrational properties of the at least one external object, the control signal comprises control parameters for said joint motor.
B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p. ex. à la vue ou au toucher
G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
G05B 19/416 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par la commande de vitesse, d'accélération ou de décélération
G01L 5/16 - Appareils ou procédés pour la mesure des forces, du travail, de la puissance mécanique ou du couple, spécialement adaptés à des fins spécifiques pour la mesure de plusieurs composantes de la force
20.
Maintaining free-drive mode of robot arm for period of time
The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which then is configured to:—monitor a value of at least one joint sensor parameter;—compare the value of the mode of joint sensor parameter to a maintain free-drive joint sensor parameter threshold value;—maintain the robot arm in said free-drive mode of operation for a predetermined maintain free-drive period of time; and—leave the free-drive mode of operation if the value of the joint sensor parameter does not exceed the maintain free-drive joint sensor parameter threshold value within the maintain free-drive period of time.
G05B 19/423 - Apprentissage de positions successives par guidage, c.-à-d. la tête porte-outil ou l'effecteur de bout de bras étant saisis et guidés, avec ou sans assistance par servo-moteur, pour suivre un contour
The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which then is configured to initiate a free-drive mode activation sequence including the steps of: in a predetermined activation sequence period of time monitor a value of at least one joint sensor parameter, and compare this value to a free-drive activation joint sensor parameter threshold value. The robot controller is configured to switch to the free-drive mode of operation if the at least one value does not exceed the free-drive activation joint sensor parameter threshold value within the predetermined activation sequence period of time.
G05B 19/423 - Apprentissage de positions successives par guidage, c.-à-d. la tête porte-outil ou l'effecteur de bout de bras étant saisis et guidés, avec ou sans assistance par servo-moteur, pour suivre un contour
22.
Robot arm with adaptive three-dimensional boundary in free-drive
The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm 5 when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which in free-drive mode of operation is configured within at a free-drive safety period to allow a part of said robot arm to be moved within a virtual three-dimensional geometric shape 10 surrounding the part of the robot arm.
A strain wave gear includes gear elements including a circular element having an internally-toothed gear and a flex element having a flexible externally-toothed gear arranged in the circular element. A wave generator is rotatably arranged in the flex element and configured to flex the externally-toothed gear in a radial direction to partly mesh the internally-toothed gear and the externally-toothed gear. Support elements include a bearing input support element and a bearing output support element rotatably coupled to the bearing input support element. Elements of the support elements are fixed respectively to elements of the gear elements. An encoder arrangement includes an encoder track and an encoder reader. A part of the encoder arrangement is between an element of the support elements and an element of the gear elements.
A multipurpose robot arm having a controller configured to control the motion hereof during an operation process according to a plurality of basic operation commands Wherein the robot controller is configured to control the multipurpose robot arm in a standard mode of operation according to a first subset of the basic operation commands and in an application specific operation mode during part of the robot arm operation process according to a second subset of the basic operation commands. Wherein basic operation commands of the second subset are at least partly comprised by the first subset and wherein at least one of the operation parameters of the second subset is limited by a application operation value. Wherein the application operation value is defined by a desired property of the operation of the multipurpose robot arm in the application specific operation mode.
A method of controlling a robot arm with robot joints, where the joint motors of the joints are controlled based on a signal generated based on the friction torque (formula I) of at least one of the input/outside of the robot joint transmission and the robot joint transmission torque (formula II) between the input side and the output side of the transmission. The friction torque is determined based on: at least two of the angular position of the motor axle; the angular position of the output axle and/or the motor torque provided to the motor axle by the joint motor. The robot joint transmission torque is determined based on: at least one of the angular position of the output axle; the angular position of the output axle and/or the angular position of the motor axle; the angular position of the motor axle and the motor torque provided to the motor axle by the joint motor.
G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
A method of detecting change in contact between a contact part of a robot arm and an object as defined by the independent claims, by obtaining a contact force provided at the contact part of the robot arm by sensing a force provided to a part of said robot arm; and by obtaining the part acceleration 5 of the contact part of the robot arm by sensing the acceleration of at least a part of the robot arm and then indicate if a change in contact between the contact part of the robot arm and the object has occurred based on the obtained contact force and the obtained contact part.
