01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Nanomaterials of carbon and hydrogen; nanomaterial compositions made of carbon and hydrogen; nanomaterial compositions made of carbon, hydrogen and oxygen; carbon nanotube membranes; nanoporous membranes of carbon and hydrogen; graphene; graphene materials, namely, nanographene Manufacture of nanomaterials for use in the manufacture of goods in the fields of energy storage, cooling, building applications, oilfield applications, polymer additives, coatings, health care, and electronics to the order and/or specification of others Research and development of technology in the field of nanomaterials and nanotechnology
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
Produits et services
Retail store services featuring graphene, hydrogen, carbon and nanomaterials Carbon; Graphene; Hydrogen Custom additive manufacturing; Custom manufacture of industrial chemicals, graphene and nanomaterials
3.
NANO-DRUG DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING A NANO-DRUG DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to a nano-drug delivery method that may include preparing a nano-drug delivery component that may include a carbon-based nanomaterial composition and a nano-drug composition attached to the carbon-based nanomaterial composition, delivering the nano-drug delivery component to a treatment location, and applying a radio frequency to the nano-drug delivery component at the treatment location. The radio frequency may be configured to heat the nano-drug delivery component and cause the nano-drug composition to detach from the carbon-based nanomaterial composition for delivery at the treatment location.
A61N 1/40 - Application de champs électriques par couplage inductif ou capacitif
4.
ADIPOSE CELL DESTRUCTION COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING AN ADIPOSE CELL DESTRUCTION COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to an adipose cell destruction method that may include preparing an adipose cell destruction component that may include a carbon-based nanomaterial composition and an adipose cell targeting composition attached to the carbon-based nanomaterial composition, delivering the adipose cell destruction component to a treatment location where the adipose cell targeting composition bonds to adipose cells, and applying a radio frequency to the adipose cell destruction component at the treatment location. The radio frequency may be configured to heat the adipose cell destruction component and destroy the adipose cells bonded to the adipose cell targeting composition at the treatment location.
A61N 1/40 - Application de champs électriques par couplage inductif ou capacitif
5.
CANCER TREATMENT DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING A CANCER TREATMENT DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to a cancer treatment delivery method that may include preparing a cancer treatment delivery component that may include a carbon-based nanomaterial composition and a cancer treatment composition attached to the carbon-based nanomaterial composition, delivering the cancer treatment delivery component to a treatment location, and applying a radio frequency to the cancer treatment delivery component at the treatment location. The radio frequency may be configured to heat the cancer treatment delivery component and cause the cancer treatment composition to detach from the carbonbased nanomaterial composition for delivery at the treatment location.
A61K 47/69 - Préparations médicinales caractérisées par les ingrédients non actifs utilisés, p. ex. les supports ou les additifs inertesAgents de ciblage ou de modification chimiquement liés à l’ingrédient actif l’ingrédient non actif étant chimiquement lié à l’ingrédient actif, p. ex. conjugués polymère-médicament le conjugué étant caractérisé par sa forme physique ou sa forme galénique, p. ex. émulsion, particule, complexe d’inclusion, stent ou kit
CANCER TREATMENT DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING A CANCER TREATMENT DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to a cancer treatment delivery method that may include preparing a cancer treatment delivery component that may include a carbon-based nanomaterial composition and a cancer treatment composition attached to the carbon-based nanomaterial composition, delivering the cancer treatment delivery component to a treatment location, and applying a radio frequency to the cancer treatment delivery component at the treatment location. The radio frequency may be configured to heat the cancer treatment delivery component and cause the cancer treatment composition to detach from the carbon-based nanomaterial composition for delivery at the treatment location.
A61K 41/00 - Préparations médicinales obtenues par traitement de substances par énergie ondulatoire ou par rayonnement corpusculaire
A61K 47/52 - Préparations médicinales caractérisées par les ingrédients non actifs utilisés, p. ex. les supports ou les additifs inertesAgents de ciblage ou de modification chimiquement liés à l’ingrédient actif l’ingrédient non actif étant chimiquement lié à l’ingrédient actif, p. ex. conjugués polymère-médicament l’ingrédient non actif étant un agent de modification l’agent de modification étant un composé inorganique, p. ex. un ion inorganique complexé avec l’ingrédient actif
7.
