The invention relates to a method for producing a stacked structure comprising a layer of semiconductor material bonded to a substrate, which comprises: producing a heterostructure by: • forming an intermediate layer made of a two-dimensional material on a growth substrate (1); patterning the intermediate layer with a plurality of openings to form a patterned intermediate layer (3); growing a semiconductor material on the patterned intermediate layer (3) by epitaxial lateral overgrowth to form a continuous epitaxial layer (4) on the patterned intermediate layer; forming a first assembly by bonding the heterostructure to a handling substrate (6), the continuous epitaxial layer being located at the bonding interface; separating the first assembly at the patterned intermediate layer (3) so as to obtain a second assembly resulting from transferring the continuous epitaxial layer (4) from the heterostructure to the handling substrate (6).
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Charbonnier, Jean
Coudrain, Perceval
Coutier, Caroline
Ghyselen, Bruno
Salvetat, Thierry
Abrégé
A substrate is provided, including: a first layer based on a semiconductive material; a second layer surmounting the first layer; and a plurality of buried vias extending from the second layer over a portion of the first layer, each via of the plurality of buried vias being delimited by a side wall, a bottom wall, and an upper wall opposite the bottom wall, at least one assembly of the plurality of vias forming a pattern repeated along at least one direction of a main extension plane of the first layer and the second layer. A method for manufacturing the substrate is also provided. A method for manufacturing a microelectronic device is also provided.
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes
H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif
3.
METHOD FOR ASSEMBLING TWO SUBSTRATES BY MOLECULAR ADHESION AND STRUCTURE OBTAINED BY SUCH A METHOD
A method for assembly by molecular adhesion of two substrates each having a main face, at least one of the two substrates bearing a dielectric surface layer on its main face, comprises (a) contacting the main faces of the two substrates, then (b) initiating and propagating a bonding wave between the main faces of the two substrates to assemble them with one another. Prior to the contacting of the main faces, sulfur is introduced into the dielectric surface layer at a dose of more than 3.0 E13 at/cm^2 into this layer. A joined structure is obtained via the method.
A piezoelectric-on-insulator (POI) substrate comprises a support substrate, in particular, a silicon-based substrate, a piezoelectric layer, in particular, a layer of lithium tantalate or lithium niobate, a dielectric layer, in particular, a layer of silicon oxide, sandwiched between the piezoelectric layer and the support substrate, and a trapping structure sandwiched between the dielectric layer and the support substrate. The trapping structure comprises at least two trapping layers that are based on different materials. A particular method may be employed for producing such a piezoelectric-on-insulator substrate.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Charbonnier, Jean
Coudrain, Perceval
Coutier, Caroline
Ghyselen, Bruno
Salvetat, Thierry
Abrégé
A substrate is provided, including: a first layer based on a semiconductive material; a second layer surmounting the first layer; and a plurality of buried vias extending from the second layer over a portion of the first layer, each via of the plurality of buried vias being delimited by a side wall, a bottom wall, and an upper wall opposite the bottom wall, each via having at least one transverse dimension less than or equal to 30 μm. A method for manufacturing the substrate is also provided. A method for manufacturing a microelectronic device is also provided.
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes
H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif
H01L 23/31 - Encapsulations, p. ex. couches d’encapsulation, revêtements caractérisées par leur disposition
6.
CARRIER COMPRISING A LAYER FOR TRAPPING ELECTRICAL CHARGES FOR A COMPOSITE SUBSTRATE
The invention relates to a method for preparing a carrier (1) for a composite substrate (S), which method comprises forming a superficial porous layer (P) on a first face (1c) of the carrier (1), and dispensing a viscous solution comprising a solvent and a precursor of a filler material on the first face (1c) of the carrier (1) so as to absorb at least some of the viscous solution in open pores of the superficial porous layer (P). In a fourth step, the carrier (1) is heat-treated to transform the viscous solution present in the open pores in order to fill the open pores with the filler material.
A method for fabricating a strained semiconductor-on-insulator substrate comprises bonding a donor substrate to a receiving substrate with a dielectric layer at the interface. The donor substrate comprises a monocrystalline carrier substrate, an intermediate etch-stop layer, and a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is transferred from the donor substrate to the receiving substrate. After transferring the monocrystalline semiconductor layer, a portion of the carrier substrate is selectively etched with respect to the intermediate layer, and the intermediate layer is selectively etched with respect to the monocrystalline semiconductor layer.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Reboh, Shay
Gaudin, Gweltaz
Abrégé
A method for fabricating a microelectronic device includes: producing a structure with a support provided with a semiconductor layer of a first level of components and another semiconductor layer of a second level, the other semiconductor layer including a lower sublayer contacting the insulating layer and an upper sublayer disposed on the lower sublayer, one of the lower and upper sublayers made from crystalline material while another of the lower and upper sublayers made from amorphous material; forming a transistor gate block on the semiconductor layer; forming, on either side of the gate block, by implanting dopants in the semiconductor layer, doped regions on either side of a semiconductor region facing the gate block for accommodating a channel of the transistor; and implementing heat treatment to recrystallize the second semiconductor sublayer while using the first semiconductor sublayer as a start region of a crystalline front while activating the dopants.
A substrate for a power or radiofrequency electronic device includes a self-supporting support substrate made of polycrystalline silicon carbide and a surface layer of monocrystalline silicon carbide that extends over a front face of the support substrate. The support substrate has at least one porous portion extending from a rear face of the support substrate. The porous portion has a degree of porosity of greater than 5%.
H01L 23/14 - Supports, p. ex. substrats isolants non amovibles caractérisés par le matériau ou par ses propriétés électriques
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 23/13 - Supports, p. ex. substrats isolants non amovibles caractérisés par leur forme
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 25/065 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant tous d'un type prévu dans une seule des sous-classes , , , , ou , p. ex. ensembles de diodes redresseuses les dispositifs n'ayant pas de conteneurs séparés les dispositifs étant d'un type prévu dans le groupe
10.
METHOD FOR PRODUCING A STRUCTURE COMPRISING AT LEAST TWO CHIPS ON A SUBSTRATE
A method for manufacturing a structure comprising at least two chips on a receiver substrate comprises: forming a pseudo-donor substrate by placing at least one tile of at least one donor substrate on a support substrate; bonding the pseudo-donor substrate to a receiver substrate via the tiles so that each tile at least partially covers at least two different zones of interest of the receiver substrate; transferring a portion of the tiles to the receiver substrate; at least one step of chemical-mechanical polishing of the tiles of the pseudo-donor substrate and/or of the tile portions transferred to the receiver substrate; after the at least one step of chemical-mechanical polishing, a removal of material from the tile portions so as to divide each tile portion into at least two chips each arranged on a respective zone of interest.
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 21/304 - Traitement mécanique, p. ex. meulage, polissage, coupe
H01L 21/306 - Traitement chimique ou électrique, p. ex. gravure électrolytique
H01L 21/308 - Traitement chimique ou électrique, p. ex. gravure électrolytique en utilisant des masques
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Rieutord, François
Broekaart, Marcel
Viravaux, Laurent
Kononchuk, Oleg
Noel, Paul
Fournel, Franck
Larrey, Vincent
Landru, Didier
Abrégé
The invention relates to a method for direct bonding between two substrates, the method comprising the following steps: (a) providing a first substrate and a second substrate respectively comprising a first bonding surface made of hydrophilic silicon oxide and a second bonding surface made of hydrophilic silicon oxide; (b) depositing a specific compound on the first bonding surface made of hydrophilic silicon oxide, the specific compound being an organic compound consisting of a basic functional group and substituents of the basic functional group, each substituent being a hydrophobic group; (c) bringing the first bonding surface made of hydrophilic silicon oxide, on which the specific compound has been deposited, into contact with the second bonding surface made of hydrophilic silicon oxide, so as to adhere the first substrate to the second substrate.
C09J 5/00 - Procédés de collage en généralProcédés de collage non prévus ailleurs, p. ex. relatifs aux amorces
C09J 5/02 - Procédés de collage en généralProcédés de collage non prévus ailleurs, p. ex. relatifs aux amorces comprenant un traitement préalable des surfaces à joindre
C09J 5/06 - Procédés de collage en généralProcédés de collage non prévus ailleurs, p. ex. relatifs aux amorces comprenant un chauffage de l'adhésif appliqué
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Rieutord, François
Broekaart, Marcel
Viravaux, Laurent
Kononchuk, Oleg
Noel, Paul
Fournel, Franck
Larrey, Vincent
Landru, Didier
Abrégé
The invention relates to a method for directly bonding two substrates, the method comprising the following steps: (a) providing a first substrate and a second substrate respectively comprising a first hydrophilic silicon oxide bonding surface and a second hydrophilic silicon oxide bonding surface; (b) depositing a specific compound on the first hydrophilic silicon oxide bonding surface, the specific compound being derived from the ammonia molecule or the ammonium ion by at least the substitution of a hydrogen atom with a hydroxyl -OH group and/or an amino -NH2 group, the specific compound not comprising carbon atoms; and (c) bringing the first hydrophilic silicon oxide bonding surface on which the specific compound has been deposited into contact with the second hydrophilic silicon oxide bonding surface, so that the first substrate is adhered to the second substrate.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Rieutord, François
Broekaart, Marcel
Viravaux, Laurent
Kononchuk, Oleg
Noel, Paul
Fournel, Franck
Larrey, Vincent
Landru, Didier
Mehrez, Zouhir
Abrégé
The invention relates to a method for directly bonding two substrates, the method comprising the following steps: a) providing a first substrate and a second substrate comprising, respectively, a first bonding surface made of hydrophilic silicon oxide and a second bonding surface made of hydrophilic silicon oxide, b) adding fluoride ions to the first hydrophilic silicon oxide bonding surface; c) bringing the first hydrophilic silicon oxide bonding surface into contact with the second hydrophilic silicon oxide bonding surface, so that the first substrate is adhered to the second substrate, by way of the fluoride ions at the bonding interface.