A robot system comprising a robot arm controlled by a process controller according to a combination of basic software and process software and a safety controller configured to monitor and evaluate operation of a robot arm. The basic software is associated with safety limits having normal values limiting operation of the robot arm. The process software is associated with at least one safety limit having a process value which is different from the normal value. The value of a safety limit is configured to be updated with the process value while the robot system is in run-time mode and the robot safety controller is configured to bring the robot arm into a violation stop mode based on the result of an evaluation of an operation parameter, the normal value and the process value of the at least one safety limit.
A robot system comprising a robot arm, a robot controller for controlling the robot arm and a safety system monitoring the robot arm, where the safety system is configured to bring the robot arm into a safe mode based on at least one safety function evaluated by the safety system. The robot controller is configured to. specify at least one user-defined safety parameter range; provide the user-defined safety parameter range to the safety system; generate at least one user-defined safety parameter based on at least one user-defined safety function; provide the user-defined safety parameter to the safety system; where the safety system comprises a safety range safety monitoring function configured to: evaluating if the at least one user-defined safety parameter is within the user-defined safety range, and 15. bringing the robot arm into a safe mode in case the user-defined safety parameter is outside the user-defined safety range.
A method of obtaining the gear stiffness of a robot joint gear of a robot joint of a robot arm, where the robot joint is connectable to at least another robot joint. The robot joint comprises a joint motor having a motor axle configured to rotate an output axle via the robot joint gear. The method comprises the steps of: —applying a motor torque to the motor axle using the joint motor; —obtaining the angular position of the motor axle; —obtaining the angular position of the output axle; —determining the gear stiffness based on at least the angular position of the motor axle, the angular position of the output axle and a dynamic model of the robot arm.
B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p. ex. à la vue ou au toucher
G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
Methods and robot, where payload information of a payload attached to a robot tool flange of a robot arm are obtained by arranging the robot tool flange in a plurality of different orientations in relation to gravity; obtaining the force and the torque provided to the robot tool flange by gravity acting on the payload using a force torque sensor arranged at the robot tool flange; obtaining the mass of the payload based on the obtained forces obtained at at least two of the different orientations. The dependent claims describe possible embodiments of the robot and methods according to the present invention.
B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p. ex. à la vue ou au toucher
G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
Method and robot arm, where the motor torques of the joint motors of a robot arm are controlled based on a static motor torque indicating the motor torque needed to maintain the robot arm in a static posture, where the static motor torque is adjusted in response to a change in posture of the robot arm caused by an external force different from gravity applied to the robot arm. Further the motor torque of the joint motors is controlled based on an additional motor torque obtained based on a force-torque provided to the robot tool flange, where the force-torque is obtained by a force-torque sensor integrated in the tool flange of the robot arm.
A robot joint is connectable to at least another robot joint via an output flange. The robot joint includes a joint motor having a motor axle configured to rotate the output flange. The robot joint includes a brake assembly having an annular brake member that is rotatable and a resilient member arranged on the motor axle. The annular brake member and the resilient member are arranged between a first locking member and a positionable locking member, where the positionable locking member can be fixed at a plurality of positions along and at the motor axle. An engagement member is movable between an engaging position and a non-engaging position, where in the engaging position the engagement member engages with the annular brake member and prevents rotation of the annular brake member around the motor axis. The annular may include brake protrusion that includes two slats forming a triangular-like shape.
B25J 19/00 - Accessoires adaptés aux manipulateurs, p. ex. pour contrôler, pour observerDispositifs de sécurité combinés avec les manipulateurs ou spécialement conçus pour être utilisés en association avec ces manipulateurs
F16D 65/18 - Mécanismes d'actionnement pour freinsMoyens pour amorcer l'opération de freinage à une position prédéterminée disposés dans, ou sur le frein adaptés pour rapprocher les organes par traction
F16D 121/24 - Électrique ou magnétique utilisant des moteurs
A robot system and method for conditionally stopping a robot, wherein a maximum stopping time and/or distance are defined by a user or integrator through a user interface as safety limits based on the risk assessment. The method provides the continuous calculation of the time and/or distance, which the robot would need to stop under maximum motor torque and/or brake appliance. The robot is stopped or the speed of the robot is reduced, if the calculated time and/or distance exceeds the maximum limit values set by the user or integrator. The method may also be used to program or generate the trajectories of the robot as not to exceed the speed of the movement under the condition of keeping the set maximum stopping time and/or distance as defined by a use.