NANO-DRUG DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING A NANO-DRUG DELIVERY COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to a nano-drug delivery method that may include preparing a nano-drug delivery component that may include a carbon-based nanomaterial composition and a nano-drug composition attached to the carbon-based nanomaterial composition, delivering the nano-drug delivery component to a treatment location, and applying a radio frequency to the nano-drug delivery component at the treatment location. The radio frequency may be configured to heat the nano-drug delivery component and cause the nano-drug composition to detach from the carbon-based nanomaterial composition for delivery at the treatment location.
A61K 41/00 - Préparations médicinales obtenues par traitement de substances par énergie ondulatoire ou par rayonnement corpusculaire
A61K 47/52 - Préparations médicinales caractérisées par les ingrédients non actifs utilisés, p. ex. les supports ou les additifs inertesAgents de ciblage ou de modification chimiquement liés à l’ingrédient actif l’ingrédient non actif étant chimiquement lié à l’ingrédient actif, p. ex. conjugués polymère-médicament l’ingrédient non actif étant un agent de modification l’agent de modification étant un composé inorganique, p. ex. un ion inorganique complexé avec l’ingrédient actif
8.
ADIPOSE CELL DESTRUCTION COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, METHOD OF DELIVERING AN ADIPOSE CELL DESTRUCTION COMPONENT INCLUDING A CARBON-BASED NANOMATERIAL COMPOSITION, AND METHODS OF FORMING THE SAME
The present disclosure relates to an adipose cell destruction method that may include preparing an adipose cell destruction component that may include a carbon-based nanomaterial composition and an adipose cell targeting composition attached to the carbon-based nanomaterial composition, delivering the adipose cell destruction component to a treatment location where the adipose cell targeting composition bonds to adipose cells, and applying a radio frequency to the adipose cell destruction component at the treatment location. The radio frequency may be configured to heat the adipose cell destruction component and destroy the adipose cells bonded to the adipose cell targeting composition at the treatment location.
Various embodiments for a hydrogen zero emissions vehicle that utilizes hydride storage of hydrogen and buffering of hydrogen for high demand power are disclosed.
F01N 5/02 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant la chaleur
F01N 3/02 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour refroidir ou pour enlever les constituants solides des gaz d'échappement
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
H01M 8/04014 - Échange de chaleur par des fluides gazeuxÉchange de chaleur par combustion des réactifs
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
10.
COPPER DOPED CARBON-BASED NANOMATERIAL AND METHODS OF FORMING THE SAME
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a copper powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include copper doped nano spheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a copper powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include copper doped nanospheres.
The present disclosure relates to a silicon composition that may be formed from a gas mixture and a silicon dioxide precursor component. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The silicon composition may include a pure silicon component and a carbon-based nanomaterial composition component. The carbon-based nanomaterial composition component may include silicon dioxide doped nanospheres.
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
15.
SILICONE COMPOSITION AND METHODS OF FORMING THE SAME WHILE FORMING A SILICON DOPED CARBON-BASED NANOMATERIAL
The present disclosure relates to a silicon composition that may be formed from a gas mixture and a silicon precursor component. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The silicon composition may include a pure silicon component and a carbon-based nanomaterial composition component. The carbon-based nanomaterial composition component may include silicon doped nanospheres.
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
16.
SILICONE COMPOSITION AND METHODS OF FORMING THE SAME WHILE FORMING A SILICON DIOXIDE DOPED CARBON-BASED NANOMATERIAL
The present disclosure relates to a silicon composition that may be formed from a gas mixture and a silicon dioxide precursor component. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The silicon composition may include a pure silicon component and a carbon-based nanomaterial composition component. The carbon-based nanomaterial composition component may include silicon dioxide doped nanospheres.