The present invention relates to an elastic-wave device, in particular a shear-wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) of a first polarization direction (13a) and second domains (3b) with a second polarization direction (13b), the first direction (13a) being opposite to the second direction, wherein the first and second domains (3a, 3b) are alternated periodically in a direction d, referred to as the periodic direction, perpendicular to the normal n of the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) buried in the piezoelectric material (3) having respective comb teeth (17a1 to 17a3 and 17b1 to 17b3) extending essentially perpendicular to the periodic direction d and to the normal n.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
The present invention relates to an elastic wave device, in particular a shear wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) having a first polarisation direction (13a) and second domains (3b) having a second polarisation direction (13b), wherein the first direction (13a) is opposite to the second direction, and wherein the first and second domains (3a, 3b) alternate periodically in a direction d, referred to as the periodic direction, which is perpendicular to the normal n of the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) above, in particular on, the piezoelectric material (3), the respective comb teeth (17al to 17a3 and 17bl to 17b3) of which extend essentially perpendicular to the periodic direction d and to the normal n of the substrate surface.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
16.
ELASTIC-WAVE DEVICE WITH PARTIALLY BURIED INTERDIGITATED COMB ELECTRODES
The present invention relates to an elastic-wave device, in particular a shear-wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) of a first polarization direction (13a) and second domains (3b) with a second polarization direction (13b), the first direction (13a) being opposite to the second direction, wherein the first and second domains (3a, 3b) are alternated periodically in a direction d, referred to as the periodic direction, perpendicular to the normal n of the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) buried in the piezoelectric material (3) having respective comb teeth (17a1 to 17a3 and 17b1 to 17b3) extending essentially perpendicular to the periodic direction d and to the normal n.
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
The present invention relates to an elastic-wave device, in particular a shear-wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) of a first polarization direction (13a) and second domains (3b) with a second polarization direction (13b), the first direction (13a) being opposite to the second direction, wherein the first and second domains (3a, 3b) are alternated periodically in a direction d, referred to as the periodic direction, perpendicular to the normal n of the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) buried in the piezoelectric material (3) having respective comb teeth (17a1 to 17a3 and 17b1 to 17b3) extending essentially perpendicular to the periodic direction d and to the normal n.
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
The present invention relates to an elastic wave device, in particular a shear wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) having a first polarisation direction (13a) and second domains (3b) having a second polarisation direction (13b), the first direction (13a) being opposite to the second direction, wherein the first and second domains (3a, 3b) alternate periodically in a direction d, referred to as the periodic direction, which is perpendicular to the normal n to the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) above, in particular on, the piezoelectric material (3), the respective comb teeth (17a1 to 17a3 and 17b1 to 17b3) of which extend essentially perpendicular to the periodic direction d and to the normal n to the surface of the substrate.
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
H10N 30/00 - Dispositifs piézo-électriques ou électrostrictifs
The present invention relates to an elastic wave device, in particular a shear wave device, comprising a piezoelectric material (3), in particular a ferroelectric material with first domains (3a) having a first polarisation direction (13a) and second domains (3b) having a second polarisation direction (13b), the first direction (13a) being opposite to the second direction, wherein the first and second domains (3a, 3b) alternate periodically in a direction d, referred to as the periodic direction, which is perpendicular to the normal n to the surface of the piezoelectric material (3), and a pair of interdigitated comb electrodes (15a, 15b) above, in particular on, the piezoelectric material (3), the respective comb teeth (17a1 to 17a3 and 17b1 to 17b3) of which extend essentially perpendicular to the periodic direction d and to the normal n to the surface of the substrate.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/045 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode par polarisation
H10N 30/00 - Dispositifs piézo-électriques ou électrostrictifs
20.
PIEZOELECTRIC-ON-INSULATOR (POI) SUBSTRATE AND METHOD FOR PRODUCING A PIEZOELECTRIC-ON-INSULATOR (POI) SUBSTRATE
A piezoelectric-on-insulator (POI) substrate comprises: a carrier substrate, in particular, a substrate based on silicon; a piezoelectric layer, in particular, a layer of lithium tantalate or of lithium niobate; a dielectric layer, in particular, a layer of silicon oxide, sandwiched between the piezoelectric layer and the substrate; a trapping structure sandwiched between the dielectric layer and the carrier substrate. The trapping structure comprises at least two trapping layers, which layers are separated each time by a dielectric intermediate layer. A method is used for producing such a piezoelectric-on-insulator substrate.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
21.
METHOD FOR TRANSFERRING A THIN FILM ONTO A SUPPORT SUBSTRATE
Commissariat à I'Energie Atomique et aux Énergies Alternatives (France)
Inventeur(s)
Coig, Marianne
Mazen, Frédéric
Kononchuk, Oleg
Landru, Didier
Ben Mohamed, Nadia
Abrégé
A method for transferring a thin film onto a support substrate comprises implanting into a donor substrate light species including co-implantation of hydrogen ions at a first dose and a first implantation energy, and helium ions at a second dose and a second implantation energy. Hydrogen ions are also locally implanted at a third dose and a third energy to form an overdosed local region in a buried fragile plane formed by the implanted ions. The donor substrate and the support substrate are assembled by direct bonding to form a bonded structure, and a fracture heat treatment is applied to the bonded structure so as to induce spontaneous separation along the buried fragile plane. The separation leads to the transfer of a thin film from the donor substrate onto the support substrate. The overdosed local region of the buried fragile plane constitutes a starting point for the separation.
The present invention relates to a method of manufacturing a donor substrate for the manufacture of a Piezoelectric on Insulator, POI, structure, comprising providing a support substrate, forming a block of piezoelectric material on or over the support substrate, wherein the piezoelectric material comprises or consists of one of lithium tantalate and lithium niobate, chemical-mechanical polishing, CMP, the block of piezoelectric material to obtain a piezoelectric substrate and implanting a species into the piezoelectric substrate to obtain a weakened layer in the piezoelectric substrate. The CMP is performed by means of a CMP pad comprising a sub pad with a hardness of more than 45 shore A.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H10N 30/086 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par usinage par polissage ou meulage
23.
REFRESHING OF A DONOR SUBSTRATE FOR THE MANUFACTURE OF A POI STRUCTURE
The present invention relates to a method of refreshing a donor substrate for the manufacture of a Piezoelectric on Insulator, POI, structure, comprising providing the donor substrate to be refreshed comprising a support substrate and a first piezoelectric substrate formed over the support substrate comprising or consisting of one of lithium tantalate and lithium niobate, wherein the first piezoelectric substrate is a second piezoelectric substrate from which a piezoelectric layer has been transferred to a target substrate and chemical-mechanical polishing, CMP, the first piezoelectric substrate to obtain a refreshed donor substrate comprising a refreshed piezoelectric substrate, wherein the CMP comprises removing a layer of the first piezoelectric substrate with a thickness of at most 2 µm, in particular, at most 1.2 µm.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H10N 30/086 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par usinage par polissage ou meulage
24.
MANUFACTURING OF A POI STRUCTURE WITH A HIGHLY UNIFORM PIEZOELECTRIC LAYER
The present invention relates to a method of manufacturing a Piezoelectric on Insulator, POI, structure, comprising providing a donor substrate comprising a piezoelectric substrate, wherein the piezoelectric substrate comprises or consists of one of lithium tantalate and lithium niobate, transferring a piezoelectric layer from the piezoelectric substrate to a target substrate, and polishing the piezoelectric layer transferred to the target substrate with a chemical mechanical polishing, CMP, slurry, wherein the CMP slurry consists of an aqueous suspension of amorphous silicon with a weight percent of the amorphous silicon in the range of 4 to 18.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H10N 30/086 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par usinage par polissage ou meulage
25.
METHOD FOR MANUFACTURING A SUBSTRATE COMPRISING A PLURALITY OF TILES
The invention relates to a method for manufacturing a substrate (100), referred to as a donor pseudo-substrate, comprising a plurality of tiles (1) arranged at a distance from one another on a support substrate (3), comprising the steps of: - arranging, on the support substrate (3), said tiles (1) and an intermediate substrate (2) comprising a plurality of through-openings (20), such that each tile (1) extends into a respective through-opening (20) of the intermediate substrate, and - performing chemical-mechanical polishing of the tiles (1) arranged in the openings of the intermediate substrate.
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 23/544 - Marques appliquées sur le dispositif semi-conducteur, p. ex. marques de repérage, schémas de test
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Crobu, Carla
Acosta Alba, Pablo
Mazen, Frédéric
Navone, Christelle
Abrégé
The invention relates to a method for transferring chips onto a receiver substrate from tiles arranged on a support substrate, comprising: - forming a substrate (10), referred to as the pseudo-donor substrate, comprising the support substrate (2) and the tiles (1), wherein two adjacent tiles are spaced apart by a first distance (d1), - carrying out chemical mechanical polishing on the tiles, - forming a weakened zone in at least one portion of the tiles so as to delimit a respective chip, - bonding the pseudo-donor substrate to the receiver substrate via the tiles, - detaching the tiles along the weakened zone so as to transfer a respective chip onto the receiver substrate, two adjacent chips being spaced apart by a second distance greater than the first distance (d1), - before the bonding step, locally roughening the surface of the tiles and/or the receiver substrate to make regions of the surface unsuitable for bonding, so as to prevent the chips from being transferred in said regions.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
27.
