An ion source includes a vaporizer that produces a vapor from a solid raw material, and a plenum including a plenum chamber having a first wall through which the vaporizer is in fluid communication with an interior of the plenum chamber, and a second wall opposite the first wall. The second wall includes a plenum plate with a longitudinal aperture therein.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
In the present invention, the opening/closing of a container for vacuum transfer is automated while the occurrences of operational malfunctions are reduced. A portable vessel (90) accommodates a processing object of a vacuum processing device while holding the object in a vacuum. The portable vessel comprises: a plate-like base body (91) on an upper surface of which is provided a protruding part (914) that is adjacent to at least a corner of the encircling shape of a groove (912) into which a seal member is fitted; and a lid body (92) configured such that side walls (923) are positioned directly above the groove.
H01L 21/673 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants utilisant des supports spécialement adaptés
3.
PLASMA TREATMENT DEVICE AND PLASMA TREATMENT METHOD
A plasma treatment device for subjecting the surface of a workpiece that is a tool to a plasma treatment using plasma, said plasma treatment device comprising: a vacuum container that forms a vacuum chamber; a stage that is installed in the vacuum chamber; an insulating container that is disposed on the stage and forms a treatment chamber in which the workpiece is accommodated; and an antenna that is disposed on the periphery of the insulating container in the vacuum chamber and generates plasma in the treatment chamber.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 14/22 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le procédé de revêtement
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
4.
BLADE EDGE PROTECTION MEMBER AND COATING FILM REMOVAL METHOD
A blade edge protection member used together with a coating film removal device for generating plasma in a vacuum container in which a cutting tool is disposed and subjecting the same to a plasma treatment using the plasma to remove a coating film formed on the surface of the cutting tool, said blade edge protection member comprising a plasma shielding part that is disposed in the vacuum container so as to cover the blade edge of the cutting tool and suppresses the incidence of plasma ions to the blade edge.
B23B 27/14 - Outils de coupe sur lesquels les taillants ou éléments tranchants sont en matériaux particulier
B23C 5/16 - Outils de fraisage caractérisés par des particularités physiques autres que la forme
B23P 15/28 - Fabrication d'objets déterminés par des opérations non couvertes par une seule autre sous-classe ou un groupe de la présente sous-classe d'outils de coupe
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
An ion implanter for implanting ions into a substrate includes a transfer chamber that receives the substrate from and delivers the substrate to an outside of the ion implanter, an X-ray irradiator disposed in the transfer chamber that irradiates the substrate with X-rays before ion implantation, and a controller that stops X-ray irradiation by the X-ray irradiator or disables activation of the X-ray irradiator in response to a predetermined situation being detected in the transfer chamber or outside the transfer chamber.
H01J 37/244 - DétecteursComposants ou circuits associés
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
This quantum device comprises: a quantum material that includes a color center having an electron spin; a stage that has an installation surface; and a microwave resonator that irradiates the quantum material with microwaves. The quantum material has a first surface and a second surface which is a counter-surface of the first surface. The quantum material is disposed on the stage so that the first surface opposes the installation surface. The stage has an optical waveguide through which pass excitation light, which is radiated onto the quantum material, and fluorescence, which is generated by the quantum material. The microwave resonator radiates microwaves so that a first intensity, which is the intensity of the microwave on the first surface, and a second intensity, which is the intensity of the microwave on the second surface, are at least 0.5 times a third intensity, which is the maximum value of the intensity of the microwave.
G01R 33/20 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique
G01N 24/00 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin
The present invention achieves automated opening/closing of a vacuum transfer container while reducing occurrence of operational malfunction and occurrence of mechanical ware. A load lock chamber (10) of a vacuum treatment apparatus (1) comprises an opening/closing mechanism (13) for receiving a vessel (90) capable of storing an object to be treated in a vacuum state in an internal space partitioned by a base (91) and a lid (92). The opening/closing mechanism (13) is also for engaging the lid at two or more engagement portions (922) so as to lift up the lid and disengage the lid from the base held by a vessel holding portion (12).
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p. ex. entre différents postes de travail
8.
PULSE PATTERN GENERATION CIRCUIT AND MICROWAVE IRRADIATION DEVICE
Provided is a simple pulse pattern generation circuit that performs various operations on the electron spin of a quantum sensor element. A pulse pattern generation circuit (3) generates a microwave pulse pattern for operating the electron spin state of a quantum sensor element (109), said pulse pattern generation circuit comprising: a first clock generation circuit (10A) that generates a first clock (CLK1); an irradiation time pattern storage circuit (20) that stores a pulse pattern related to an irradiation time or a stop time of microwaves (MW) and outputs the pulse pattern related to the irradiation time or the stop time according to the first clock (CLK1); and a phase shift pattern storage circuit (30) that stores a pulse pattern related to a phase shift of the microwaves (MW) and outputs the pulse pattern related to the phase shift according to the first clock (CLK1).
The present invention provides electrical insulating oil having high heat dissipation characteristics and suitable handling properties under the Fire Service Act. An insulating oil composition, which is biodegradable electrical insulating oil derived from plants, comprising: a natural ester mainly containing triglyceride; and first insulating oil selected from a plant-derived ester and electrical insulating oil composed of linear alkylbenzene.
H01B 3/20 - Isolateurs ou corps isolants caractérisés par le matériau isolantEmploi de matériaux spécifiés pour leurs propriétés isolantes ou diélectriques composés principalement de substances organiques liquides, p. ex. huiles
A diamond spin sensor (100) includes a diamond including an NV-center having electron spin. The transverse relaxation time of the electron spin measured by the Ramsey method is defined as T2*μsec. The concentration of the NV-center in the diamond is defined as Cppm. A value α calculated by (T2*)1/3×C using T2* and C is less than 2.5. In a case where the transverse relaxation time of the electron spin measured by the Hahn echo method is T2 μsec, T2 is 15 or more. The average phase difference in relation to the entire surface of the diamond is 6 nm/mm or less.
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
A diamond spin sensor (100) comprises a diamond including NV -centers having an electron spin. Where a lateral relaxation time of the electron spin measured by the Hahn echo method is denoted by T2 μsec, and the concentration of NV - centers in the diamond is denoted by Cppm, the product of T2 and C is larger than 65.
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
This diamond sensor includes a diamond having a color center having electron spin, and a sensor head that accommodates the diamond, wherein: the diamond includes a reflective surface which reflects excitation light that has propagated through an optical system and has entered the inside of the diamond, and a flat surface that allows the excitation light to enter the inside of the diamond and allows radiation light emitted from the color center to exit the diamond; the reflective surface reflects the radiation light radiated from the color center that has been excited by the excitation light and causes the radiation light to condense in the direction of the optical system; a first off angle, which is an angle formed by a specific crystal plane of the diamond having a low index, is 3° or less with respect to a reference plane perpendicular to a predetermined reference direction fixed to the sensor head; and a surface roughness Ra of the flat surface is 20 nm or less.
G01N 24/00 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
13.
DIAMOND SPIN SENSOR AND METHOD FOR MANUFACTURING SAME
A diamond spin sensor according to the present invention includes a diamond including an NV- center having an electron spin. When the lateral relaxation time of the electron spin measured by the Hahn echo method is T2 μsec and the fluorescence intensity of the fluorescence emitted from the diamond when irradiated with microwaves and laser light is represented by a current value InA output from an Si-PIN diode that receives the fluorescence, the product of T2 and I is larger than 3000, the wavelength of the microwaves is 2.07 GHz to 3.67 GHz, the wavelength of the laser light is 520 nm to 540 nm, the power of the laser light is 3 mW, and the light reception sensitivity of the Si-PIN diode is 0.36 A/W to 0.44 A/W at a wavelength of 600 nm and 0.40 A/W to 0.50 A/W at a wavelength of 660 nm.