The present disclosure relates to a silicon composition that may be formed from a gas mixture and a silicon precursor component. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The silicon composition may include a pure silicon component and a carbon-based nanomaterial composition component. The carbon-based nanomaterial composition component may include silicon doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a phosphorus powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include phosphorus doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a nitrogen powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include nitrogen doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a chlorine powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include chlorine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and an iodine powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include iodine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sodium powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sodium doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a bromine powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include bromine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a chlorine powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include chlorine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and an iodine powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include iodine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon dioxide powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon dioxide doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sodium powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sodium doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sodium powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sodium doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon dioxide powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon dioxide doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a boron powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include boron doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a bromine powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include bromine doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a nitrogen powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include nitrogen doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and an oxygen powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include oxygen doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a phosphorus powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include phosphorus doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon dioxide powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon dioxide doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon powder. The gas mixture may include a carbon-based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a boron powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include boron doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a nitrogen powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include nitrogen doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and an oxygen powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include oxygen doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a phosphorus powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include phosphorus doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a silicon powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include silicon doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.20 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.1 and not greater than about 0.85, and hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.00 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.25 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.50, hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.70, and methane gas at a molar ratio MGmol/GMmol of at least about 0.25 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.55 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.75, and hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.90. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.25 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.55, hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.75, and methane gas at a molar ratio MGmol/GMmol of at least about 0.25 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sulfur powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sulfur doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sulfur powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sulfur doped nanospheres.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.25 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.50, hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.70, and methane gas at a molar ratio MGmol/GMmol of at least about 0.25 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.25 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.55, hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.75, and methane gas at a molar ratio MGmol/GMmol of at least about 0.25 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.20 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.1 and not greater than about 0.85, and hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.00 and not greater than about 0.99. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture. The gas mixture may include acetylene gas at a molar ratio AGmol/GMmol of at least about 0.55 and not greater than about 0.99, oxygen gas at a molar ratio OGmol/GMmol of at least about 0.01 and not greater than about 0.75, and hydrogen gas at a molar ratio HGmol/GMmol of at least about 0.05 and not greater than about 0.90. The carbon-based nanomaterial composition may have a carbon hybridization ratio Psp3/Psp2 of at least about 0.0 and not greater than about 5.0, where Psp3 is the percent of carbon within the carbon-based nanomaterial composition having a sp3 hybridization and Psp2 is the percent of carbon within the carbon-based nanomaterial composition having a sp2 hybridization.
The present disclosure relates to a carbon-based nanomaterial composition that may be formed from a gas mixture and a sulfur powder. The gas mixture may include a carbon based gas, an oxygen gas, and a hydrogen gas. The carbon-based nanomaterial composition may include sulfur doped nanospheres.
A system for graphene synthesis includes an enclosed chamber having a hollow interior, a carbon-based gas source fluidically coupled to the chamber and configured to supply a carbon-based gas to the hollow interior, a hydrogen source fluidically coupled to the chamber and configured to supply hydrogen to the hollow interior, an oxygen source that is independent of the carbon-based gas source and that is fluidically coupled to the chamber and configured to supply oxygen to the hollow interior, an igniter configured to ignite the carbon-based gas, hydrogen, and oxygen in the hollow interior, a first flow meter coupled to the carbon-based gas source, a second flow meter coupled to the hydrogen source, a third flow meter coupled to the oxygen source, and a controller in communication with and configured to receive flow data from the first, second, and third flow meters.
Systems, devices, and methods for producing and storing hydrogen energy are described. Hydrogen energy may be produced and distributed according to a tiered consumption system, such that consumption requirements of a first tier are prioritized over a second tier and third tier, respectively. Energy and hydrogen for this system may be produced by one or more fuel cell/electrolyzers, and produced hydrogen may be stored in one or more hydride storage tanks.
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
C25B 13/07 - DiaphragmesÉléments d'espacement caractérisés par le matériau à base de matériaux inorganiques à base de céramiques
H01M 8/04082 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration
H01M 8/04298 - Procédés de commande des éléments à combustible ou des systèmes d’éléments à combustible
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
H01M 8/1041 - Composites ou mélanges à électrolyte polymère
63.
PROTON EXCHANGE MEMBRANES AND METHODS OF PREPARING SAME
Method of preparing a proton exchange membrane (PEM) include mixing a precursor of a perfluorosulfonic acid polymer with a second material to form a precursor material in a reduced humidity zone; extruding the precursor material under reduced humidity to form a filament; 3D printing the PEM with the filament; converting the precursor of the perfluorosulfonic acid polymer to the perfluorosulfonic acid polymer within the PEM; and coating the PEM.