METHOD FOR TRANSFERRING A THIN FILM ONTO A SUPPORT SUBSTRATE
Commissariat à l'Energie Atomique et aux Énergies Alternatives (France)
Inventeur(s)
Colas, Franck
Broekaart, Marcel
Ben Mohamed, Nadia
Mazen, Frédéric
Landru, Didier
Acosta Alba, Pablo
Kononchuk, Oleg
Larrey, Vincent
Abrégé
The invention relates to a method for transferring a thin film onto a support substrate, which comprises: providing a bonded assembly that comprises a donor substrate and the support substrate, assembled by direct bonding at their respective front faces, following a bonding interface, the bonded assembly having a local unbonded area within this bonding interface, the donor substrate further comprising a buried brittle plane; separating along the buried brittle plane, initiated at the local unbonded area after microcrack growth in said plane by thermal activation, the separation resulting in the transfer of a thin film from the donor substrate to the support substrate. The method is characterised in that the local unbonded area is generated solely by a roughened area, produced deliberately on at least one of the front faces of the donor and support substrates prior to assembly, free of topology and having a predetermined roughness with an amplitude of between 0.5 nm RMS and 60.0 nm RMS.
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
28.
BASE STRUCTURE FOR QUANTUM DEVICES AND MANUFACTURING METHOD
The invention relates to a structure (Strc) capable of forming a quantum device, comprising: a silicon carrier substrate (Car); a first layer (Si-L1) of silicon isotope 28Si; a layer (Ox) of silicon oxide; a second layer (Si-L2) of silicon isotope 28Si, wherein the structure is formed by the carrier substrate (Car), the first layer (Si-L1) of silicon isotope 28Si, the layer (Ox) of silicon oxide, and the second layer (Si-L1) of silicon isotope 28Si, stacked in this order, wherein the first layer (SiL1) and the second layer (Si-L2) of silicon isotope 28Si are each made up of at least 99.92% of silicon isotope 28Si.
The invention relates to a method for producing a substrate (100), referred to as a donor pseudo-substrate, comprising a plurality of first blocks (1) arranged at a distance from one another on a carrier substrate (3), wherein the method comprises: - arranging, on the carrier substrate (3), the first blocks (1) and a plurality of second blocks (2) arranged between the first blocks (1) such that each edge of each first block (1) faces at least one second block (2), wherein the first blocks (1) comprise a first material and the second blocks (2) comprise a second material different from the first material; and - chemical-mechanical polishing of the first and second blocks (1, 2).
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 23/544 - Marques appliquées sur le dispositif semi-conducteur, p. ex. marques de repérage, schémas de test
30.
METHOD FOR CORRECTING THE THICKNESS OF A PIEZOELECTRIC LAYER
A method for correcting the thickness of a piezoelectric layer arranged on a piezoelectric-on-insulator substrate comprises: measuring the thickness of at least one intermediate layer located between the piezoelectric layer and a carrier substrate; measuring the thickness of the piezoelectric layer; based on the measurements of the thickness of the at least one intermediate layer and of the piezoelectric layer and on a numerical model of at least one property of the piezoelectric layer as a function of a plurality of pairs of thicknesses of the piezoelectric layer and of the at least one intermediate layer, computing a thickness correction for the piezoelectric layer with a view to obtaining a target value for each property; and applying the thickness correction to the piezoelectric layer using a milling process in a topographically discriminating manner.
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
31.
METHOD FOR PRODUCING A SEMICONDUCTOR-ON-INSULATOR MULTILAYER STRUCTURE
A method for producing a semiconductor-on-insulator structure comprises the steps of: —joining a support substrate with a donor substrate, the support substrate having an electrical resistivity greater than or equal to 500 Ω·cm and containing interstitial nitrogen and interstitial oxygen, the initial concentration of interstitial oxygen in the support substrate being between 15 and 25 old ppma, the donor substrate including a semiconductor layer, an electrically insulating layer being at the interface between the support substrate and the donor substrate; and—transferring the semiconductor layer onto the support substrate, the method further comprising a nucleation step comprising a heat treatment in order to precipitate part of the oxygen and nitrogen so as to form nuclei of oxygen and nitrogen precipitates, and a stabilization step comprising a heat treatment in order to grow the nuclei to a size of between 10 and 50 nm.
H10D 86/00 - Dispositifs intégrés formés dans ou sur des substrats isolants ou conducteurs, p. ex. formés dans des substrats de silicium sur isolant [SOI] ou sur des substrats en acier inoxydable ou en verre
32.
PIEZOELECTRIC-ON-INSULATOR (POI) SUBSTRATE AND METHOD FOR PRODUCING A PIEZOELECTRIC-ON-INSULATOR (POI) SUBSTRATE
A piezoelectric-on-insulator substrate comprises a support substrate having a first acoustic impedance, a piezoelectric layer, especially a layer of lithium tantalate, lithium niobate, aluminum nitride, lead zirconate titanate, langasite or langatate, a dielectric layer having a second acoustic impedance and sandwiched between the piezoelectric layer and the support substrate, an intermediate layer positioned between the support substrate and the dielectric layer. The intermediate layer is a layer having a variable composition, in particular along its thickness, such that the acoustic impedance of the intermediate layer varies, in particular gradually, between the values of the first and the second acoustic impedances. The present disclosure also relates to a method for producing such a piezoelectric-on-insulator substrate and also to a surface acoustic wave device comprising such a piezoelectric-on-insulator substrate.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
33.
METHOD FOR PRODUCING A SOI STRUCTURE, IN PARTICULAR SUITABLE FOR PHOTONIC APPLICATIONS, AND CARRIER SUBSTRATE FOR THE STRUCTURE
The invention relates to a method for producing a SOI structure, comprising the following steps: a) providing an initial substrate made of monocrystalline silicon, having an interstitial oxygen content of between 15 and 27 ppma according to standard ASTM'79 and a resistivity of less than 200 ohms.cm, the initial substrate being intended to form a carrier substrate for the SOI structure after having undergone the subsequent step b); b) applying a sequence of heat treatments to the initial substrate while it is devoid, at least on a front face, of a silicon oxide layer other than optionally a native oxide layer, the sequence consisting of: - a first heat treatment defined by a plateau at a temperature higher than 1200°C and lower than 1280°C and with a duration of between 1 second and 60 seconds, by a temperature decrease ramp of between 10°C/s and 70°C/s, and by an argon or argon-hydrogen atmosphere; followed by - a second heat treatment defined by a plateau at a temperature of between 900°C and 1100°C, without an intermediate step before this temperature, under a neutral or oxidising atmosphere, in order to form a carrier substrate comprising: - a stripped surface layer, with a thickness greater than 40 μm and having a micro-defect concentration (BMD) of less than 108/cm3, and - an enriched deep layer, under the stripped surface layer, having a micro-defect concentration (BMD) of between 2.108/cm3and 5.1010/cm3. The invention also relates to a carrier substrate and a SOI structure including the carrier substrate.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p. ex. pour produire des défectuosités internes
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Henck, Hugo
Fournel, Franck
Gaudin, Gweltaz
Abadie, Karine
Abrégé
Disclosed is a carrier (100) intended to be split by laser radiation, comprising a carrier substrate (Sprt); on the carrier layer, a splitting layer (Sep) formed from an inorganic material of thickness between 10 nm and 100 nm; and a layer (Brg) forming a Bragg mirror, the splitting layer (Sep) being interposed between the carrier substrate (Sprt) and the layer (Brg) forming the Bragg mirror, the carrier being configured in such a way that the carrier substrate is substantially transparent to laser radiation of a certain wavelength, the layer forming the Bragg mirror is substantially reflective with respect to the laser radiation, and the splitting layer (Sep) can absorb some of the laser radiation, such that the carrier can be split into two parts level with the splitting layer (Sep) under the action of the laser radiation.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/78 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels
35.
SUPERLATTICE OBTAINED BY LAYER TRANSFER, STRUCTURE AND PRODUCTION METHOD
CarCarDonDon) respective overcoat layers (Cap1, Cap2) on the two superlattices (Stck1, Stck2); and assembling (660) the two superlattices (Stck1, Stck2) by placing their respective overcoat layers (Cap1, Cap2) in contact, so that together they form a bonding layer, the first overcoat layer (Cap1) and the second overcoat layer (Cap2) each having a thickness of less than 2 nm.
H10D 84/03 - Fabrication ou traitement caractérisés par l'utilisation de technologies basées sur les matériaux utilisant une technologie du groupe IV, p. ex. technologie au silicium ou au carbure de silicium [SiC]
The invention relates to a method for controlling the quality of a composite structure comprising a thin layer made of single-crystal silicon carbide placed on a carrier substrate made of polycrystalline silicon carbide, the method comprising: a) inspection of a free surface (10a) of the thin layer (10) using a technique coupling visible-light confocal microscopy and photoluminescence imaging, making it possible to detect defects, called secondary defects, b) preliminary identification of the secondary defects, by similarity, on the basis of their visible-light image, by virtue of an image recognition algorithm trained on various types of defects such as holes, bubbles, scratches, and defects of crystalline origin; at the end of step b), each secondary defect is associated with one identified type of defect, with a certain level of similarity, c) final classification of at least certain secondary defects by application of the following first conditions: - if the level of similarity associated with a secondary defect is greater than a high level, said secondary defect is definitively classified in the identified type of defect, - if the level of similarity associated with the secondary defect is between a low level and the high level, the photoluminescence image of said defect is analysed; if the secondary defect is associated with a labelled type of PL defect, said secondary defect is definitively classified in the identified type of defect, - in all other cases, the secondary defect is definitively classified as not a defect.