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
An ion source includes a vaporizer, an arc chamber, and an extraction electrode. The vaporizer includes a crucible and a heater. The crucible stores a solid material. The heater heats the crucible. The crucible has an interior space formed by a wall, an inlet connected to the wall that releases a reactive gas into the interior space, and an outlet connected to the wall that releases the reactive gas and a vapor of the reaction product generated by a reaction between the solid material and the reactive gas from the interior space. The interior space narrows toward at least one of the inlet and the outlet.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
H01J 37/32 - Tubes à décharge en atmosphère gazeuse
An ion implantation apparatus for performing channeling ion implantation into a wafer after measuring a crystal orientation of the wafer and adjusting an inclination of the wafer based on a result of the crystal orientation measurement includes a transfer portion that is provided with a measurement position for measuring the crystal orientation of the wafer, the measurement position being between a first position and a second position on a transport path of the wafer, the transfer portion transporting the wafer in order from the first position, to the measurement position, to the second position in an ion implantation process on the wafer, and a controller that controls the transfer portion to transfer the wafer. The controller controls the transfer portion to start to move the wafer from the measurement position towards the second position before a crystal orientation measurement result of the wafer is output.
H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support
H01J 37/304 - Commande des tubes par une information en provenance des objets, p. ex. signaux de correction
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/68 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le positionnement, l'orientation ou l'alignement
17.
POWER CONVERTER CONTROL DEVICE, POWER CONVERTER CONTROL METHOD, AND POWER CONVERTER CONTROL PROGRAM
This power converter control device for controlling a voltage output by a power converter connected to a power line for supplying power from a power system to a load includes: an opposing voltage calculation unit for calculating an opposing voltage that is a voltage having the same phase and the same amplitude as the voltage of the power system; a voltage change amount calculation unit for acquiring an output current command value that is a current output to the power converter, and calculating a voltage change amount when the power converter outputs the output current command value by open control from the output current command value; and a voltage command value output unit for outputting a voltage command value, which is a voltage obtained by combining the opposing voltage and the voltage change amount, to the power converter.
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
H02J 3/12 - Circuits pour réseaux principaux ou de distribution, à courant alternatif pour règler la tension dans des réseaux à courant alternatif par changement d'une caractéristique de la charge du réseau
H02M 7/48 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande
Provided is a method for producing a top-gate type thin film transistor, said method comprising: a patterning step for patterning, by photolithography, an oxide semiconductor film that is formed on a substrate; a first pre-annealing step for subjecting, to an annealing process, the oxide semiconductor film after the patterning; a pre-processing step for subjecting, to a plasma process, a surface of the oxide semiconductor film after the annealing; and a gate insulating film formation step for forming a gate insulating film on the oxide semiconductor film after the plasma process.
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H01L 21/316 - Couches inorganiques composées d'oxydes, ou d'oxydes vitreux, ou de verres à base d'oxyde
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p. ex. recuit, frittage
This invention provides a capacitor capable of easily improving the contact property of a heat sink to a housing. A capacitor (1) is provided with: a plurality of capacitor elements (10); a housing (20) provided with a pair of side surface plates (21a, 21b); and a heat sink (30). In a condition in which the pair of side surface plates are disposed so as to form at least a portion of the housing and the heat sink is disposed so as to partition the space inside the housing, the pair of side surface plates and the heat sink are welded together.
The present invention achieves a capacitor capable of improving heat dissipation performance. This capacitor (1) comprises a plurality of capacitor elements (10), a housing (20), and a heat dissipation plate (30) formed of a metal having a higher thermal conductivity than the housing, the heat dissipation plate being joined to the housing.
Provided is a capacitive instrument transformer, in which the distance between a shield and an internal electrode is shorter than the distance between a voltage-dividing electrode and the internal electrode. Flashover between the internal electrode and the shield is more likely to occur than flashover between the internal electrode and the voltage-dividing electrode. Therefore, even under a circumstance in which flashover could occur between the internal electrode and the voltage-dividing electrode, flashover between the internal electrode and the shield is likely to occur, and therefore a situation in which high voltage intrudes into a low-voltage-side circuit can be effectively kept to a minimum.
According to the present invention, a capacitor voltage transformer is configured such that elongation of a voltage-dividing electrode in the extension direction of an internal electrode is restricted by a shield that sandwiches and holds the voltage-dividing electrode. As a result, the present invention does not readily experience changes in output voltage caused by thermal deformation of the voltage-dividing electrode, can achieve a more accurate output voltage, and can thereby achieve high measurement accuracy and low ratio error. In addition, the shield, which is joined to a housing, can undergo thermal deformation so as to undergo elongation in the extension direction of the internal electrode. When the shield elongates, force along the extension direction of the internal electrode is applied to the voltage-dividing electrode from the shield, further suppressing elongation of the voltage-dividing electrode in the extension direction of the internal electrode.
Disclosed is a method for manufacturing a thin film transistor, the method including: a semiconductor layer formation step for forming an oxide semiconductor layer on a substrate; a gate insulating layer formation step for forming a gate insulating layer, which is composed of a silicon nitride film (SiN:F) containing fluorine, on the oxide semiconductor layer; and a gate electrode formation step for forming a gate electrode on the gate insulating layer by a patterning method that uses a resist. The gate electrode formation step includes: a surface treatment step for forming a surface treatment layer, which improves the adhesion of a resist, on the gate insulating layer; and a resist coating step for applying a resist on the surface treatment layer.
H01L 21/318 - Couches inorganiques composées de nitrures
H01L 21/363 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant un dépôt physique, p. ex. dépôt sous vide, pulvérisation
This film forming device includes: a vacuum container in which a substrate is disposed; an antenna that generates inductively coupled plasma in the vacuum container and that includes a conductor element and a capacitor element that are electrically connected to each other in series; a high-frequency power supply that supplies high-frequency current to the antenna; and a gas supply mechanism that supplies raw material gas containing C, H, and O into the vacuum container. A carbon-based thin film is formed on the substrate in the vacuum container by a plasma CVD method using the inductively coupled plasma generated in the vacuum container by applying the high-frequency current to the antenna.
C23C 16/507 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes externes, p. ex. dans des réacteurs de type tunnel
A diamond sensor according to the present invention includes a diamond that has a color center that has an electron spin, a transmission circuit that transmits electromagnetic waves, an irradiation unit that radiates the electromagnetic waves at the diamond, at least one of an impedance converter and a resonator, and a protection circuit for protecting an electromagnetic wave source that supplies the electromagnetic waves. The protection circuit functions as a capacitor for the electromagnetic waves and functions as an inductor at frequencies lower than the electromagnetic waves. When the diamond sensor includes an impedance converter and a resonator, the protection circuit is provided between the impedance converter and the resonator, between the transmission circuit and a transmission cable that connects the transmission circuit and the electromagnetic wave source, or between the transmission cable and the electromagnetic wave source.
G01R 33/24 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique pour la mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
This diamond sensor includes: a diamond having a color center having an electron spin; an excitation light irradiation unit for irradiating the diamond with excitation light; a transmission antenna for transmitting electromagnetic waves; a reception antenna for receiving the electromagnetic waves transmitted from the transmission antenna; an electromagnetic wave irradiation unit for irradiating the diamond with the electromagnetic waves received by the reception antenna; a detection unit for detecting radiation light emitted from the color center of the diamond after the diamond is irradiated with the excitation light and the electromagnetic waves; and a composite having a conductive member and a dielectric member. The composite is disposed between the transmission antenna and the reception antenna and transfers the electromagnetic waves.