B25J 19/00 - Accessoires adaptés aux manipulateurs, p. ex. pour contrôler, pour observerDispositifs de sécurité combinés avec les manipulateurs ou spécialement conçus pour être utilisés en association avec ces manipulateurs
There is provided a method for programming an industrial robot, where distributors and integrators can present accessories that run successfully at end users. Also the developer can define customized installation screens and program nodes for the end user. There is provided a software platform, where the developer can define customized installation screens and program nodes for the end user thereby extending an existing robot system with customized functionalities by still using the software platform available in the robot system. Hereby a robot developer can define customized installation screens and program nodes for the end user. These can, for example, encapsulate complex new robot programming concepts, or provide friendly hardware configuration interfaces.
A releasable joint between two component flanges is for use in a robot arm. The flanges have a number of teeth on each part that is pressed into contact by clamps, screws or other means. The releasable joint assembly is suitable for establishing a robot joint between a first and second component each having interlocking annular flange with respective contact surfaces, and where these flanges are held in place by a clamp.
B25J 19/00 - Accessoires adaptés aux manipulateurs, p. ex. pour contrôler, pour observerDispositifs de sécurité combinés avec les manipulateurs ou spécialement conçus pour être utilisés en association avec ces manipulateurs
G05B 19/425 - Apprentissage de positions successives par commande numérique, c.-à-d. des commandes étant introduites pour commander l'asservissement en position de la tête porte-outil ou de l'effecteur de bout de bras
F16D 1/033 - Accouplements pour établir une liaison rigide entre deux arbres coaxiaux ou d'autres éléments mobiles d'une machine pour liaison bout à bout de deux arbres ou de deux pièces analogues par serrage de deux surfaces perpendiculaires à l'axe de rotation, p. ex. avec des brides boulonnées
41.
Strain wave gear with output flange and integrated encoder
A strain wave gear comprising an outer ring and an inner ring rotatably arranged in the outer ring. The inner ring comprises an internally toothed gear and a flex spline is arranged in the inner ring and comprise a flexible part comprising an external toothed gear. A wave generator is rotatable in relation to the flex spline and is configured to flex the flexible part in a radial direction to partly mesh the external toothed gear with the internally toothed gear causing rotation of the inner ring in relation to the outer ring. A part of said inner ring extends out of said outer ring and comprises an outwardly protruding output flange. An encoder reader can be disposed on the outer ring and an encoder track can disposed on the inner ring. A robot joint comprising the strain wave gear is also disclosed.
G01D 5/14 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension
G01D 5/26 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens optiques, c.-à-d. utilisant de la lumière infrarouge, visible ou ultraviolette
A method is provided for vibration suppression, which is useful in systems with configuration dependent dynamic parameters. The method is a general and practical solution for obtaining a set of inputs to a dynamic system, which will result in reduced vibrational behavior. A novel discrete time buffer implementation is employed, which yields reduced vibration due to a constant unity sum of applied impulses. The method includes shaping a position input with a continuously updated filter and using numerical differentiation to obtain consistent feedforward derivatives without phase shift.
There is provided a method and computer program product for programming a robot by manually operating it in gravity-compensation kinesthetic-guidance mode. More specifically there is provided method and computer program product that uses kinesthetic teaching as a demonstration input modality and does not require the installation or use of any external sensing or data-capturing modules. It requires a single user demonstration to extract a representation of the program, and presents the user with a series of easily-controllable parameters that allow them to modify or constrain the parameters of the extracted program representation of the task.
G05B 19/423 - Apprentissage de positions successives par guidage, c.-à-d. la tête porte-outil ou l'effecteur de bout de bras étant saisis et guidés, avec ou sans assistance par servo-moteur, pour suivre un contour
G05B 19/42 - Systèmes d'enregistrement et de reproduction, c.-à-d. dans lesquels le programme est enregistré à partir d'un cycle d'opérations, p. ex. le cycle d'opérations étant commandé à la main, après quoi cet enregistrement est reproduit sur la même machine
48.