The invention relates to a process for fabricating a composite structure comprising a thin layer made of single-crystal silicon carbide placed on a carrier substrate made of polycrystalline silicon carbide, the process comprising the following steps: 1) providing at least one donor substrate made of single-crystal silicon carbide, having a front side and a rear side, the front side potentially having defects, called primary defects; 2) controlling the quality of the - at least one - donor substrate by means of a photoluminescence-based imaging technique, so as to extract a map of the front side, called the first map, cataloguing the primary defects identified as being of micro-hole type, of the complex type consisting of star stacking faults or of point-defect type; 3) transferring a thin layer, obtained from a surface layer of the - at least one - donor substrate, onto a carrier substrate made of polycrystalline silicon carbide, in order to obtain a composite structure and a residual donor substrate; 4) inspecting a free surface of the thin layer of the composite structure by means of a technique for inspecting for defects by means of scattering of an ultraviolet laser beam, so as to extract a map of the free surface, called the second map, cataloguing defects called secondary defects; 5) grading the composite structure, this including a comparison of the first map and of the second map.
CarDonDon) a second superlattice (Stck2) on a second substrate by stacking a plurality of second channel layers alternating with a plurality of second sacrificial layers; and assembling (560) the second superlattice (Stck2) on the first superlattice (Stck1) at a dielectric separation layer which separates the first superlattice (Stck1) and the second superlattice (Stck2) and keeps them attached to one another, the first superlattice (Stck1), the separation layer and the second superlattice (Stck2) being stacked in this order.
H10D 84/03 - Fabrication ou traitement caractérisés par l'utilisation de technologies basées sur les matériaux utilisant une technologie du groupe IV, p. ex. technologie au silicium ou au carbure de silicium [SiC]
CarDonDonDon) a weakening plane (Imp) in the second substrate; assembling (560) the seed layer (Init) on the first superlattice (Stck1) at a dielectric separation layer that separates the first superlattice (Stck1) and the seed layer (Init) and keeps them attached to each other; removing (570A) a portion of the second substrate by fracturing the second substrate at the weakening plane (Imp) after the assembly step (560); exposing (570B) the seed layer (Init) after the step (570A) of fracturing the second substrate; and forming (580) the second superlattice (Stck2) on the exposed seed layer (Init).
H10D 84/03 - Fabrication ou traitement caractérisés par l'utilisation de technologies basées sur les matériaux utilisant une technologie du groupe IV, p. ex. technologie au silicium ou au carbure de silicium [SiC]
METHOD FOR PRODUCING A DONOR SUBSTRATE FOR TRANSFERRING A PIEZOELECTRIC LAYER, AND METHOD FOR TRANSFERRING A PIEZOELECTRIC LAYER TO A CARRIER SUBSTRATE
A method of manufacturing a donor substrate for the transfer of a piezoelectric layer onto a support substrate comprises providing a handling substrate and providing a piezoelectric substrate. A polymer layer is deposited on the handling substrate or the piezoelectric substrate. An intermediate layer is formed on a free surface of the piezoelectric substrate, and the piezoelectric substrate is assembled on the handling substrate such that the intermediate layer formed on the piezoelectric substrate is between the polymer layer and the piezoelectric substrate to form the donor substrate. A donor substrate may be manufactured by such a method, and such a donor substrate may be used for transferring a piezoelectric layer to another substrate.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H10N 30/086 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par usinage par polissage ou meulage
41.
METHOD FOR PRODUCING A DONOR SUBSTRATE FOR TRANSFERRING A PIEZOELECTRIC LAYER, AND METHOD FOR TRANSFERRING A PIEZOELECTRIC LAYER TO A CARRIER SUBSTRATE
A method of manufacturing a donor substrate for the transfer of a piezoelectric layer onto a support substrate comprises providing a handling substrate and a piezoelectric substrate. A surface activation treatment is carried out on the surface of the piezoelectric substrate to form an activated surface on the piezoelectric substrate. A polymer layer is deposited on the activated surface of the piezoelectric substrate or on the handling substrate. The piezoelectric substrate is then assembled on the handling substrate in such a way that the polymer layer is between the activated surface of the piezoelectric substrate and the handling substrate. The donor substrate may be used to transfer a layer of piezoelectric material from the donor substrate onto a support substrate.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
42.
CARRIER COMPRISING A LAYER FOR TRAPPING ELECTRICAL CHARGES FOR A COMPOSITE SUBSTRATE AND METHOD FOR SELECTING SUCH A CARRIER
The invention relates to a carrier (1) for a composite substrate (S). The carrier comprises a base substrate and a trapping layer (3a) made of polycrystalline silicon arranged on the base substrate (2). The trapping layer has electric traps of a first type having an activation energy of 0.383 eV within a tolerance of 0.008 eV, and an effective capture cross-section for holes and electrons of less than 10^-16 cm^2. The trapping layer has electrical traps of a second type having an activation energy of 0.428 eV within a tolerance of 0.016 eV, and an effective capture cross-section for holes and electrons of less than 10^-16 cm^2.
moynuumoynuuu) are determined, prior to carrying out steps b), c) and d), on the basis of a model that relates them to an etched mean thickness of the surface layer and to a mean etching non-uniformity defined by the difference between an etched mean thickness in a central region and in a peripheral region of the surface layer.
METHOD FOR MANUFACTURING A HOMOEPITAXIAL SILICON CARBIDE LAYER, MAKING IT POSSIBLE TO LIMIT THE FORMATION OF BPD-TYPE DEFECTS, AND ASSOCIATED COMPOSITE STRUCTURE
The invention relates to a method for manufacturing an active layer of monocrystalline silicon carbide by homoepitaxy on a composite structure, the method comprising the following steps: 1) providing a composite structure comprising a growth layer made of monocrystalline silicon carbide extending in a main plane and arranged on a support substrate, the growth layer being delimited by a peripheral perimeter and having a first thickness along an axis normal to the main plane; 2) forming a local barrier in or on the growth layer, the local barrier extending at a distance from and along the peripheral perimeter, and corresponding to a physical discontinuity of the growth layer chosen from: - a proeminent relief induced by the presence of a material on the growth layer, said material being different from that of the growth layer, - a recessed relief corresponding to an etched region of the growth layer, or - an amorphous domain or domain of crystallinity different from the rest of the growth layer, the local barrier having a thickness, along the axis normal to the main plane, less than the first thickness; 3) epitaxial growth of the active layer on the growth layer.
The invention relates to a substrate and the production method therefor for producing a bidirectional switch, the method comprising: - transferring, to the front face of a carrier substrate, a first seed layer (21) made of a wide-bandgap polar semiconductor material; - transferring, to the rear face of the carrier substrate, a second seed layer (22) made of the wide-bandgap polar semiconductor material, wherein these transfers are carried out so as to expose a surface of a first type (F1) of the first seed layer (21) and a surface of the first type (F1) of the second seed layer (22), and wherein a surface of a second type (F2) of the first seed layer (21) and a surface of the second type (F2) of the second seed layer (22) are at the interface with the front face and the rear face of the support substrate, respectively.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H10D 30/66 - Transistors FET DMOS verticaux [VDMOS]
H10D 62/832 - Corps semi-conducteurs, ou régions de ceux-ci, de dispositifs ayant des barrières de potentiel caractérisés par les matériaux étant des matériaux du groupe IV, p. ex. Si dopé B ou Ge non dopé étant des matériaux du groupe IV comprenant deux éléments ou plus, p. ex. SiGe
H10D 84/83 - Dispositifs intégrés formés dans ou sur des substrats semi-conducteurs qui comprennent uniquement des couches semi-conductrices, p. ex. sur des plaquettes de Si ou sur des plaquettes de GaAs-sur-Si caractérisés par l'intégration d'au moins un composant couvert par les groupes ou , p. ex. l'intégration de transistors IGFET de composants à effet de champ uniquement de transistors FET à grille isolée [IGFET] uniquement
A method for fabricating a semiconductor-on-insulator structure involves providing a donor substrate comprising a weakened zone delimiting a layer to be transferred, providing a receiver substrate, and bonding the donor substrate to the receiver substrate. The layer to be transferred is located on the bonding-interface side. A bonding wave is initiated at a first region on the periphery of the interface, and the wave is propagated toward a second region on the periphery of the interface opposite the first region. The difference in speed of propagation of the bonding wave between a central portion of the interface and a peripheral portion of the interface is controlled such that the speed of propagation of the bonding wave is lower in the central portion than in the peripheral portion. The donor substrate is detached along the weakened zone to transfer the layer to be transferred to the receiver substrate.
A method is used to fabricate a double semiconductor-on-insulator structure comprising, from a back side to a front side of the structure: a handle substrate, a first electrically insulating layer, a first single-crystal semiconductor layer, a second electrically insulating layer and a second single-crystal semiconductor layer. The method comprises:—a first step of formation of an oxide layer on the front and back sides of the handle substrate, to form the first electrically insulating layer and an oxide layer on the back side of the handle substrate, —a first step of layer transfer, to transfer the first single-crystal semiconductor layer, —a second step of formation of an oxide layer, to form the second electrically insulating layer, and —a second step of layer transfer, to transfer the second single-crystal semiconductor layer.