G01R 33/24 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique pour la mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques
27.
VAPORIZER, ION SOURCE AND METHOD FOR GENERATING ALUMINUM-CONTAINING VAPOR
An ion source includes an arc chamber including a gas inlet, a source of a chlorine containing gas, an aluminum containing component, and a pathway from the source of the chlorine containing gas to the arc chamber through the gas inlet. The pathway passes through the aluminum containing component before reaching the gas inlet, such that the chlorine containing gas flows through the aluminum containing component prior to entering the arc chamber.
A semiconductor manufacturing apparatus includes a wafer clamp including a mechanical clamp and an electrostatic chuck, and a controller that controls the wafer clamp to selective clamp a wafer using only the mechanical clamp based on a processing temperature of a wafer.
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p. ex. mandrins, pièces de serrage, pinces
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
29.
GAS-INSULATED SWITCHGEAR AND POWER RECEPTION/TRANSFORMATION EQUIPMENT
Provided are a gas-insulated switchgear and power reception/transformation equipment that can be made more compact. A gas-insulated switchgear according to the present invention comprises a bus chamber (2), first and second insulation spacers (40d, 40e) that are positioned away from the center of the bus chamber (2) in a third direction and respectively support first and second fixed-side electrodes of first and second disconnectors, first and second support members (40f, 40g) that respectively support first and second mobile-side electrodes to be aligned with the first and second fixed-side electrodes in the third direction, and straight first and second connection conductors that respectively connect a bus conductor and the first and second mobile-side electrodes.
This method for producing a diamond thin film involves synthesizing a diamond thin film on a base material through a plasma CVD method, wherein a raw material gas containing C, H, and O is supplied to a vacuum vessel in which the base material is disposed, high-frequency current is applied to an antenna that is disposed inside or outside the vacuum vessel and that has a conductor element and a capacitive element which are electrically connected to each other in series to generate inductively coupled plasma inside the vacuum vessel, and the generated inductively coupled plasma is used for the plasma CVD method. When the diamond thin film is being synthesized, the plasma has the following characteristics: the electron temperature is 1.0 eV or more and 2.0 eV or less; the electron density is 1.0 × 1011cm-3or more and 1.0 × 1012cm-3or less; and the ion saturation current is 1.0 × 10-4A or more and 1.0 × 10-2 A or less.
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
This diamond spin sensor includes: a diamond that includes a color center having electron spin; and a heat transfer part that contacts the diamond. The heat transfer part is fixed to an object, and at least one of a magnetic field, the current, and the temperature of the object is detected by irradiating a color sensor with excitation light and then measuring the fluorescence emitted from the color center.
G01R 33/20 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique
G01K 11/3213 - Mesure de la température basée sur les variations physiques ou chimiques, n'entrant pas dans les groupes , , ou utilisant des changements dans la transmittance, la diffusion ou la luminescence dans les fibres optiques en des endroits distincts de la fibre, p. ex. utilisant la diffusion de Bragg utilisant des changements dans la luminescence, p. ex. à l’extrémité distale de fibres
G01R 15/24 - Adaptations fournissant une isolation en tension ou en courant, p. ex. adaptations pour les réseaux à haute tension ou à courant fort utilisant des dispositifs modulateurs de lumière
This diamond spin sensor system includes: a sensor part that includes diamond having a color center with an electron spin; a control power supply part that generates excitation light for irradiating the sensor part; and a joint part that connects the sensor part and the control power supply part. The joint part transmits the excitation light to the sensor part and irradiates the diamond therewith, and transmits, to the control power supply part, fluorescence radiated from the diamond.
G01N 24/00 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
An ion implanter includes an angle measurement apparatus that measures a first angle of an ion beam in a first direction and a second angle of the ion beam in a second direction, the first direction and the second direction being mutually orthogonal to a traveling direction of the ion beam, an angle corrector that is located in a beamline of the ion beam and corrects an angle of the ion beam in the first direction based on the first angle, a wafer holder that holds a wafer in a process chamber, a tilt device that is connected to the wafer holder and that rotates the wafer around a rotation axis parallel to the first direction, and a controller that controls the tilt device based on the second angle, crystal axis information of the wafer, and implantation recipe information.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
Provided is a coating removal method for removing a coating formed on the surface of a tool, which is achieved by generating plasma in a vacuum container in which the tool, having a crest-valley structure in which crest and valley parts are alternately arranged on the surface, is disposed and performing plasma treatment with plasma. The coating removal method performs switching once or more between a high-pressure plasma treatment step, in which plasma treatment is performed with the vacuum container pressure set to a predetermined first pressure value, causing the removal speed for the coating at the bottom of the valley parts to be greater than the removal speed for the coating at edges of the valley parts, and a low-pressure plasma treatment step, in which plasma treatment is performed with the vacuum container pressure set to a second pressure value that is less than the predetermined first pressure value, causing the removal speed for the coating at edges of the valley parts to be greater than the removal speed for the coating at the bottom of the valley parts.
B23B 27/14 - Outils de coupe sur lesquels les taillants ou éléments tranchants sont en matériaux particulier
B23P 15/28 - Fabrication d'objets déterminés par des opérations non couvertes par une seule autre sous-classe ou un groupe de la présente sous-classe d'outils de coupe
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
The transformation system (1) includes: a PVT (11) having a primary winding (PW) that receives a primary voltage from a power line (PL) of a power system on the primary side, and a secondary winding (SW) that outputs a secondary voltage lower than the primary voltage on the secondary side; a first CT (13) that is located upstream of the PVT (11) and downstream of the power line (PL); and a second CT (21) that is located on a line connecting the primary ground side of the primary winding (PW) and the ground terminal.
A substrate transfer device includes a shaft member rotationally movable about a rotation axis, a first swing member coupled to a holder for holding a substrate, a first support member supporting the first swing member to be linearly displaced, a second swing member having a linearly moving part linearly displaceable, and a second support member supporting the second swing member to be linearly displaced The first support member is rotationally moved about the rotation axis integrally with the second support member together with the second swing member being linearly displaced with respect to the second support member in a manner interlocked with a linear movement of the linearly moving part, and the first swing member is linearly displaced with respect to the first support member via the shaft member, such that the holder is linearly displaced.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p. ex. entre différents postes de travail
37.
PHASE DIFFERENCE MEASUREMENT DEVICE, MEASUREMENT METHOD, AND ELECTRICAL EQUIPMENT COMPRISING SAME
The present invention measures, with high sensitivity, the phase difference between a plurality of physical fields. A phase difference measurement device (10) comprises: an electromagnetic irradiation unit (2) that repeatedly irradiates a quantum sensor element (1) with electromagnetic waves for manipulating an electron spin state of the quantum sensor element (1) which changes via interaction with a second physical field or a first physical field generated by an AC signal; and a phase difference measurement unit (3) that acquires a plurality of electron spin states after interaction with the second physical field or the first physical field, and measures the phase difference between a plurality of physical fields on the basis of the acquired plurality of electron spin states.
G01R 33/12 - Mesure de propriétés magnétiques des articles ou échantillons de solides ou de fluides
G01R 33/032 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant des dispositifs magnéto-optiques, p. ex. par effet Faraday
G01R 33/26 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique pour la mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques utilisant le pompage optique
Provided is a plasma processing apparatus capable of performing required plasma processing on an object to be processed inside a processing chamber using a plurality of antennas, while stabilizing plasma. A plasma processing apparatus (1) comprises: a housing (2); a plurality of antennas (7) for generating a magnetic field for generating plasma inside the housing (2); at least two power supplies (8) for supplying a high-frequency current for generating a magnetic field to each of the plurality of antennas (7); and a control unit (C). In order to generate plasma intermittently at a required periodicity, the power supplies (8) supply a high-frequency current for generating plasma in a first interval of a required duty ratio among the periods. The control unit (C) individually controls the duty ratios of the at least two power supplies (8).