H01M 8/1004 - Éléments à combustible avec électrolytes solides caractérisés par les ensembles membrane-électrodes [MEA]
H01M 8/1039 - Matériaux d’électrolyte polymère halogénés, p. ex. des fluorures de polyvinylidène sulfonés
H01M 8/1041 - Composites ou mélanges à électrolyte polymère
H01M 8/1058 - Matériaux d’électrolyte polymère caractérisés par un support poreux n’ayant pas de propriétés conductrices ioniques
H01M 8/1067 - Matériaux d’électrolyte polymère caractérisés par leurs propriétés physiques, p. ex. la porosité, la conductivité ionique ou l’épaisseur
H01M 8/1081 - Matériaux d’électrolyte polymère caractérisés par le procédé de fabrication à partir de solutions, de dispersions ou de suspensions de polymères uniquement
H01M 8/1086 - Post-traitement de la membrane autrement que par polymérisation
A system for graphene synthesis includes an enclosed chamber having a hollow interior, a carbon-based gas source fluidically coupled to the chamber and configured to supply a carbon-based gas to the hollow interior, a hydrogen source fluidically coupled to the chamber and configured to supply hydrogen to the hollow interior, an oxygen source that is independent of the carbon-based gas source and that is fluidically coupled to the chamber and configured to supply oxygen to the hollow interior, an igniter configured to ignite the carbon-based gas, hydrogen, and oxygen in the hollow interior, a first flow meter coupled to the carbon-based gas source, a second flow meter coupled to the hydrogen source, a third flow meter coupled to the oxygen source, and a controller in communication with and configured to receive flow data from the first, second, and third flow meters.
Various embodiments of systems and methods for a smart hydrogen injection controller are disclosed herein. The system produces hydrogen and oxygen from a Proton Exchange Membrane (PEM) electrolyzer and injects these gases individually into a combustion engine using port injection or direct injection at each cylinder of the combustion engine. In one aspect, varying the ratio of hydrogen to oxygen works to improve the operation of the internal combustion engine to decrease emissions and increase combustion efficiency.
F02B 43/10 - Moteurs ou ensembles fonctionnels caractérisés par l'utilisation d'autres gaz spécifiques, p. ex. l'acétylène, le gaz oxhydrique
F02D 19/02 - Commande des moteurs caractérisés par l'emploi de combustible non liquide, de combustibles multiples ou de substances non combustibles ajoutées au mélange carburant particulière aux moteurs fonctionnant avec des combustibles gazeux
F02M 25/12 - Appareils spécifiques conjugués aux moteurs pour ajouter des substances non combustibles ou de petites quantités de combustible secondaire, à l’air comburant, au combustible principal ou au mélange air-combustible ajoutant de l'acétylène, de l'hydrogène non en provenance de l'eau, de l'oxygène non en provenance de l'air ou de l'ozone les appareils comportant des moyens de produire de tels gaz
66.
Systems and methods for a hydrogen zero emissions vehicle
Various embodiments for a hydrogen zero emissions vehicle that utilizes hydride storage of hydrogen and buffering of hydrogen for high demand power are disclosed.
F01N 5/02 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant la chaleur
F01N 3/02 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour refroidir ou pour enlever les constituants solides des gaz d'échappement
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
H01M 8/04014 - Échange de chaleur par des fluides gazeuxÉchange de chaleur par combustion des réactifs
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
67.
SYSTEMS, DEVICES, AND METHODS FOR HYDROGEN ENERGY PRODUCTION AND STORAGE
Systems, devices, and methods for producing and storing hydrogen energy are described. Hydrogen energy may be produced and distributed according to a tiered consumption system, such that consumption requirements of a first tier are prioritized over a second tier and third tier, respectively. Energy and hydrogen for this system may be produced by one or more fuel cell/electrolyzers, and produced hydrogen may be stored in one or more hydride storage tanks.
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
H01M 16/00 - Combinaisons structurelles de différents types de générateurs électrochimiques
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
C25B 13/07 - DiaphragmesÉléments d'espacement caractérisés par le matériau à base de matériaux inorganiques à base de céramiques
H01M 8/04082 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration
H01M 8/1041 - Composites ou mélanges à électrolyte polymère
H01M 8/04298 - Procédés de commande des éléments à combustible ou des systèmes d’éléments à combustible
68.
SYSTEMS AND METHODS FOR A HYDROGEN ZERO EMISSIONS VEHICLE
Various embodiments for a hydrogen zero emissions vehicle that utilizes hydride storage of hydrogen and buffering of hydrogen for high demand power are disclosed.
F02B 43/10 - Moteurs ou ensembles fonctionnels caractérisés par l'utilisation d'autres gaz spécifiques, p. ex. l'acétylène, le gaz oxhydrique
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p. ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
F02D 41/00 - Commande électrique de l'alimentation en mélange combustible ou en ses constituants
69.
PROTON EXCHANGE MEMBRANES AND METHODS OF PREPARING SAME
Method of preparing a proton exchange membrane (PEM) include mixing a precursor of a perfluorosulfonic acid polymer with a second material to form a precursor material in a reduced humidity zone; extruding the precursor material under reduced humidity to form a filament; 3D printing the PEM with the filament; converting the precursor of the perfluorosulfonic acid polymer to the perfluorosulfonic acid polymer within the PEM; and coating the PEM.