H10D 86/00 - Dispositifs intégrés formés dans ou sur des substrats isolants ou conducteurs, p. ex. formés dans des substrats de silicium sur isolant [SOI] ou sur des substrats en acier inoxydable ou en verre
48.
COMPOSITE STRUCTURE AND MANUFACTURING METHOD THEREOF
A method of manufacturing a composite structure including a thin layer of a first monocrystalline material arranged on a carrier substrate, the method including: providing an initial substrate of a second polycrystalline material; and depositing, by spin coating, at least on one front surface of the initial substrate, a layer of polymer resin including preformed 3D carbon-carbon bonds; performing a first annealing step at a temperature between 120° C. and 180° C. on the initial substrate provided with the polymer resin layer, to form a layer of cross-linked polymer resin; and performing a second annealing step at a temperature greater than 600° C., in a neutral atmosphere, to convert the layer of cross-linked polymer resin into a glassy carbon film. a composite structure includes a thin layer of a first monocrystalline material on a carrier substrate, which includes a glassy carbon film on an initial substrate of a second polycrystalline.
A method for fabricating a double semiconductor-on-insulator structure comprising the steps of: providing a first donor substrate and a handle substrate, forming a weakened zone in the donor substrate so as to delimit a first semiconductor layer to be transferred, bonding the first donor substrate to the handle substrate, a first electrically insulating layer being at the interface, and detaching at the weakened zone, treating the surface of the first transferred semiconductor layer comprising: a rapid thermal annealing, a thermal oxidation followed by a deoxidation, a smoothing heat treatment at a temperature of above 1000° C. in a non-oxidizing atmosphere, chemical-mechanical polishing, providing a second donor substrate of a second semiconductor layer to be transferred, transferring the second semiconductor layer, a second electrically insulating layer being at the interface.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Mazen, Frédéric
Rieutord, François
Tardif, Samuel
Landru, Didier
Kononchuk, Oleg
Ben Mohamed, Nadia
Abrégé
A method and device for monitoring the weakening of an interface between a layer and a substrate while a weakening anneal is being carried out. The method includes illuminating the first face of the substrate layer assembly with a monochromatic light beam in a first direction; measuring the intensity of the light beam scattered by the substrate layer assembly in at least a second direction, the second direction forming a non-zero angle with the first direction; and determining a state of weakening of the interface from the intensity.
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
51.
METHOD FOR MANUFACTURING A NON-DEFORMABLE P-SIC WAFER
A method of manufacturing a polycrystalline silicon carbide wafer includes the following stages: heat treatment of a polycrystalline silicon carbide slab; thinning of the polycrystalline silicon carbide slab, the thinning comprising a correction, by withdrawal of material from the polycrystalline silicon carbide slab, of a deformation brought about by the heat treatment.
The present invention relates to a method for producing a composite structure, the method comprising: (a) forming a temporary substrate (3') comprising a carrier substrate (3), wherein a plurality of tile portions (P'1-P'3) or a layer of interest (20) made of a first material are arranged on the carrier substrate (3); (b) forming a removable interface (5) arranged between the carrier substrate (3) and the tile portions or the layer of interest, or in or on the tile portions or the layer of interest; (c) assembling the temporary substrate (3') with a receiver substrate (4) made of a second material that is different from the first material, via the tile portions or the layer of interest; and (d) removing the carrier substrate (3) by dismantling the removable interface (5) so as to transfer at least one portion of the tile portions (P'1-P'3) or of the layer of interest (20) to the receiver substrate (4) to form the composite structure.
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Gaudin, Gweltaz
Allibert, Frédéric
Rouchier, Séverin
Bethoux, Jean-Marc
Widiez, Julie
Gelineau, Guillaume
Abrégé
22111211 = 2.85×1018cm-322 = 5.40×1020cm-3, - an interface zone, between the carrier substrate and the working layer, comprising nodules and regions of direct contact between the working layer and the carrier substrate, the nodules comprising a metal or semiconductor material other than silicon carbide, the interface zone having an average resistivity of less than or equal to 0.01 mohm.cm2, a dopant concentration profile along a thickness of the semiconductor structure: - being in the form of a step, and - being devoid of a doping peak in the interface zone, or - exhibiting a doping peak in the interface zone, the extremum of which corresponds to a third dopant concentration equal to the second dopant concentration to within plus or minus 10%. The invention also relates to a process for fabricating such a semiconductor structure.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
The present invention relates to an elastic wave device comprising a piezoelectric material (3) with first domains (3a1, 3a2) of a first polarization direction (13a) and second domains (3b1, 3b2) with a second polarization direction (13b), the first direction being opposite to the second direction, in which the first and second domains are periodically alternated along a direction, called periodic direction, perpendicular to the surface normal of the piezoelectric material, and a pair of interdigitated comb electrodes (15a, 15b), the respective comb teeth (17a1, 17a2, 17b1, 17b2) of which extend mainly in the periodic direction, and to a method for manufacturing such an elastic wave device.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
A method of manufacturing a structure comprising at least two tiles on a substrate comprises: —placing, on a support substrate, at least two tiles, the tiles being arranged on the support substrate in an incorrect distribution and/or geometry compared with a target distribution and/or geometry; —forming a mask comprising a protective film partially covering the tiles in a pattern defining the target distribution and/or geometry and at least one opening extending around the protective film; and —etching at least one tile through the opening in the mask so as to correct the arrangement of the tiles according to the target distribution and/or geometry.
A method for transferring a piezoelectric layer onto a support substrate comprises:—providing a donor substrate including a heterostructure comprising a piezoelectric substrate bonded to a handling substrate, and a polymerized adhesive layer at the interface between the piezoelectric substrate and the handling substrate,—forming a weakened zone in the piezoelectric substrate so as to delimit the piezoelectric layer to be transferred,—providing the support substrate,—forming a dielectric layer on a main face of the support substrate and/or of the piezoelectric substrate,—bonding the donor substrate to the support substrate, the dielectric layer being at the bonding interface, and-fracturing and separating the donor substrate along the weakened zone at a temperature below or equal to 300° C.
H10N 30/057 - Fabrication de dispositifs piézo-électriques ou électrostrictifs multicouches ou de leurs parties constitutives, p. ex. en empilant des corps piézo-électriques et des électrodes par empilement de corps massifs piézo-électriques ou électrostrictifs et d’électrodes
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
58.
DEVICE ARCHITECTURES WITH TENSILE AND COMPRESSIVE STRAINED SUBSTRATES
A method of preparing a semiconductor structure includes forming an insulating layer having a thickness between about 5 nm and about 100 nm on a substrate, and forming an active layer comprising a tensile-strained silicon over the insulating layer. At least a portion of the active layer is implanted with ions to render at least a portion of the active layer amorphous and reduce the tensile strain in the at least portion of the active layer. The method further includes thermally annealing the implanted portion of the active layer and recrystallizing such previously rendered amorphous portion of the active layer. A germanium condensation process is performed on the recrystallized portion of the active layer to form a SiGe material having a compressive strain. Also described are the semiconductor structures.
H01L 29/10 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices avec des régions semi-conductrices connectées à une électrode ne transportant pas le courant à redresser, amplifier ou commuter, cette électrode faisant partie d'un dispositif à semi-conducteur qui comporte trois électrodes ou plus
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/84 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant autre chose qu'un corps semi-conducteur, p.ex. étant un corps isolant
H01L 27/10 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur comprenant une pluralité de composants individuels dans une configuration répétitive
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
H01L 29/161 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée comprenant plusieurs des éléments prévus en
H01L 29/78 - Transistors à effet de champ l'effet de champ étant produit par une porte isolée
The invention relates to a front-side imager comprising in succession: a semiconductor carrier substrate, a first electrically insulating separating layer, and a single-crystal semiconductor layer, called the active layer, comprising a matrix array of photodiodes, wherein the imager further comprises, between the carrier substrate and the first electrically insulating layer: a second electrically insulating separating layer, and a second semiconductor or electrically conductive layer, called the intermediate layer, arranged between the second separating layer and the first separating layer, the second separating layer being thicker than the first separating layer.
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
PROCESS FOR THE MANUFACTURE OF A SEMICONDUCTOR STRUCTURE COMPRISING A POLYCRYSTALLINE SILICON CARBIDE SUBSTRATE AND AN ACTIVE LAYER OF SINGLE-CRYSTAL SILICON CARBIDE
A method of manufacturing a semiconductor structure, which includes a support substrate of polycrystalline silicon carbide and an active layer of single-crystal silicon carbide, involves:
the formation of a support substrate including a stack of a first layer of polycrystalline SiC mainly of polytype 3C and of a second layer of polycrystalline SiC mainly of polytype 4H and/or 6H,
the bonding of a donor substrate including an active layer of single-crystal SiC of polytype 4H or 6H to a face of polytype 4H and/or 6H of the support substrate, and
the transfer of the active layer onto the support substrate.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
61.
GROUP III-NITRIDE SEMICONDUCTOR STRUCTURE ON SILICON-ON-INSULATOR AND METHOD OF GROWING THEREOF
A semiconductor structure includes a Silicon-On-Insulator substrate and an epitaxial III-N semiconductor layer stack on top of the Silicon-On-Insulator substrate. The Silicon-On-Insulator substrate has a silicon base layer, an intermediate layer on top of the base layer, and a n-type doped silicon top layer on top of the intermediate layer. The intermediate layer includes a trap-rich layer and a buried insulator on top of a trap-rich layer. The epitaxial III-N semiconductor layer stack, which is on top of the Silicon-On-Insulator substrate, includes a first active III-N layer and a second active III-N layer on top of the first active III-N layer. A two-dimensional Electron Gas is located between the first active III-N layer and the second active III-N layer.