The present invention provides a plasma processing device capable of appropriately detecting the temperature of a substrate. A plasma processing device (1) comprises: an antenna (7); a high-frequency power supply (8); and at least one detection unit (D) for detecting the temperature of a substrate (W). The high-frequency power supply periodically increases and decreases the magnitude of a high-frequency current, thereby causing plasma to occur intermittently, and the detection unit detects the temperature of the substrate in synchronization with the turning-off of the plasma.
This diamond spin sensor includes: a diamond that includes a color center having electron spin; and an optical waveguide that transmits excitation light projected to the diamond and fluorescence emitted from the diamond. In a state in which the diamond is disposed in an environment where there is radiation of at least 1μGy/h, a magnetic field, an electric field, or the temperature in the environment is measured using the color center.
G01R 33/26 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique pour la mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques utilisant le pompage optique
G01N 24/00 - Recherche ou analyse des matériaux par l'utilisation de la résonance magnétique nucléaire, de la résonance paramagnétique électronique ou d'autres effets de spin
G01R 33/20 - Dispositions ou appareils pour la mesure des grandeurs magnétiques faisant intervenir la résonance magnétique
41.
DIAMOND SPIN SENSOR AND METHOD FOR MANUFACTURING SAME
This diamond spin sensor includes: a diamond substrate; and inclined surfaces formed on the diamond substrate. Color centers having electron spin are formed on the inclined surfaces. Among the color centers formed on the inclined surfaces, the color centers having a color center axis perpendicular to the inclined surfaces exist at a proportion of at least two times the existence of color centers having a color center axis which is not perpendicular to the inclined surfaces.
A plasma source includes a chamber in which plasma is generated, a cathode provided in the chamber that emits electrons into the chamber, and an electromagnet provided around the chamber. The electromagnet includes a coil and magnetic flux passing members that cause a magnetic flux generated by energization of the coil to reach the inside of the chamber. A usage mode of one or more of the magnetic flux passing members is changeable.
An ion beam irradiation method includes irradiating, with an ion beam having a first irradiation energy, a rear member located behind an irradiation position in a state in which a target is retracted from the irradiation position, collecting particles generated by irradiating the rear member with the ion beam having the first irradiation energy by conveying a collecting member in a transport direction in front of the rear member, and irradiating, with an ion beam having a second irradiation energy, the target at the irradiation position.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
A plasma processing device (1) comprising a vacuum container (2) which accommodates therein a workpiece (W), a high-frequency window (WR) which introduces a high-frequency magnetic field into the vacuum container (2), an antenna (7) which is provided so as to face the high-frequency window (WR) and generates the high-frequency magnetic field, a turntable (3) which rotates inside the vacuum container (2), and an application mechanism (SM) which applies a predetermined bias voltage to the workpiece (W). Further, the application mechanism (SM) comprises a holder (H) provided to the turntable (3) so as to hold the workpiece (W) and an electrode plate (SM2) electrically connected to the holder (H) inside the vacuum container (2). The application mechanism (SM) applies the bias voltage from the electrode plate (SM2) to the workpiece (W) positioned between the antenna (7) and a rotary shaft (3b) of the turntable (3).
A plasma processing device 100 comprises: a vacuum container 1; an antenna 2 provided outside the vacuum container 1; a dielectric plate 7 closing an opening 1x which is formed in the vacuum container 1 in a position facing the antenna 2; and a distance adjustment mechanism 8 for adjusting the distance between the antenna 2 and the dielectric plate 7. The distance adjustment mechanism 8 includes an inclined surface 81a provided between the antenna 2 and the dielectric plate 7 and in contact with the lower side of the antenna 2, and a moving mechanism 82 for adjusting the distance between the antenna 2 and the dielectric plate 7 by moving the inclined surface 81a in a direction transverse to the longitudinal direction of the antenna 2.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/507 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes externes, p. ex. dans des réacteurs de type tunnel
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
Provided is an ion source including: a plasma generation container that has an elongated shape having an internal space into which an ion source gas is introduced and that has an ion extraction port on a side wall along a longitudinal direction thereof; a plasma generation means for generating plasma in the internal space by ionizing the ion source gas; and an extraction electrode system that is provided outside the plasma generation container and that extracts an ion beam from the internal space through the ion extraction port, wherein the plasma generation means includes, outside the plasma generation container, an antenna provided along the longitudinal direction, a high-frequency power source that applies a high frequency to the antenna, and a magnetic field transmission window that is formed at a position facing the antenna in a side wall of the plasma generation container and that allows a high-frequency magnetic field generated at the antenna to be transmitted into the internal space therethrough.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
An ion source comprising: a plasma-generating means provided with a plasma-generating vessel that has an internal space into which an ion source gas is introduced, the plasma-generating vessel having an ion extraction port formed in one side wall thereof, an antenna that ionizes the ion source gas to generate plasma in the internal space, the antenna being provided outside the plasma-generating vessel and being connected to a high-frequency power source to generate a high-frequency magnetic field, and a magnetic field transmission window that is formed in a side wall of the plasma-generating vessel at a position facing the antenna and that allows the high-frequency magnetic field generated from the antenna to pass through the internal space; a discharge electrode provided in the internal space near the ion extraction port; and an extraction electrode system that is provided outside the plasma-generating vessel and that extracts an ion beam from the internal space through the ion extraction port.
An ion beam extraction electrode includes a first member including a first beam passage hole through which an ion beam passes, a second member positioned opposite the first member and including a second beam passage hole through which the ion beam passes, a heater partially or fully disposed between the first member and the second member, and a gas shutoff member that blocks a flow of a gas from entering a space between the first member and the second member.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
A plasma processing device (100) for generating plasma in a vacuum container (1) by applying a high-frequency current to an antenna (2) provided outside the vacuum container (1), the plasma processing device comprising: a slit plate (6) that closes an opening (1x), of the vacuum container (1), formed at a position facing the antenna (2); a dielectric plate (7) that closes, from the outside of the vacuum container (1), a plurality of slit openings (6x) formed in the slit plate (6); a plurality of mask members (8) that are provided for the respective slit openings (6x) and that cover the slit openings (6x) from the inside of the vacuum container (1) by being spaced apart from the openings; and a fixation mechanism (9) that fixes the plurality of mask members (8) in correspondence with the respective slit openings (6x).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
A plasma treatment device (1) comprises: a vacuum vessel (10) that comprises a peripheral wall (10a) formed from a dielectric and has accommodated therein a table on which to-be-treated objects (20) are disposed; an antenna (12) that is provided outside of the vacuum vessel so as to be rotatable around the peripheral wall and produces a high frequency magnetic field for generating plasma in the vacuum vessel; and a mask (30) that is provided between the table in the vacuum vessel and the peripheral wall and has a plurality of openings (30c) through which the high frequency magnetic field passes.
A plasma processing device (1) comprises: a vacuum vessel (2) that contains a workpiece (W) in an interior of said vacuum vessel; a high-frequency window (WR) that introduces a high-frequency magnetic field into the interior of the vacuum vessel (2); an antenna (7) that is provided so as to face the high-frequency window (WR) and generates the high-frequency magnetic field; and a turntable (3) on which the workpiece (W) is placed, said turntable rotating. The plasma processing device (1) further comprises a blocking plate (4) that is provided in the interior of the vacuum vessel (2) so as to be above the turntable (3) and to face the high-frequency window (WR), said blocking plate blocking a plasma and dividing the interior of the vacuum vessel (2) into a plasma processing area (PA) and a cooling area (CA), wherein the blocking plate (4) has formed therein a passage hole (4b1) that allows passage therethrough of the workpiece (W) that is placed on the turntable (3).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/50 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques
H01L 21/302 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour changer leurs caractéristiques physiques de surface ou leur forme, p. ex. gravure, polissage, découpage
52.
