A powder metal rocker arm is provided. The rocker arm may be connected to a cylinder head of an engine to assist in transferring motion between engine components. The rocker arm includes a pivot aperture formed therein to facilitate pivoting of the rocker arm with respect to the cylinder head. The rocker arm is formed of a metal alloy powder. The metal alloy powder is compacted to form an intermediate member. Secondary features, such as apertures and other weight reducing features may be formed in the intermediate member. The intermediate member is then sintered to form the rocker arm.
A turbine housing is provided. The turbine housing includes a tongue diverter to manage the interaction between exhaust gases entering the inlet of the housing and gasses flowing within the housing. The tongue member may also be arranged to produce a constant ratio throughout the turbine housing between the cross-sectional area of fluid passages and the distance between the centroid of that area and the axis of rotation of the turbine. The housing may comprise a pair of half shells that each form a portion of the tongue diverter.
F03D 11/00 - Détails, parties constitutives ou accessoires non couverts par les autres groupes de la présente sous-classe ou présentant un intérêt autre que celui visé par ces groupes
F04D 29/40 - Carters d'enveloppeTubulures pour le fluide énergétique
3.
METHOD AND APPARATUS FOR HONING A WORKPIECE AND A WORKPIECE
A method for honing a workpiece by passing a workpiece through a hone tool having a plurality of abrasive surfaces configured to remove a portion of all exterior machining surfaces of the workpiece as it is passed through the hone tool, the exterior machining surfaces being non-uniform and wherein the hone tool is configured to hone all of the exterior machining surfaces simultaneously as workpiece is passed through the hone tool. An assembly for honing a workpiece, the assembly having a plurality of hone tools each having abrasive surfaces configured to remove a portion of exterior non¬ uniform surfaces of a workpiece pushed through the hone tool, wherein the hone tool is configured to surround the entire periphery of the workpiece being passed therethrough.
An improved method and apparatus for mating an exhaust manifold to a mating component, such as a housing, is provided. The exhaust manifold is connected to the housing by a series of weld joints. The apparatus may include a tube member for connecting the exhaust manifold to the housing, and an insert member positioned partially within the housing. In an embodiment, the insert member includes a notch to allow a portion of the insert member to be positioned within the housing and an exterior portion of the insert member to be positioned exterior to the housing.
A variable output pump system is provided, the pump system having a first positive displacement pump; a pump drive operably coupled to the first positive displacement pump, wherein the pump drive operates the first positive displacement pump to have a first output profile during a first operating range and a second output profile during a second operating range, the pump drive having a hydraulic release being configured to decrease the second output profile as a hydraulic pressure increases.
F04C 2/10 - Machines ou pompes à piston rotatif du type à engrènement extérieur, c.-à-d. avec un engagement des organes coopérants semblable à celui d'engrenages dentés du type à axe interne, l'organe externe ayant plus de dents ou de parties équivalentes de prise, p. ex. de rouleaux, que l'organe interne
F01C 1/02 - "Machines" ou machines motrices à piston rotatif du type à engrènement, c.-à-d. avec mouvement de translation circulaire des organes coopérants, tous les organes ayant le même nombre de dents ou de parties équivalentes de prise
The present invention provides dual-layer to flange weld joint for an exhaust manifold assembly. The manifold includes an inner assembly connected to a flange, and an outer shell spaced apart from the inner assembly to allow for an air gap between the shell and the inner assembly. The outer shell further includes a gap between the end portion of the outer shell and the flange. This gap allows a single exterior weld joint to connect the inner assembly and outer shell to the flange.
A support structure for a differential assembly comprising: a support ring having a peripheral wall extending between a first face and a second face, the support ring having a non-hollow center; a bore in the peripheral wall sized and shaped to receive a pinion shaft; and an aperture in the first face, the second aperture in fluid communication with the first aperture.
An exhaust manifold and method of manufacturing the same is provided that includes at least one tube within shells of an exhaust manifold The tube limits fluid communication from the tube into the shells of the exhaust manifold An inlet flange is connectable to the exhaust manifold and is attachable to a cylinder head of a combustion engine Exhaust gases expelled from the cylinder head are transmitted into the exhaust manifold At least a portion of the exhaust gases pass through the tube The exhaust manifold reduces NVH and cures emission control issues.
A variable nozzle area jet pump is provided having a nozzle-sealing member resiliently urged to form a sealing closure. The sealing member is part of a normally non-passing pressure control valve that recirculates excess fluid back to the inlet of a positive displacement fluid pump. The fluid is recirculated with elevated pressure after a threshold fluid pressure is exceeded. The disclosed system provides for energy conservation and pump cavitation speed increase. The system may be integrated with an engine balance shaft module so as to provide low cost robustness to low speed gear noise emissions by application of the oil pump's drive torque to at lease one gearset.
The invention provides an exhaust system including a cylinder head having a plurality of exhaust ports. Integrally formed with the cylinder head are a plurality of independent and separate tubes. The tubes are cast, molded or otherwise integrally formed with the exhaust ports of the cylinder head. The cylinder head and tubes eliminate the need for an exhaust flange, welding the tubes to the exhaust flange and securing the exhaust flange to the cylinder head. As a result, the present invention has less weight and improved performance over prior art cylinder head and exhaust assemblies.
An engine oil filtration system including a pump operable to provide pressurized oil to the system is provided. A filter is in pressurized fluid communication with the pump and an engine lubrication network is in pressurized fluid communication with both the filter and an inlet of a balance shaft module. The balance shaft module also includes an outlet in pressurized fluid communication with the oil pump so that contaminated, pressurized oil may flow from the balance shaft module to the pump and filter for cleaning before being recycled to the engine's lubrication network.