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 29/66 - Types de dispositifs semi-conducteurs
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
62.
METHOD FOR MANUFACTURING DISASSEMBLABLE SUBSTRATES
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
SOITEC (France)
Inventeur(s)
Salvetat, Thierry
Berre, Guillaume
Darras, François- Xavier
Abrégé
A method for manufacturing disassemblable substrates, comprising: (a) providing a first substrate comprising implanted species forming a flat implantation zone and a proximal surface; a second substrate comprising a surface; (b) forming a series of cavities on the proximal surface of the first substrate and/or on the surface of the second substrate; (c) assembling the first and second substrates (1, 2) by direct bonding; and (d) applying a heat treatment to weaken the flat implantation zone. Further, the series of cavities being arranged in such a way as to allow direct bonding between the first and second substrates during step (c); and prevent thermal initiation of the splitting of the weakened flat implantation zone at the end of step (d).
A method for fabricating a donor substrate comprises the steps of A: providing a handle substrate, B: providing a target substrate, C: attaching the target substrate to the handle substrate, and D: rectifying, in particular, by grinding, the target substrate attached to the handle substrate, so as to form the donor substrate, the method being characterized in that a waiting time period of a predetermined duration is observed between step C and step D.
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
A surface elastic wave filter has resonant cavities and comprises a composite substrate formed of a base substrate and a piezoelectric upper layer; at least one input electroacoustic transducer and an output electroacoustic transducer, arranged on the upper layer, and at least one internal reflecting structure, arranged between the input electroacoustic transducer and the output electroacoustic transducer. The internal reflecting structure comprises a first structure comprising at least one reflection grating having a first period and a second structure comprising at least one reflection grating having a second period, the first period being greater than the second period.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Ben Mohamed, Nadia
Acosta-Alba, Pablo-Edouardo
Broekaart, Marcel
Colas, Franck
Kononchuk, Oleg
Landru, Didier
Larrey, Vincent
Mazen, Frédéric
Abrégé
The invention relates to a process for transferring a thin layer to a carrier substrate, comprising: - joining a donor substrate (1) and the carrier substrate (2) by direct bonding of their respective front sides (1a, 2a) via a bonding interface (3), to form a bonded assembly (100) having an unbonded local region (31) within this bonding interface (3), the donor substrate (1) further comprising a buried fragile plane (11), - splitting along the buried fragile plane (11), the splitting being initiated in the unbonded local region (31) after growth of microcracks in said plane (11) by thermal activation, and leading to the transfer of a thin layer (10) from the donor substrate (1) to the carrier substrate (2). The process is noteworthy in that the unbonded local region (31) is generated by at least one rough region (31a) produced by scanning a laser beam over at least one of the front sides (1a, 2a) of the donor substrate (1) and carrier substrate (2) before they are joined, the scan covering an area of at least 100 microns by 100 microns and of at most 500 microns by 500 microns.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p. ex. des rayons laser
The invention relates to a method for manufacturing a diamond substrate, or a III-V material substrate, for microelectronic applications, the method comprising: - bonding a plurality of monocrystalline diamond tiles or III-V material tiles (20) onto a carrier substrate (1), each tile being spaced apart from the adjacent tiles so as to expose a lateral surface (S2) of each tile; - epitaxially growing diamond or the III-V material from the lateral surface and the upper surface of each tile until a continuous layer (2) of monocrystalline diamond or III-V material is formed and extends over the plurality of tiles (20); - forming, by implanting atomic species, a weakened zone (21) in the continuous layer (2) of monocrystalline diamond or III-V material to define a surface layer (22) to be transferred; - bonding the continuous layer (2) of monocrystalline diamond or III-V material onto a receiver substrate (3); - detaching the continuous layer (2) of monocrystalline diamond or III-V material along the weakened zone (21) so as to transfer the surface layer (22) of monocrystalline diamond or III-V material onto the receiver substrate (3) to form the diamond or III-V material substrate.
The present disclosure relates to an intermediate substrate (10) for the manufacture of a semiconductor substrate, the intermediate substrate successively comprising: a a first semiconductor layer (2); b a first thermal barrier layer (5); c a support (13) comprising an absorption layer (3) configured to absorb laser radiation in a given wavelength range, the temperature of the absorption layer (3) increasing as it absorbs the laser radiation, and a separation zone (8) adjacent to the absorption layer (3) configured to thermally degrade due to the increase in temperature of the absorption layer, so as to separate at least part of the support (13) from the rest of the intermediate substrate (10).
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
68.
GATE ALL AROUND SEMICONDUCTOR STRUCTURE AND ITS METHOD OF PREPARATION
The invention relates to a semiconductor structure (SC) comprising a support (1a) and a dielectric layer (1b) directly disposed on the support (1a). At least one pFET structure is directly residing on the dielectric layer (1b), each pFET structure comprising a first stack of channel nanosheets made of compressively strained silicon germanium and a pFET gate structure encapsulating each channel nanosheet of the first stack. At least one nFET structure is directly residing on the dielectric layer, each nFET structure comprising a second stack of channel nanosheets made of silicon and a nFET gate structure encapsulating each channel nanosheet of the second stack.
H01L 21/8238 - Transistors à effet de champ complémentaires, p.ex. CMOS
H01L 21/84 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant autre chose qu'un corps semi-conducteur, p.ex. étant un corps isolant
H01L 29/423 - Electrodes caractérisées par leur forme, leurs dimensions relatives ou leur disposition relative ne transportant pas le courant à redresser, à amplifier ou à commuter
H01L 29/66 - Types de dispositifs semi-conducteurs
METHOD FOR TRANSFERRING BLOCKS FROM A DONOR SUBSTRATE ONTO A RECEIVER SUBSTRATE BY IMPLANTING IONS IN THE DONOR SUBSTRATE THROUGH A MASK, BONDING THE DONOR SUBSTRATE TO THE RECEIVER SUBSTRATE, AND DETACHING THE DONOR
A process for transferring blocks from a donor to a receiver substrate, comprises: arranging a mask facing a free surface of the donor substrate, the mask having one or more openings that expose the free surface of the donor substrate, the openings distributed according to a given pattern; forming, by ion implantation through the mask, an embrittlement plane in the donor substrate vertically in line with at least one region exposed through the mask, the embrittlement plane delimiting a respective surface region; forming a block that is raised relative to the free surface of the donor substrate localized vertically in line with each respective embrittlement plane, the block comprising the respective surface region; bonding the donor substrate to the receiver substrate via each block located at the bonding interface, after removing the mask; and detaching the donor substrate along the localized embrittlement planes to transfer blocks onto the receiver substrate.
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/78 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels
70.
PSEUDO-SUBSTRATE WITH IMPROVED EFFICIENCY OF USAGE OF SINGLE CRYSTAL MATERIAL
A method for fabricating a structure comprises preparing a first pseudo-substrate, and in-depth weakening the first pseudo-substrate by ion implantation at a certain depth in the first pseudo-substrate. The first pseudo-substrate is prepared by providing a single crystal substrate comprising a piezoelectric material; forming an oxide layer on a surface of the single crystal substrate; and transferring a piezoelectric layer of the single crystal substrate adjacent the oxide layer to a handle substrate to form the first pseudo-substrate. The method further comprises bonding the first pseudo-substrate to a substrate to provide an assembly, and separating the assembly at the ion-implanted depth of the first pseudo-substrate to form the structure and a second pseudo-substrate. The structure comprises at least a portion of the piezoelectric layer of the single crystal substrate on the substrate.
B32B 7/12 - Liaison entre couches utilisant des adhésifs interposés ou des matériaux interposés ayant des propriétés adhésives
B32B 9/04 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant une telle substance comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
C30B 29/68 - Cristaux avec une structure multicouche, p. ex. superréseaux
C30B 33/00 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
71.
SYSTEM FOR ENCAPSULATING A SURFACE ELASTIC WAVE DEVICE
A compact and robust encapsulation system for protecting a surface wave device comprises a SAW device and a sealing joint, which seals a second substrate to the base substrate of the SAW device so as to form a cavity, and an antenna connection means arranged outside the cavity on the encapsulation system.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
A structure for a front-side image sensor comprises a semiconductor substrate, an electrically insulating layer overlying the semiconductor substrate, and an active layer overlying the electrically insulating layer. The semiconductor substrate comprises a trapping layer, the trapping layer including cavities therein. The structure further comprises a plurality of electrically isolating trenches extending vertically through the active layer to the electrically insulating layer. The plurality of electrically isolating trenches define a plurality of pixels. Also disclosed is a structure comprises a carrier substrate, an electrically insulating layer overlying the carrier substrate and a trapping layer, and a semiconductive layer overlying the electrically insulating layer. The trapping layer comprises cavities therein. The structure further comprises a plurality of electrically isolating trenches extending vertically through the semiconductive layer to the electrically insulating layer.
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p. ex. pour produire des défectuosités internes
The invention relates to a polycrystalline silicon carbide carrier for a substrate intended to accommodate a power semiconductor device. The carrier has a first face, referred to as the "front face", and a second face, referred to as the "rear face", and comprises a first surface layer arranged directly under the front face and having a resistivity higher than or equal to 1 ohm.cm and a second surface layer arranged directly under the rear face and having a resistivity strictly lower than 1 ohm.cm.