PLASMA TREATMENT DEVICE AND METHOD OF CONTROLLING PLASMA TREATMENT DEVICE
The purpose of the present invention is to provide a plasma treatment device having a simple configuration which makes it possible to fully confirm a state of plasma within a treatment chamber. A plasma treatment device (1, 201) is provided with at least one antenna (71-73), and a plurality of light-receiving units (PD1-PD5) for detecting the light emission intensity of a plasma generation region. The plurality of light-receiving units include a first light-receiving unit (PD1) and a second light-receiving unit (PD2) that are arranged along a first direction in which at least one antenna extends.
An antenna device 10 for generating a plasma P by flowing a high-frequency current comprises: an antenna 3 forming a linear shape; an insulating cover 4 covering the outer circumferential surface 3c of the antenna 3 and forming a straight tube shape; and a projecting insulating portion provided between axial both end portions 3a, 3b of the antenna 3, projecting further toward the inner circumferential surface 4a side of the insulating cover 4 than the outer circumferential surface 3c of the antenna 3, and formed of an insulating material.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/509 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes internes
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
This film removal device (100) comprises: a vacuum chamber (1) holding a workpiece (W1); an electrode (2) provided in the vacuum chamber (1) and having a first end (21) and a second end (22) that is disposed in a recess (W2) formed in the workpiece (W1); a gas feed mechanism (4) that feeds a gas from the first end (21) into the interior of the electrode (2); and a high-frequency power source (8) that applies a high-frequency voltage to the electrode.
C23G 5/00 - Nettoyage ou dégraissage des matériaux métalliques par d'autres méthodesAppareils pour le nettoyage ou le dégraissage de matériaux métalliques au moyen de solvants organiques
55.
PLASMA PROCESSING APPARATUS AND PROCESSING METHOD OF SAME
The present invention provides a plasma processing apparatus which is capable of perceiving the state of an object that is subjected to plasma processing in real time. This plasma processing apparatus (1) is provided with an antenna (8), a power supply (9) which supplies a high-frequency current for the generation of a magnetic field to the antenna (8), an imaging unit for taking an image of the inside of a processing chamber, and a control unit. The power supply (9) intermittently generates a plasma by periodically increasing and decreasing the magnitude of the high-frequency current. The control unit controls the imaging unit so as to take, as a first image, an image of the inside of the processing chamber synchronized with turn-off of plasma.
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
C23C 16/52 - Commande ou régulation du processus de dépôt
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H05H 1/00 - Production du plasmaMise en œuvre du plasma
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
Provided is a plasma processing device which enables an improvement in maintainability even when an inner cover is provided. A plasma processing device (1) comprises: a housing (2) that is provided with an opening (2b) through which the interior and exterior of a processing chamber are in communication with each other; a vacuum cover (4) that is removably attached to the housing (2) and that closes the opening (2b); a rod-like antenna (8) which is for generating plasma; and an antenna cover (5) that forms, between the antenna cover (5) and the vacuum cover (4), an antenna accommodation space (AK) which surrounds the antenna (8). The antenna cover (5) is divided into a plurality of parts along the longitudinal direction of the antenna (8). A cover (14) is provided so as to cover parts where the antenna cover (5) is divided.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 14/40 - Pulvérisation au moyen de diode par décharge à courant alternatif, p. ex. par décharge haute-fréquence
C23C 16/509 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes internes
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
Provided is a plasma processing device capable of easily achieving a uniform density of plasma in the longitudinal direction of an antenna. This plasma processing device (1) comprises a vacuum container (2), a high-frequency window (3), and an antenna part (AP). The antenna part (AP) comprises: an antenna (7); a first conductor (9a) and a second conductor (9b); a first capacitor part (8a) which changes a first connection angle between the antenna (7) and the first conductor (9a); and a second capacitor part (8b) which changes a second connection angle between the antenna (7) and the second conductor (9b).
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H05H 1/00 - Production du plasmaMise en œuvre du plasma
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
58.
VAPORIZER, ION SOURCE, ION BEAM IRRADIATION APPARATUS, AND AN OPERATING METHOD FOR A VAPORIZER
An vaporizer includes a crucible, a heater that heats the crucible, a support member that supports the crucible and includes an internal space in which a pressure in the internal space can be changed, and a control device. The control device increases the pressure of the internal space when the heating of the crucible by the heater is stopped, compared to the pressure when the crucible is heated by the heater.
This plasma treatment device vacuum-treats, using plasma, an object to be treated disposed in a treatment chamber, and comprises: a vacuum vessel that is formed by bending a wall forming the treatment chamber so as to form a convex shape protruding from the atmosphere side toward the treatment chamber side, and has a protruding portion in which an opening penetrating in a thickness direction is formed; an antenna that is provided outside the treatment chamber and within a recess formed by an atmosphere-side wall surface of the protruding portion, is connected to a high-frequency power source, and generates a high-frequency magnetic field; a dielectric plate that is disposed within the recess so as to close the opening of the protruding portion from the atmosphere side, and transmits the high-frequency magnetic field generated from the antenna into the treatment chamber; and a support member that is attached to the recess and elastically deformable, and can be selectively disposed at a support position where the support member comes into contact with the dielectric plate, and biases and supports the dielectric plate toward the wall surface of the recess by elastic force or a retreat position where the support member is retreated from the support position.
A plasma processing device that applies a high-frequency current to an antenna provided outside a vacuum container forming a processing chamber to generate plasma inside the processing chamber, comprising: a slit plate that is provided to block an opening formed in a position on the vacuum container directed to the antenna; and a dielectric plate that blocks slits formed on the slit plate from outside of the vacuum container, the slit plate being provided with an annular frame and a plurality of beam members spanning the frame in an aligned manner, and the slits being formed by gaps between the plurality of beam members.
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
The present invention provides a plasma processing device that can easily be made compact even when providing a plurality of antennas. This plasma processing device (1) comprises a vacuum container (2) and an antenna unit (14). The antenna unit (14) is provided with: a conductor (14a1); two antennas (14b, 14c) provided in parallel; a first capacitor (C1a) that has a conductor-side electrode (C11) and a first antenna electrode (C12a) connected to the antenna (14b); and a second capacitor (C1b) having the conductor-side electrode (C11) and a second antenna electrode (C12b) connected to the antenna (14c).
An ion source includes a vaporizer, an arc chamber, and a heat shield. The vaporizer includes a crucible containing an aluminum-containing material and a heater that heats the crucible. The crucible has a gas inlet and a vapor outlet. The arc chamber generates a plasma inside of the arc chamber. The vapor outlet outputs vapor into the arc chamber through a wall of the arc chamber, and the heat shield is provided between the vaporizer and the wall of the arc chamber.
This determination device (1) comprises an acquiring unit (10) that acquires the temperature or pressure inside a tank (50) of a circuit breaker (5), and a determining unit (20) that determines, on the basis of the temperature or pressure inside the tank, the presence of an arc that is generated accompanying vacuum deterioration of a vacuum valve (60) housed inside the tank. The determination device (1) is capable of suitably determining a change in the degree of vacuum in a vacuum container.