A compact water pump assembly has a shaft extending from a first end to a second end. An annular groove is located on the shaft. A housing member is located about the shaft and intermediate the first and second ends. An impeller is coupled to the second end of the shaft. A plurality of bearing members are arranged in a single- row within the groove. The bearing members rotatably support the shaft in the housing. In addition, each bearing member includes a radial centerline. A pulley is coupled to the first end of the shaft. The pulley is capable of engaging a drive belt such that the centerline of the belt driving surface is in substantial alignment with the bearing centerlines.
F04B 17/00 - Pompes caractérisées par leur combinaison avec des machines motrices ou moteurs particuliers qui les entraînent ou par leur adaptation à ceux-ci
13.
OVER-CENTER LINKAGE FOR ENGAGING A LOCKING DIFFERENTIAL OR OTHER MECHANISM
The assembly (1) includes an actuator (28), a housing (38), a shaft (40), a pair of biasing members (42 and 46), a side gear (14), and a locking pin (12). The actuator (28) is arranged to move the assembly (10) from a first position to a second position. The housing (38) is coupled to the actuator (28). The first biasing member (42) biases the housing, and the second biasing member (46) biases the housing (38) and shaft (40). The side gear (14) includes an aperture (16) for engaging the locking pin (12). The locking pin (12) is coupled to the shaft (40) such that the biasing of the shaft (40) determines whether the locking pin (12) is biased into engagement with the aperture (16) or out of engagement with the aperture (16).
F16H 48/30 - Dispositions pour supprimer ou modifier l'action différentielle, p. ex. dispositifs de verrouillage utilisant des moyens actionnés de l'extérieur
The present invention provides a differential housing assembly having a pinion shaft positioned therein. The differential housing assembly is capable of imparting torque to at least a pair of axle shafts of, for example a vehicle. The pinion shaft has a relief portion for receiving a portion of at least one of the axle shafts. The relief portion is capable of compensating for offset between the centerline of the pinion shaft and a centerline of a vehicle. In an exemplary embodiment, the relief portion allows the axle shafts to have equal lengths.
A variable displacement pump having an inner rotor (gerotor) and an outer rotor is disclosed. Advantageously, the pump provides a movable outer rotor capable of changing the amount of fluid transferred from an inlet to an outlet. Optionally, a biasing member is connected to the outer rotor for preventing movement of the outer rotor below a predetermined amount of pressure at the outlet.
F04C 14/10 - Commande, surveillance ou dispositions de sécurité pour "machines" ou pompes ou installations de pompage caractérisées par la modification des positions de l'ouverture de l'admission ou de l'échappement par rapport à la chambre de travail
F04C 14/00 - Commande, surveillance ou dispositions de sécurité pour "machines" ou pompes ou installations de pompage
F04C 15/00 - Parties constitutives, détails ou accessoires des "machines", des pompes ou installations de pompage non couverts par les groupes
The present invention provides a differential housing having guide slots formed therein. The guide slots permit movement of pinion shaft axially therethrough. A plurality of apertures are provided in the housing for properly positioning a pinion shaft within the housing. The apertures further provide fluid communication between the exterior and the interior of the housing to aid in adequately lubricating the components within the differential housing.
A pin retention and assembly system that is used with vehicles, such as off-road vehicles is provided The pin retention and assembly system (100) has modular locking pins (16) engaging a collar (22) positionable about a bearing journal (23) of a differential housing (12) Channels (70) are formed in the bearing journal for recieving the locking pins The channels aid in maximizing the size of the bearing journal The locking pins engage the collar to lock the differential housing In an embodiment, the locking pins and locking aperatures (60) in the differential housing are orientated asymmetrically causing the number of locking pins to be independent to the aperatures in the side gear (18).
F16H 57/08 - Parties constitutives générales des transmissions des transmissions à organes à mouvement orbital
F16H 48/06 - Transmissions différentielles avec des engrenages à mouvement orbital
F16H 48/30 - Dispositions pour supprimer ou modifier l'action différentielle, p. ex. dispositifs de verrouillage utilisant des moyens actionnés de l'extérieur
18.
MEASURING AND TESTING DEVICE INCORPORATING AN AIR GAUGE
The present invention relates to a measuring and testing device incorporating an air gauge capable of measuring dimensional characteristics of a tapered bore of a component. The measuring and testing device has an actuator for moving the air gauge or the component relative to the other so that the measuring and testing device are capable of utilization in an inline process for manufacturing the component.
G01L 7/00 - Mesure de la pression permanente ou quasi permanente d’un fluide ou d’un matériau solide fluent par des éléments mécaniques ou hydrauliques sensibles à la pression
19.
DUAL WALL EXHAUST MANIFOLD AND METHOD OF MAKING SAME
The present invention provides an improved dual-wall exhaust manifold assembly. The assembly has inner shells welded together and welded to an inlet flange. Outer shells are inserted into a counterbore of the inlet flange. An outlet flange is slid over the inner shell. The inner shell and the outer shell are inserted into the counterbore of the outlet flange. The outer shells are welded together and to the outlet and inlet flanges. The inlet counterbore and the outlet flange counterbore separate the inner and outer shells.
F01N 5/02 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant la chaleur
F01N 13/10 - Autres aménagements ou adaptations des tubulures d'échappement des collecteurs d'échappement
F01N 3/02 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour refroidir ou pour enlever les constituants solides des gaz d'échappement