Method for extending end user programming of an industrial robot with third party contributions
There is provided a method for programming an industrial robot, where distributors and integrators can present accessories that run successfully at end users. Also the developer can define customized installation screens and program nodes for the end user. There is provided a software platform, where the developer can define customized installation screens and program nodes for the end user thereby extending an existing robot system with customized functionalities by still using the software platform available in the robot system. Hereby a robot developer can define customized installation screens and program nodes for the end user. These can, for example, encapsulate complex new robot programming concepts, or provide friendly hardware configuration interfaces.
A safety system for an industrial robot, specifically an industrial robot and a method for implementing a safety system via predefined safety functions. To perform such safety functions the robot comprises in a joint connecting two robot arm sections a first position sensor (132) for sensing the angular orientation on an input side of a gear in the joint, and a second position sensor (133) for sensing an angular orientation on an output side of the gear.
G05B 19/08 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des tableaux de connexion, des distributeurs à barres croisées, des commutateurs à matrice, ou analogues
Methods includes calibrating robots without the use of external measurement equipment and copying working programs between un-calibrated robots. Both methods utilize the properties of a closed chain and the relative position of the links in the chain in order to update the kinematic models of the robots.
G05B 19/408 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le maniement de données ou le format de données, p. ex. lecture, mise en mémoire tampon ou conversion de données
A programmable robot system includes a robot provided with a number of individual arm sections, where adjacent sections are interconnected by a joint. The system furthermore includes a controllable drive mechanism provided in at least some of the joints and a control system for controlling the drive. The robot system is furthermore provided with user a interface mechanism including a mechanism for programming the robot system, the user interface mechanism being either provided externally to the robot, as an integral part of the robot or as a combination hereof, and a storage mechanism co-operating with the user interface mechanism and the control system for storing information related to the movement and further operations of the robot and optionally for storing information relating to the surroundings.
The invention pertains to a method of calibrating robots without the use of external measurement equipment. The invention furthermore pertains to a method of copying working programs between un-calibrated robots. Both methods utilize the properties of a closed chain and the relative position of the links in the chain in order to update the kinematic models of the robots.
G05B 19/408 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le maniement de données ou le format de données, p. ex. lecture, mise en mémoire tampon ou conversion de données
A programmable robot system includes a robot provided with a number of individual arm sections, where adjacent sections are interconnected by a joint. The system furthermore includes a controllable drive mechanism provided in at least some of the joints and a control system for controlling the drive. The robot system is furthermore provided with user a interface mechanism including a mechanism for programming the robot system, the user interface mechanism being either provided externally to the robot, as an integral part of the robot or as a combination hereof, and a storage mechanism co-operating with the user interface mechanism and the control system for storing information related to the movement and further operations of the robot and optionally for storing information relating to the surroundings.
The present invention relates to a user friendly method for programming a robot, where the method comprises placing the robot at a given position P0 in the surroundings and using a portion or point P of the robot (for instance the point to which a tool is attached during use of the robot) to define one or more geometrical features relative to the surroundings of the robot and establishing a relationship between the geometrical features and first coordinates of a robot-related coordinate system, whereby the robot can subsequently be instructed to carry out movements of specified portions of the robot relative to said surroundings by reference to said one or more geometrical features. By these means it becomes easy for users that are not experts in robot programming to program and use the robot. The geometrical features can according to the invention be stored in storage means and used subsequently also in other settings than the specific setting in which the programming took place.
G05B 19/401 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par des dispositions de commande pour la mesure, p. ex. étalonnage et initialisation, mesure de la pièce à usiner à des fins d'usinage
A programmable robot system includes a robot provided with a number of individual arm sections, where adjacent sections are interconnected by a joint. The system furthermore includes a controllable drive mechanism provided in at least some of the joints and a control system for controlling the drive mechanism. The robot system is furthermore provided with user a interface mechanism including a mechanism for programming the robot system, the user interface mechanism being either provided externally to the robot, as an integral part of the robot or as a combination hereof, and a storage mechanism co-operating with the user interface mechanism and the control system for storing information related to the movement and further operations of the robot and optionally for storing information relating to the surroundings.