Provided is a plasma processing device capable of checking an antenna and the surrounding state thereof even when an inner cover is provided. This plasma processing device (1) comprises: a housing (2) provided with a first opening (2b); a vacuum cover (4) which is removably attached to the first opening (2b) and closes the first opening (2b); a dielectric antenna cover (5) which is supported on the inside of the first opening (2b); an antenna (8) which is disposed in an antenna accommodation space (AK) formed by being surrounded by at least the vacuum cover (4) and the antenna cover (5), and is for generating inductively coupled plasma; a transparent view port (4b) provided to the vacuum cover (4); and an optical sensor (14) which receives light which is inside the antenna accommodation space (AK) and has passed through the view port (4b).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
C23C 16/52 - Commande ou régulation du processus de dépôt
An ion source includes a vaporizer, a plasma chamber, and a controller. The vaporizer produces a reaction product by supplying, through a first gas supply line to a crucible in which a solid material is installed, a reactive gas that reacts with the solid material, and vaporizes the reaction product by heating the crucible with a heater. The plasma chamber is supplied with a vapor from the vaporizer through a vapor supply line, and has a second gas supply line connected to the plasma chamber separately from the vapor supply line. The controller controls the heater to heat the crucible while a gas is being supplied from the second gas supply line to the plasma chamber and stops a supply of the reactive gas through the first gas supply line to the crucible.
This plasma treatment device (1) comprises: a casing (2) in which a first opening (2b) is provided; a vacuum cover (4) that is removably attached to the first opening (2b), the vacuum cover (4) sealing the first opening (2b); an antenna cover (5) that is supported inside the first opening (2b), the antenna cover (5) having dielectric properties; and an antenna (8) for generating a plasma having inductive coupling properties, the antenna (8) being disposed in an antenna accommodation space (AK) formed so as to be surrounded by at least the vacuum cover (4) and the antenna cover (5). The antenna cover (5) opens on the vacuum-cover (4) side, and a cover opening (5c) that constitutes part of the antenna accommodation space (AK) is formed in the antenna cover (5), the cover opening (5c) enabling the antenna cover (5) to be removed through the first opening (2b).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
The present invention realizes a plasma treatment device with easily adjustable antenna height. A plasma treatment device (1) comprises: an outer cover (20) attached to an enclosure (10) so as to close a first opening (12) in the enclosure; an inner cover (30) partitioning the space between a treatment chamber (11) and the outer cover; an antenna (40) for generating plasma inside the treatment chamber; an insertion member (45) coupled to the antenna; and a position adjustment mechanism (60) that displaces the insertion member with the outer cover attached.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
C23C 16/52 - Commande ou régulation du processus de dépôt
An ion beam irradiation apparatus includes a plasma generation container in which plasma is generated, a vaporizer connected to the plasma generation container, a halogen gas supply passage through which a halogen gas is supplied to the vaporizer, an air supply passage through which air is supplied to the vaporizer, and an evacuation passage through which a reaction product produced through a reaction between the halogen gas and the air is evacuated to an outside of the ion beam irradiation apparatus.
NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY (Japon)
NATIONAL UNIVERSITY CORPORATION TOKAI NATIONAL HIGHER EDUCATION AND RESEARCH SYSTEM (Japon)
TOKYO INSTITUTE OF TECHNOLOGY (Japon)
NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY (Japon)
ASAHI GROUP HOLDINGS, LTD. (Japon)
FUNCTIONAL FLUIDS LTD. (Japon)
NISSIN ELECTRIC CO., LTD. (Japon)
MORIMATSU INDUSTRY CO., LTD. (Japon)
Inventeur(s)
Suzuki Hiroshi
Hidema Ruri
Itaya Yoshinori
Kato Yukitaka
Kobayashi Noriyuki
Kubota Mitsuhiro
Nakaso Koichi
Kawamura Kimito
Fujioka Keiko
Kaki Hirokazu
Marumo Kenji
Abrégé
Provided is a heat regeneration system in which a heat source necessary for a process is regenerated with a waste heat. This heat regeneration system utilizes a hot waste heat and a cold waste heat discharged from a process to convert the hot waste heat and the cold waste heat respectively into a necessary high-temperature heat and a necessary low-temperature heat. This heat regeneration system is provided with: (a) a thermal amplifier 4 in which an adsorbent that utilizes a hot waste heat as an adsorption heat is stored; (b) a thermal battery 5 in which a latent heat storage material capable of storing an output heat from the thermal amplifier is stored; (c) a thermal transistor 2 in which evaporated water in a high-pressure absorber is absorbed in the absorption solution, a temperature-risen heat is extracted with a heat exchanger and is output as a high-temperature heat, water is evaporated with a low-pressure evaporator, a cold waste heat discharged from a low-temperature process 7 by the action of a steam latent heat is cooled to output a low-temperature heat, and the absorption solution is regenerated using a latent heat of the latent heat storage material; and (d) a thermal booster 3 in which the temperature of the high-temperature heat is risen by a hydration reaction of a chemical heat storage material, a heat is stored by a dehydration reaction of the chemical heat storage material using the high-temperature heat, steam generated by the dehydration reaction is condensed using the low-temperature heat to promote the regeneration of the chemical heat storage material, and a heat source necessary for the process is produced.
F25B 25/00 - Machines, installations ou systèmes utilisant une combinaison des principes de fonctionnement compris dans plusieurs des groupes
F25B 27/02 - Machines, installations ou systèmes utilisant des sources d'énergie particulières utilisant la chaleur perdue, p. ex. chaleur dégagée par des moteurs à combustion interne
71.
FIXED CHARGE GENERATING METHOD, METHOD FOR MANUFACTURING THIN FILM TRANSISTOR, AND THIN FILM TRANSISTOR
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY (Japon)
NISSIN ELECTRIC CO., LTD. (Japon)
Inventeur(s)
Sameshima, Toshiyuki
Setoguchi, Yoshitaka
Ando, Yasunori
Sakai, Toshihiko
Abrégé
Provided is a method for generating a fixed charge in an insulating film on the back channel side of a semiconductor device that has a channel layer including an oxide semiconductor, comprising forming the insulating film, followed by forming a metal film on the surface of the insulating film, and performing ion injection to the insulating film via the metal film to generate a fixed charge in the insulating film.
A method for controlling a fixed electric charge within an insulation film used in a semiconductor device, the method for controlling a fixed electric charge including forming a metal film on the surface of the insulation film, and injecting ions into the insulation film via the metal film, to thereby manifest a fixed electric charge in the insulation film.
This method is for controlling fixed electric charges in an insulating layer used for a semiconductor device, and involves: performing ion injection into the surface layer portion of the insulating layer after the insulating layer has been formed; forming a cap layer including a metal film or an insulating film on the surface of the insulating layer after the ion injection is performed; and causing the fixed electric charges to emerge in the insulating layer by carrying out heat treatment on the insulating layer having the cap layer formed on the surface.
This film forming device includes: a vacuum container in which a substrate is disposed; an antenna that generates inductively coupled plasma in the vacuum container and that includes a conductor element and a capacitor element that are electrically connected to each other in series; a high-frequency power supply that supplies high-frequency current to the antenna; and a gas supply mechanism that supplies raw material gas containing C, H, and O into the vacuum container. A carbon-based thin film is formed on the substrate in the vacuum container by a plasma CVD method using the inductively coupled plasma generated in the vacuum container by applying the high-frequency current to the antenna.
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
75.
Vaporizer, ion source and method for generating aluminum-containing vapor
A vaporizer includes a crucible in which an aluminum-containing solid material is placed, and a heater. The crucible includes a chlorine containing gas inlet and a vapor outlet. The heater heats the crucible.
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
76.