The invention relates to a method for producing a donor substrate (1) for transferring a piezoelectric layer onto a support substrate, which comprises the following successive steps: • (a) providing a piezoelectric substrate (5) and a manipulation substrate (2); • (b) depositing a photo-polymerisable adhesive layer (6) on a main face of the manipulation substrate (2) or the piezoelectric substrate (5); • (c) bonding the piezoelectric substrate (5) with the manipulation substrate (2) via the adhesive layer (6) to form a heterostructure (7); • (d) irradiating the heterostructure (7) with a luminous flux to polymerise the adhesive layer (6); • (e) thermally treating the irradiated heterostructure (7); and • (f) thinning the piezoelectric substrate (5) by its face opposite the manipulation substrate (2), so as to form the donor substrate (1).
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H03H 3/007 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques
75.
SEMICONDUCTOR STRUCTURE FOR OPTOELECTRONIC APPLICATIONS
A semiconductor structure for optoelectronic applications; comprises a first layer made of a crystalline semiconductor, the layer being disposed on an intermediate layer including or adjacent to a direct-bonding interface, the intermediate layer being disposed on a second layer made of a crystalline semiconductor material. The intermediate layer is composed of a material that is different from those of the first and second layers, and the attenuation coefficient of which is lower than 100. The refractive index of the intermediate layer differs by less than 0.3 from the refractive index of at least one sub-layer of the first layer adjacent to the intermediate layer, and of at least one sub-layer of the second layer adjacent to the intermediate layer.
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
76.
SUBSTRATE COMPRISING A THICK BURIED DIELECTRIC LAYER AND METHOD FOR PREPARING SUCH A SUBSTRATE
The invention relates to a final substrate (S) comprising, consecutively and in contact with one another, an upper layer (5) made of semiconductor material, a dielectric layer (4) having a thickness greater than 200 nm, an electrical charge trapping layer (2) and a base substrate (3). The final substrate (S) has a curvature of less than 60 micrometres, preferably less than 40 micrometres. An exposed surface of the upper layer (5) has a roughness of less than 0.3 nm as a root mean square measurement over a field of 30 micrometres by 30 micrometres. The invention also relates to a method for preparing such a substrate.
A method of fabricating a composite structure including a thin layer of single-crystal silicon carbide on a polycrystalline SiC carrier substrate includes: forming a polycrystalline SiC layer on a donor substrate, at least a surface portion of which is made of single-crystal SiC; before or after forming the polycrystalline SiC layer, implanting ionic species into the surface portion of the donor substrate, so as to form a plane of weakness delimiting a thin single-crystal SiC layer to be transferred; after the implanting of the ionic species and the forming of the polycrystalline SiC layer, bonding the donor substrate and the polycrystalline SiC carrier substrate, the polycrystalline SiC layer being at the bonding interface; and detaching the donor substrate along the plane of weakness, so as to transfer the polycrystalline SiC layer and the thin single-crystal SiC layer onto the polycrystalline SiC carrier substrate.
C30B 28/14 - Production de matériaux polycristallins homogènes de structure déterminée directement à partir de l'état gazeux par réaction chimique de gaz réactifs
The invention relates to a process comprising: providing a heterostructure comprising a growth substrate (1), an interlayer (2) of two-dimensional material and an epitaxial semiconductor layer (3); providing a rigid substrate (4) comprising a weakened plane (5); producing a first assembly by bonding the rigid substrate to the heterostructure, the first side (F) and the epitaxial layer (3) being at the bonding interface; splitting the first assembly at the interlayer (2) of two-dimensional material, so as to obtain a second assembly resulting from transfer of the epitaxial layer (3) from the heterostructure to the rigid substrate (4); producing a third assembly by bonding the second assembly to a target substrate (7), the epitaxial layer (3) being at the bonding interface; splitting the third assembly along the weakened plane (5) of the rigid substrate (4).
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
79.
COMPOSITE STRUCTURE COMPRISING A USEFUL MONOCRYSTALLINE SIC LAYER ON A POLYCRYSTALLINE SIC CARRIER SUBSTRATE AND METHOD FOR MANUFACTURING SAID STRUCTURE
A method for manufacturing a composite structure having a layer of monocrystalline silicon carbide on a polycrystalline silicon carbide carrier substrate includes: providing an initial substrate of polycrystalline silicon carbide, having a front face and comprising grains, the average size of which is greater than 0.5 μm; forming a polycrystalline silicon carbide surface layer on the initial substrate to form the carrier substrate, the surface layer including grains having an average size of less than 500 nm and having a thickness of between 50 nm and 50 μm; preparing a free surface of the surface layer of the carrier substrate to obtain a roughness of less than 1 nm RMS; (d) a step of transferring the useful layer onto the carrier substrate, by applying molecular bonding, the surface layer located between the useful layer and the initial substrate. A carrier substrate and a composite structure are formed by the method.
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/04 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs pour obtenir une fréquence ou un coefficient de température désiré
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H10N 30/082 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par gravure, p. ex. par lithographie
H10N 30/086 - Mise en forme ou usinage de corps piézo-électriques ou électrostrictifs par usinage par polissage ou meulage
The disclosure relates to a hybrid structure for a surface-acoustic-wave device comprising a useful layer of piezoelectric material joined to a carrier substrate having a thermal expansion coefficient lower than that of the useful layer; the hybrid structure comprising an intermediate layer located between the useful layer and the carrier substrate, the intermediate layer being a structured layer formed from at least two different materials comprising a plurality of periodic motifs in the plane of the intermediate layer.
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/00 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
82.
METHOD FOR PREPARING A SUPPORT SUBSTRATE PROVIDED WITH A CHARGE-TRAPPING LAYER
A method for preparing a support substrate having a charge-trapping layer includes introducing a monocrystalline silicon base substrate into a chamber of deposition equipment and, without removing the base substrate from the chamber and while flushing the chamber with a carrier gas, performing the following successive steps:
forming a dielectric layer on the base substrate by introducing a reactive gas into the chamber over a first time period; and
forming a polycrystalline silicon charge-trapping layer directly on the dielectric layer by introducing a precursor gas containing silicon into the chamber over a second time period, subsequent to the first time period. The time for which the dielectric layer is exposed only to the carrier gas, between the first time period and the second time period, is less than 30 seconds and the formation of the charge-trapping layer is performed at a temperature strictly between 1010° C. and 1200° C.
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
83.
STRUCTURE COMPRISING MONOCRYSTALLINE LAYERS OF ALN MATERIAL ON A SUBSTRATE AND SUBSTRATE FOR THE EPITAXIAL GROWTH OF MONOCRYSTALLINE LAYERS OF ALN MATERIAL
A structure comprises a carrier substrate, a plurality of tiles on the carrier substrate, and a plurality of monocrystalline layers of AlN material on the plurality of tiles. Each tile of the plurality of tiles comprises a monocrystalline seed layer of SiC-6H material. Each monocrystalline layer of AlN material of the plurality of monocrystalline layers of AlN material is disposed on a respective tile of the plurality of tiles. Also disclosed is substrate for epitaxial growth of monocrystalline layers of AlN material. The substrate comprises a carrier substrate and a plurality of tiles. Each tile of the plurality of tiles comprises a monocrystalline seed layer of SiC-6H material.
The invention relates to a method for manufacturing a plurality of polycrystalline silicon carbide substrates (200), the method comprising the following steps: • forming a multilayer structure by alternately depositing a plurality of polycrystalline silicon carbide layers (20, 21, 22, 23, 24) and a plurality of separation layers (30, 31, 32, 33) on at least one face of a temporary support substrate (10); • detaching each polycrystalline silicon carbide layer (20, 21, 22, 23, 24) from the multilayer structure by removing the temporary substrate (10) and each separation layer (30, 31, 32, 33) to form a respective polycrystalline silicon carbide substrate (200).
A method of fabricating a polycrystalline silicon carbide carrier substrate involves growing an initial polycrystalline silicon carbide substrate on a seed of graphite or of silicon-carbide. A stiffening carbon film is then formed on a front face of the initial substrate. The initial substrate has, in the plane of its front face, a first average silicon carbide grain size. The seed is then removed, so as to free the back face of the initial substrate, which has, in the plane of its back face, a second average silicon carbide grain size, which is smaller than the first average size. The back face of the initial substrate is then thinned to a thickness for which the initial substrate has, in the plane of its thinned back face, a third average grain size equal to the first average grain size to within ±30%.
A method of forming a substrate comprises providing a receiver substrate and a donor substrate successively comprising: a carrier substrate, a sacrificial layer, which can be selectively etched in relation to an active layer, and a silicon oxide layer, which is arranged on the active layer. A cavity is formed in the oxide layer to form a first portion that has a first thickness and a second portion that has a second thickness greater than the first thickness. The cavity is filled with a polycrystalline silicon filling layer to form a second free surface that is continuous and substantially planar. The receiver substrate and the donor substrate are assembled at the second free surface, and the carrier substrate is eliminated while preserving the active layer and the sacrificial layer.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/84 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant autre chose qu'un corps semi-conducteur, p.ex. étant un corps isolant
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
87.
METHOD FOR PREPARING A THIN LAYER OF FERROELECTRIC MATERIAL
The invention relates to a method for preparing a thin single-domain layer (3') made of ferroelectric material, the method comprising, between a step of splitting a donor substrate (1) at a weakened plane (2) in order to form a first layer (3) and a sequence for finishing the first layer (3), the application of a treatment to the free face (8) of the first layer (3) in order to produce a hydrogen concentration of greater than 2.0E21 at/cm^3 in a surface thickness of the first layer (3).
H10N 30/073 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs par fusion de métaux ou par adhésifs
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
88.