H01M 8/1039 - Matériaux d’électrolyte polymère halogénés, p. ex. des fluorures de polyvinylidène sulfonés
H01M 8/1058 - Matériaux d’électrolyte polymère caractérisés par un support poreux n’ayant pas de propriétés conductrices ioniques
H01M 8/1041 - Composites ou mélanges à électrolyte polymère
H01M 8/1081 - Matériaux d’électrolyte polymère caractérisés par le procédé de fabrication à partir de solutions, de dispersions ou de suspensions de polymères uniquement
H01M 8/1086 - Post-traitement de la membrane autrement que par polymérisation
H01M 8/1067 - Matériaux d’électrolyte polymère caractérisés par leurs propriétés physiques, p. ex. la porosité, la conductivité ionique ou l’épaisseur
H01M 8/1004 - Éléments à combustible avec électrolytes solides caractérisés par les ensembles membrane-électrodes [MEA]
H01M 8/10 - Éléments à combustible avec électrolytes solides
A system for graphene synthesis includes an enclosed chamber having a hollow interior, a carbon-based gas source fluidically coupled to the chamber and configured to supply a carbon-based gas to the hollow interior, a hydrogen source fluidically coupled to the chamber and configured to supply hydrogen to the hollow interior, an oxygen source that is independent of the carbon-based gas source and that is fluidically coupled to the chamber and configured to supply oxygen to the hollow interior, an igniter configured to ignite the carbon-based gas, hydrogen, and oxygen in the hollow interior, a first flow meter coupled to the carbon-based gas source, a second flow meter coupled to the hydrogen source, a third flow meter coupled to the oxygen source, and a controller in communication with and configured to receive flow data from the first, second, and third flow meters.
Various embodiments for a hydrogen zero emissions vehicle that utilizes hydride storage of hydrogen and buffering of hydrogen for high demand power are disclosed.
Systems, devices, and methods for producing and storing hydrogen energy are described. Hydrogen energy may be produced and distributed according to a tiered consumption system, such that consumption requirements of a first tier are prioritized over a second tier and third tier, respectively. Energy and hydrogen for this system may be produced by one or more fuel cell/electrolyzers, and produced hydrogen may be stored in one or more hydride storage tanks.
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
C25B 1/04 - Hydrogène ou oxygène par électrolyse de l'eau
H01M 8/04014 - Échange de chaleur par des fluides gazeuxÉchange de chaleur par combustion des réactifs
73.
PROTON EXCHANGE MEMBRANES AND METHODS OF PREPARING SAME
Method of preparing a proton exchange membrane (PEM) include mixing a precursor of a perfluorosulfonic acid polymer with a second material to form a precursor material in a reduced humidity zone; extruding the precursor material under reduced humidity to form a filament; 3D printing the PEM with the filament; converting the precursor of the perfluorosulfonic acid polymer to the perfluorosulfonic acid polymer within the PEM; and coating the PEM.
Various embodiments of systems and methods for a smart hydrogen injection controller are disclosed herein. The system produces hydrogen and oxygen from a Proton Exchange Membrane (PEM) electrolyzer and injects these gases individually into a combustion engine using port injection or direct injection at each cylinder of the combustion engine. In one aspect, varying the ratio of hydrogen to oxygen works to improve the operation of the internal combustion engine to decrease emissions and increase combustion efficiency.
F02M 25/12 - Appareils spécifiques conjugués aux moteurs pour ajouter des substances non combustibles ou de petites quantités de combustible secondaire, à l’air comburant, au combustible principal ou au mélange air-combustible ajoutant de l'acétylène, de l'hydrogène non en provenance de l'eau, de l'oxygène non en provenance de l'air ou de l'ozone les appareils comportant des moyens de produire de tels gaz
F02M 21/02 - Appareils pour alimenter les moteurs en combustibles non liquides, p. ex. en combustibles gazeux stockés sous forme liquide en combustibles gazeux
F02B 43/10 - Moteurs ou ensembles fonctionnels caractérisés par l'utilisation d'autres gaz spécifiques, p. ex. l'acétylène, le gaz oxhydrique
F02D 41/00 - Commande électrique de l'alimentation en mélange combustible ou en ses constituants
F02D 19/02 - Commande des moteurs caractérisés par l'emploi de combustible non liquide, de combustibles multiples ou de substances non combustibles ajoutées au mélange carburant particulière aux moteurs fonctionnant avec des combustibles gazeux