CAPACITOR VOLTAGE-DIVIDING TYPE TRANSFORMER AND VOLTAGE TRANSFORMATION APPARATUS
Provided is a capacitor voltage-dividing type transformer which can easily adjust low-voltage side capacitance. A capacitor voltage dividing type transformer (10) comprises: a main circuit conductor (11) to which a high voltage is applied and which extends in the axial direction; an insulator cylinder (12) which has a cylindrical shape and is disposed coaxially with the main circuit conductor at the outside of the main circuit conductor; an intermediate electrode (13) that covers at least a part of the outside of the insulator cylinder; an insulating film (14) that covers the intermediate electrode; and a grounding electrode (15) that covers at least a part of the insulating film.
The present invention provides a compact plasma treatment device that can apply a plasma treatment to a continuously supplied film. A plasma treatment device (1) comprises a treatment chamber (2) where a prescribed plasma treatment is applied to a substrate (H1) to be treated. The interior of the treatment chamber (2) comprises: a drum (6) that guides the substrate (H1) to be treated supplied continuously to the treatment chamber (2); and an antenna (8) for generating an inductively coupled plasma in the interior of the treatment chamber (2). The antenna (8) is disposed inside the drum (6) and the plasma treatment is applied to the substrate (H1) to be treated on the drum (6).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/509 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes internes
Provided is a sputtering device capable of increasing plasma density in the vicinity of the target. The sputtering device (1) comprises: a target (Tr) disposed inside a vacuum vessel (2) so as to face an object being treated (H1) that is loaded on a stage (H); a high frequency window (11) that is provided with a metal sheet (12) that has a slit (12s) and a dielectric (13), introduces a high frequency magnetic field inside the vacuum vessel (2) to generate plasma inside the vacuum vessel (2), and is provided on the wall surface of the vacuum vessel (2) where the target (Tr) is attached; and a linear antenna (14) that is disposed outside the vacuum vessel (2) near the high frequency window (11) and generates a high frequency magnetic field. The high frequency window (11) has a semicylindrical part (11a) provided so that the axis is parallel to said wall surface.
Provided is a sputtering device which can increase plasma density near a target. A sputtering device (1) comprises: a target (Tr) which is disposed inside a vacuum container (2) and has a facing surface (Tr1) that faces an article to be treated (H1) mounted on a stage (H); a radio-frequency window (11) which is provided in a wall surface of the vacuum container (2), and allows a radio-frequency magnetic field to enter the vacuum container (2) in order to generate a plasma inside the vacuum container (2) due to being provided with a dielectric (13) and a metal plate (12) having a slit (12a); and a linear antenna (14) which is disposed near the radio-frequency window (11) outside the vacuum container (2) and generates a radio-frequency magnetic field. The radio-frequency window (11) is disposed such that the principal surface on the inside of the vacuum container (2) tilts in the direction of the target (Tr) from a plane parallel to the opposing surface (Tr1).
Provided is a plasma treatment device capable of appropriately controlling the movements of charged particles. A plasma treatment device (1) is provided with a treatment chamber (2). The plasma treatment device is provided with, within the treatment chamber (2), a stage (3) on which a substrate to be treated (H1) as an object to be treated is installed, an antenna (4) for generating inductively coupled plasma within the treatment chamber (2), and an internal electrode (8) to which a predetermined potential is applied.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/509 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence utilisant des électrodes internes
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
In a case in which the capacitance of a capacitance element that is provided to an antenna is increased, a current is made to flow sufficiently evenly to each second electrode of said capacitance element. An antenna (3) comprises an antenna element (31) and a capacitance element (32). The capacitance element (32) has a first electrode (32A) and a second electrode (32B). A plurality of through holes (H1) into which a plurality of rod-shaped electrodes (32C) of the second electrode (32B) are inserted are formed in the inside of a first cylinder section (321A) of the first electrode (32A), aligned along a side surface (ES1) of the first cylinder section (321A).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 14/40 - Pulvérisation au moyen de diode par décharge à courant alternatif, p. ex. par décharge haute-fréquence
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
Provided is a plasma treatment device which generates plasma in a vacuum container by supply of a high frequency current to an antenna provided outside the vacuum container, said plasma treatment device comprising: a slit plate which closes an opening that is formed in the vacuum container so as to face the antenna; a dielectric plate which closes, from the outside of the vacuum container, a slit formed in the slit plate; and a mask plate which covers the slit from the inside of the vacuum container with a gap therebetween.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
A sputtering apparatus for sputtering a target using a plasma generated by supplying a high frequency power to an antenna, the sputtering apparatus comprising: a dummy electrode provided around the target and being equipotential to the target; and an anode electrode at ground potential that is provided so as to cover a surface of the dummy electrode facing the same direction as a sputtering surface of the target.
H01L 21/363 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant un dépôt physique, p. ex. dépôt sous vide, pulvérisation
Provided is a substrate holding device comprising: a holder that holds a substrate irradiated with an ion beam; and a driving device that rotates the holder around a predetermined axis to change an inclination of the held substrate with respect to the ion beam, wherein the driving device comprises: a power source that outputs power to rotate the holder; a reduction gear provided in the middle of a power transmission path from the power source to the holder; a first shaft member that rotates together with the holder by a power outputted from the reduction gear; a first detector that detects a rotational motion of the first shaft member; and a power control device that controls the power source based on a detection value of the first detector.
H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
85.
PHASE DIFFERENCE MEASUREMENT DEVICE, MEASUREMENT METHOD, AND ELECTRICAL EQUIPMENT COMPRISING SAME
The present invention measures, with high sensitivity, the phase difference between a plurality of physical fields. A phase difference measurement device (10) comprises: an electromagnetic irradiation unit (2) that repeatedly irradiates a quantum sensor element (1) with electromagnetic waves for manipulating an electron spin state of the quantum sensor element (1) which changes via interaction with a second physical field or a first physical field generated by an AC signal; and a phase difference measurement unit (3) that acquires a plurality of electron spin states after interaction with the second physical field or the first physical field, and measures the phase difference between a plurality of physical fields on the basis of the acquired plurality of electron spin states.
G01R 25/00 - Dispositions pour procéder aux mesures de l'angle de phase entre une tension et un courant ou entre des tensions ou des courants
G01R 21/00 - Dispositions pour procéder aux mesures de la puissance ou du facteur de puissance
G01R 21/08 - Dispositions pour procéder aux mesures de la puissance ou du facteur de puissance en utilisant des dispositifs à effet galvanomagnétique, p. ex. des dispositifs à effet Hall
This substrate transfer apparatus (10) comprises a rod member (15) that operates so as to rotate about a rotation axis A1, a holder-side turning member (12) linked to a holder (11) for holding a substrate S, a holder-side support member (13) for supporting the holder-side turning member (12) in a state in which the holder-side turning member (12) is allowed to move linearly in a prescribed direction, a linear-motion-side turning member (22) having a linear-motion part (21) that moves linearly in one direction, and a linear-motion-side support member (23) that supports the linear-motion-side turning member (22) in a state in which the linear-motion-side turning member (22) is allowed to move linearly in a prescribed direction. The holder-side support member (13) operates so as to rotate about the rotation axis A1 integrally with the linear-motion-side support member (23), and at the same time, the linear-motion-side turning member (22) moves linearly relative to the linear-motion-side support member (23) in tandem with the linear-motion part (21) moving linearly in a first direction D1, and the holder-side turning member (12) moves linearly relative to the holder-side support member (13) via the rod member (15), whereby the holder (11) moves on one line.