METHOD FOR TRANSFERRING A USEFUL LAYER TO A FRONT FACE OF CARRIER SUBSTRATE
A method for transferring a useful layer to a carrier substrate comprises: a) providing a donor substrate including a donor layer; b) forming an embrittlement area by implanting species in the donor layer and defining therewith a useful layer; c) assembling the carrier substrate with the donor substrate; d) a heat treatment step including a first phase and a second phase, wherein the first phase, having a first duration, is heated to a first temperature and is suitable for maturing defects and preventing a fracture from occurring in the embrittlement area, and wherein the second phase, having a second duration, comprises a bearing at a second temperature, below the first temperature, and is suitable for causing a fracture to occur along the embrittlement area.
H10N 30/072 - Formation de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
A coupled cavity filter structure that uses a surface acoustic wave, in particular, a guided surface acoustic wave, comprises an acoustic wave propagating substrate, at least one input transducer structure and one output transducer structure, provided over the substrate, each comprising inter-digitated comb electrodes, at least one reflecting structure comprising at least one or more metallic strips positioned at a distance and in between the input and output transducer structures, in the direction of propagation of an acoustic wave. The acoustic wave propagating substrate is a composite substrate comprising a base substrate and a piezoelectric layer. In additional embodiments, a coupled cavity filter structure comprises a groove. In additional embodiments, a SAW ladder filter device comprises at least two coupled cavity filter structures as described herein, wherein the at least two coupled cavity filter structures are positioned on a single line.
The invention relates to a method for producing a substrate (300) comprising a polycrystalline silicon carbide layer (30, 30A, 30B) and a monocrystalline silicon carbide layer (20, 20A, 30B) in direct contact with the polycrystalline silicon carbide layer, said method successively comprising the following steps of: - transferring a first monocrystalline silicon carbide layer (20, 20A) onto a front face of a temporary graphite carrier substrate (10), - depositing polycrystalline silicon carbide on the first monocrystalline silicon carbide layer (20, 20A) to form the polycrystalline silicon carbide layer (30, 30A), - removing the temporary graphite carrier substrate (10).
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Ledoux, Olivier
Laurant, Christine
Darras, François-Xavier
Laurent, Romain
Mehrez, Zouhir
Abrégé
The invention relates to a method for transferring a layer onto a carrier substrate, the method comprising: a) a step of forming cavities in a carrier substrate, the cavities opening out via a main face; b) a step of transferring a sealing layer that is intended to seal all of the cavities formed during step a); step a) being carried out such that all of the cavities are distributed regularly over a main region of the main face and such that the main face comprises a peripheral ring free of cavities and inside which the main region is circumscribed, the peripheral ring extending from the edge of the carrier substrate over a length L that is shorter than a predetermined length Lp below which the sealing layer is free of regions that have not been transferred in the peripheral ring.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Drouin, Alexis
Gaudin, Gweltaz
Rouchier, Séverin
Schwarzenbach, Walter
Widiez, Julie
Rolland, Emmanuel
Abrégé
A method for producing a semiconductor structure comprises: a) provision of a monocrystalline silicon carbide donor substrate and a silicon carbide support substrate; b) production of a useful layer to be transferred, comprising—implanting light species in the donor substrate at a front face, so as to form a damage profile, the profile having a main peak of deep-level defects defining a buried brittle plane and a secondary peak of defects defining a damaged surface layer, and—removing the damaged surface layer by chemical etching and/or chemical mechanical polishing of the front face of the donor substrate, so as to form a new front surface of the donor substrate; c) assembly of donor substrate with the support substrate; and d) separation along the buried fragile plane, leading to the transfer of the useful layer onto the support substrate, so as to form the semiconductor structure.
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
93.
METHOD FOR MANUFACTURING A STRUCTURE COMPRISING A PLURALITY OF BURIED CAVITIES
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Darras, François-Xavier
Mazen, Frédéric
Abrégé
The present invention relates to a method for manufacturing a structure comprising a plurality of cavities confined between a thin layer and a carrier substrate, the method comprising the following steps: a) providing a donor substrate and a carrier substrate; b) implanting first light species into the donor substrate to form a uniform buried weakened plane which defines, together with the front face of the donor substrate, the thin layer to be transferred; c) locally implanting second species into the donor substrate so as to introduce these species into the uniform buried weakened plane only at second regions so as to form a functional buried weakened plane having: first regions comprising the first light species and not the second species, and the second regions comprising the first light species and the second species; d) forming a plurality of cavities that open onto a front face of the donor substrate or of the carrier substrate; e) joining, by direct bonding, the donor substrate to the carrier substrate, via their respective front faces, to form a bonded structure in which the cavities are vertically in line with either the first regions or the second regions of the functional buried weakened plane; f) applying a heat treatment to the bonded structure in order to cause spontaneous separation along the functional buried weakened plane and form the structure on the one hand and the rest of the donor substrate on the other hand.
H01S 5/02 - Détails ou composants structurels non essentiels au fonctionnement laser
H01S 5/183 - Lasers à émission de surface [lasers SE], p. ex. comportant à la fois des cavités horizontales et verticales comportant uniquement des cavités verticales, p. ex. lasers à émission de surface à cavité verticale [VCSEL]
95.
HOLDING DEVICE ARRANGEMENT FOR USE IN AN IMPLANTATION PROCESS OF A PIEZOELECTRIC SUBSTRATE
A holding device arrangement for use in an implantation process of a piezoelectric substrate comprises a substrate holding device with an elastic and thermo-conductive layer for receiving a piezoelectric substrate, and means for electrically connecting the surface of the elastic and thermo-conductive layer for receiving the piezoelectric substrate to ground potential. A method for implanting a piezoelectric substrate is performed using such holding device arrangement as described above, and an ion implanter may include such a holding device arrangement.
H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
H10N 30/04 - Traitements afin de modifier une propriété piézo-électrique ou électrostrictive, p. ex. les caractéristiques de polarisation, de vibration ou par réglage du mode
A support for a semiconductor structure comprises a base substrate and a charge trapping layer on the base substrate. The charge trapping layer comprises an alternating stack of at least one polycrystalline charge trapping material and at least one polycrystalline interlayer. The charge trapping material has a grain size between 100 nanometers (nm) and 1000 nm, and/or a lattice parameter greater than a lattice parameter of the at least one interlayer. Also disclosed is a semiconductor structure comprising such support.
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
97.
COMPOSITE STRUCTURE COMPRISING A MONOCRYSTALLINE THIN FILM ON A POLYCRYSTALLINE SILICON CARBIDE SUPPORT SUBSTRATE, AND ASSOCIATED PRODUCTION METHOD
422220200400400 is greater than 50%, preferably greater than 80%. The invention also relates to a method for producing such a composite structure. Figure to be published with the abstract: No figure
C23C 16/01 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] sur des substrats temporaires, p. ex. sur des substrats qui sont ensuite enlevés par attaque chimique
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
C30B 28/14 - Production de matériaux polycristallins homogènes de structure déterminée directement à partir de l'état gazeux par réaction chimique de gaz réactifs
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV du tableau périodique, ou des composés AIIIBV, avec ou sans impuretés, p. ex. des matériaux de dopage
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
H01L 29/16 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée
98.
CARRIER COMPRISING A CHARGE-TRAPPING LAYER, COMPOSITE SUBSTRATE COMPRISING SUCH A CARRIER, AND ASSOCIATED PRODUCTION METHOD
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Nouri, Lamia
Veytizou, Christelle
Laurant, Christine
Augendre, Emmanuel
Abrégé
A carrier (Sprt) for a composite substrate, the carrier (Sprt) comprising a layer (Trap) for trapping electrical charges, in contact with a base carrier (BSprt), the trapping layer (Trap) comprising a low permittivity layer made of a material having a relative dielectric permittivity lower than silicon dioxide, and the material which has a relative dielectric permittivity lower than silicon dioxide being SiOC or SiOCH.
The present disclosure relates to a method for forming a weakened zone (5) in a semiconductor substrate (6), successively comprising the following steps: a. forming a screen layer (4) having a non-planar controlled profile on a first face (61) of the substrate, b. implanting species through the screen layer and the first face (61) of the substrate to form the weakened zone, the profile of the screen layer being selected to compensate for a non-uniformity in the implantation depth of the species so that the weakened zone (5) is substantially located in a plane parallel to the first face (61).
The present disclosure relates to a method for reducing the boron concentration in a semiconductor layer (12) of a semiconductor-on-insulator substrate (1), the method involving: - at least one heat treatment cycle, each cycle comprising thermal oxidation of the semiconductor layer (12) so as to form an oxide layer (120) on the semiconductor layer (12), wherein, by segregation of the boron, boron atoms from the semiconductor layer (12) diffuse into the oxide layer (120) so as to create a boron concentration deficit in the semiconductor layer (12) at the interface with the oxide layer (120), and - removing the oxide layer (120), wherein the thermal oxidation comprises a temperature increase, under an inert atmosphere, to a temperature above a thermal oxidation target temperature, followed by a temperature decrease to said thermal oxidation target temperature so as to form a temperature gradient in the substrate at which an oxide layer (120) formation rate is higher in the center of the semiconductor layer than at the edge.
H01L 21/225 - Diffusion des impuretés, p. ex. des matériaux de dopage, des matériaux pour électrodes, à l'intérieur ou hors du corps semi-conducteur, ou entre les régions semi-conductricesRedistribution des impuretés, p. ex. sans introduction ou sans élimination de matériau dopant supplémentaire en utilisant la diffusion dans ou hors d'un solide, à partir d'une ou en phase solide, p. ex. une couche d'oxyde dopée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p. ex. pour produire des défectuosités internes