B25J 5/02 - Manipulateurs montés sur roues ou sur support mobile se déplaçant le long d'un chemin de guidage
H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
F16H 19/04 - Transmissions comportant essentiellement et uniquement des engrenages ou des organes de friction et qui ne peuvent transmettre un mouvement rotatif indéfini pour convertir un mouvement rotatif en mouvement alternatif et vice versa comportant une crémaillère et pignon
F16H 25/22 - Mécanismes à vis avec billes, rouleaux ou organes similaires entre pièces travaillant en conjugaisonÉléments essentiels pour l'utilisation de ces organes
According to the present invention, provided is an antenna mechanism 3 that adjusts the impedance of an antenna body through which a high-frequency current flows to generate plasma by means of a simple configuration, and generates plasma P, and comprises: the antenna body 31 through which high-frequency current flows; and one or a plurality of adjustment circuits 32 provided adjacent to the antenna body 31. The adjustment circuit 32 has a metal conductor 321 forming a closed circuit and a capacitor 322 forming the closed circuit.
This plasma treatment device generates plasma with suppressed electrostatic coupling components inside a vacuum container. A plasma treatment device (1) comprises a vacuum container (2), an antenna (7) generating a high-frequency magnetic field, and a magnetic field introduction window (3) introducing the high-frequency magnetic field into the vacuum container (2). The magnetic field introduction window (3) includes a metal plate (4) on which a plurality of slits (41) are formed, and a dielectric plate (5) overlaid on the metal plate (4) to cover the plurality of slits (41) and on which a metal layer (6) is formed, the metal layer (6) being maintained at a predetermined potential.
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
The present invention reduces generation of a capacitive coupled plasma while using a linear antenna part. A linear antenna part (3) installed inside a vacuum container is provided with an antenna conductor (31) through which high-frequency current flows; and a Faraday shield (33) provided around at least a part of the antenna conductor (31).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
The present invention decreases the likelihood that particles moving within a vacuum vessel will adhere to a dielectric cover. A magnetic field introduction window (3) provided to a wall surface of a vacuum vessel (2) comprises: a metal plate (31) in which a plurality of slits (311) are formed; a dielectric cover (32) that covers the plurality of slits (311); a gasket (33) provided between the dielectric cover (32) and the metal plate (31); and a deposition preventing plate (34) provided to the metal plate (31) so as to at least partially cover the plurality of slits (311).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
C23C 16/44 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement
The present invention facilitates the handling of dielectric plates and reduces the probability of the dielectric plates being damaged by thermal expansion of the dielectric plates. A plasma processing device (1) is provided with a vacuum container (2), an antenna (6), and a magnetic field induction window (3). The magnetic field induction window (3) comprises: a metal plate (4) which has formed therein a plurality of slits (41) and includes bridge sections (42); and a plurality of rectangular dielectric plates (5) that cover the plurality of slits (41). The plurality of dielectric plates are disposed so that edges of neighboring dielectric plates (5), adjacent to face one another, are located over the bridge sections (42).
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
According to the present invention, plasma processing is uniformly performed on an object to be processed. A plasma processing apparatus (1) is provided with: a vacuum container (2) within which to accommodate an object (W1) to be processed; an antenna (6) provided outside the vacuum container (2) to generate a high frequency magnetic field; a magnetic field introduction window (3) provided in a wall surface (22) of the vacuum container (2) to introduce the high frequency magnetic field into the vacuum container (2); and a mechanism unit (7) for moving the antenna (6) in parallel to the magnetic field introduction window (3) with the antenna (6) generating the high frequency magnetic field.
H05H 1/00 - Production du plasmaMise en œuvre du plasma
H05H 1/46 - Production du plasma utilisant des champs électromagnétiques appliqués, p. ex. de l'énergie à haute fréquence ou sous forme de micro-ondes
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p. ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c.-à-d. un dépôt chimique
H01L 21/3065 - Gravure par plasmaGravure au moyen d'ions réactifs
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
C23C 16/505 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c.-à-d. procédés de dépôt chimique en phase vapeur [CVD] caractérisé par le procédé de revêtement au moyen de décharges électriques utilisant des décharges à radiofréquence
93.
Hydrogen supply device, and ion beam irradiation apparatus equipped therewith
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
In the present invention, a gas is fed over the entire surface of a target. In the present invention, a vacuum container (2) of a sputtering device (1) is provided with at least one target holder (32) for holding a target (30). The target holder is provided with: a gas introduction part (51) for introducing a gas (10); and a pair of gas release ports (54) for releasing the gas into the vacuum container, the gas release ports (54) being provided at opposing positions in at least a part of the surroundings of the target.
A wafer support device includes a support base having a wafer-facing surface, the support base comprising a heater, and an electrostatic chuck supported by the support base, the electrostatic chuck having an attraction surface configured to attract a wafer for wafer processing. During the wafer processing, the wafer-facing surface and the attraction surface are positioned at respective different positions in a direction perpendicular to the wafer-facing surface so that the attraction surface is separated from the wafer-facing surface by a distance.
H01L 21/00 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de dispositifs à semi-conducteurs ou de dispositifs à l'état solide, ou bien de leurs parties constitutives
H01J 37/05 - Dispositifs électronoptiques ou ionoptiques pour la séparation des électrons ou des ions en fonction de leur énergie
H01J 37/20 - Moyens de support ou de mise en position de l'objet ou du matériauMoyens de réglage de diaphragmes ou de lentilles associées au support
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
Provided is a diamond magneto-optical sensor including: a diamond that has a color center having an electron spin; and a reflective surface that reflects excitation light propagating through an optical system and entering the inside of the diamond. The reflective surface reflects synchrotron radiation emitted from the color center excited by the excitation light and focuses the synchrotron radiation in the direction toward the optical system.
This diamond magneto-optical sensor includes: a diamond which includes a color center having electron spin, and to which excitation light is projected; and a projection unit that projects, to the diamond, the excitation light for the color center and electromagnetic waves for magnetic resonance. The projection unit receives modulated light which was amplitude modulated. The modulation frequency of the modulated light is within the microwave frequency band.
A diamond magneto-optical sensor (100) according to the present invention includes: a diamond (102) having a color center that has an electron spin; a transmission circuit (106) that transmits electromagnetic waves; and an irradiation part that irradiates the diamond (102) with electromagnetic waves transmitted by the transmission circuit (106). The transmission circuit (106) includes an impedance converter (108) for decreasing or increasing, when viewed from the irradiation part, impedance of an electromagnetic wave source (110) that outputs electromagnetic waves. The irradiation part includes a resonator (104).
44 gas, a nitrogen gas, an oxygen gas, and a hydrogen gas are supplied as process gasses; and, in the supplied process gasses, the percentage of the nitrogen gas flow rate with respect to the total flow rate of the nitrogen gas and oxygen gas is 93% or greater.
H01L 21/31 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour former des couches isolantes en surface, p. ex. pour masquer ou en utilisant des techniques photolithographiquesPost-traitement de ces couchesEmploi de matériaux spécifiés pour ces couches
H01L 21/318 - Couches inorganiques composées de nitrures
H01L 21/336 - Transistors à effet de champ à grille isolée
An ion beam irradiation apparatus includes modules for generating an ion beam according to a recipe, and a control device. The control device receives the recipe including a processing condition for new processing, reads, from a monitored value storage, a monitored value that indicates a state of a module during a last processing immediately before the new processing, inputs the processing condition and the monitored value to a trained machine learning algorithm and receives, as an output from the trained machine learning algorithm, an initial value for the module, and outputs the initial value to the module to set up the module for generating the ion beam.
H01J 37/304 - Commande des tubes par une information en provenance des objets, p. ex. signaux de correction
H01J 37/305 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour couler, fondre, évaporer ou décaper
H01J 37/317 - Tubes à faisceau électronique ou ionique destinés aux traitements localisés d'objets pour modifier les propriétés des objets ou pour leur appliquer des revêtements en couche mince, p. ex. implantation d'ions