A gadolinium gallium garnet single crystal and method of forming said crystal is disclosed. The single gadolinium gallium garnet crystal can have a diameter of greater than 102mm and a density of dislocations of less than 1 cm-2 in a central 80% of the crystal.
A gadolinium gallium garnet single crystal and method of forming said crystal is disclosed. The single gadolinium gallium garnet crystal can have a diameter of greater than 102 mm and a density of dislocations of less than 1 cm−2 in a central 80% of the crystal.
Apparatuses and methods as described herein can be used to help stabilize the gain of a semiconductor-based photomultiplier. In an embodiment, an apparatus can include a semiconductor-based photomultiplier. The apparatus can be configured to maintain a constant voltage output of between +/- 0.002% and +/- 15% of a breakdown voltage. A method for stabilizing a radiation detection device can include determining a breakdown voltage of a light source. The light source can be optically coupled to a silicon photomultiplier. The method can also include measuring a plurality of light outputs of the light source provided over a temperature range of 70 degrees and generating an individualized look-up table for the light source based on the measured plurality of light outputs over the said temperature range.
G01N 23/225 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en mesurant l'émission secondaire de matériaux en utilisant des microsondes électroniques ou ioniques
G01T 1/24 - Mesure de l'intensité de radiation avec des détecteurs à semi-conducteurs
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
4.
RADIATION DETECTION APPARATUS HAVING A STABILIZED PHOTOMULTIPLIER
Apparatuses and methods as described herein can be used to help stabilize the gain of a semiconductor-based photomultiplier. In an embodiment, an apparatus can include a semiconductor-based photomultiplier. The apparatus can be configured to maintain a constant voltage output of between +/−0.002% and +/−15% of a breakdown voltage. A method for stabilizing a radiation detection device can include determining a breakdown voltage of a light source. The light source can be optically coupled to a silicon photomultiplier. The method can also include measuring a plurality of light outputs of the light source provided over a temperature range of 70 degrees and generating an individualized look-up table for the light source based on the measured plurality of light outputs over the said temperature range.
G01T 1/24 - Mesure de l'intensité de radiation avec des détecteurs à semi-conducteurs
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
G01T 1/208 - Circuits spécialement adaptés aux détecteurs à scintillation, p. ex. à l'élément photomultiplicateur
5.
CSI(TL) SCINTILLATOR CRYSTAL INCLUDING CO-DOPANTS ANTIOMY AND BISMUTH TO REDUCE AFTERGLOW, AND A RADIATION DETECTION APPARATUS INCLUDING THE SCINTILLATION CRYSTAL
A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsI:Tl, Me, where Me represents co-doped Sb and Bi. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium, a second dopant including an antimony, and a third dopant including a bismuth.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/75 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant de l'arsenic, de l'antimoine ou du bismuth contenant de l'antimoine
6.
WAVELENGTH SHIFTING FIBER AND A METHOD OF MAKING THE SAME
A wavelength shifting fiber and method of making the same is disclosed. A wavelength shifting fiber can include a plastic core; and a coating surrounding the plastic core. The wavelength shifting fiber has an optical attenuation length of at least 500 cm. A method of making a wavelength shifting fiber can include storing a plastic core precursor and cladding melt preform in an environment containing an inert gas; and drawing the plastic core precursor and cladding melt preform to form a wavelength shifting fiber, wherein drawing is performed under tension of less than 77 g/mm2and more than 40 g/mm2, and where the wavelength shifting fiber comprises an attenuation length of at least 500 cm.
A wavelength shifting fiber and method of making the same is disclosed. A wavelength shifting fiber can include a plastic core; and a coating surrounding the plastic core. The wavelength shifting fiber has an optical attenuation length of at least 500 cm. A method of making a wavelength shifting fiber can include storing a plastic core precursor and cladding melt preform in an environment containing an inert gas; and drawing the plastic core precursor and cladding melt preform to form a wavelength shifting fiber, wherein drawing is performed under tension of less than 77 g/mm2 and more than 40 g/mm2, and where the wavelength shifting fiber comprises an attenuation length of at least 500 cm.
The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x) CexMzSi(1-v)M′vO5, in which:
M represents a divalent alkaline earth metal and
M′ represents a trivalent metal,
(z+v) being greater than or equal to 0.0001 and less than or equal to 0.2;
z being greater than or equal to 0 and less than or equal to 0.2;
v being greater than or equal to 0 and less than or equal to 0.2;
x being greater than or equal to 0.0001 and less than 0.1; and
y ranging from (x+z) to 1.
The invention relates to an inorganic scintillator material of formula Lu(2-y)Y(y-z-x) CexMzSi(1-v)M′vO5, in which:
M represents a divalent alkaline earth metal and
M′ represents a trivalent metal,
(z+v) being greater than or equal to 0.0001 and less than or equal to 0.2;
z being greater than or equal to 0 and less than or equal to 0.2;
v being greater than or equal to 0 and less than or equal to 0.2;
x being greater than or equal to 0.0001 and less than 0.1; and
y ranging from (x+z) to 1.
In particular, this material may equip scintillation detectors for applications in industry, for the medical field (scanners) and/or for detection in oil drilling. The presence of Ca in the crystal reduces the afterglow, while stopping power for high-energy radiation remains high.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
A61B 6/42 - Agencements pour détecter des radiations spécialement adaptés au diagnostic par radiations
C09K 11/74 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant de l'arsenic, de l'antimoine ou du bismuth
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
9.
Scintillation crystal including a co-doped rare earth silicate, a radiation detection apparatus including the scintillation crystal, and a process of forming the same
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at % in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 15/00 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
1-z-vzv1-xx3-v+y+wywab1-z-vzv1-xx3-v+y+wyww and of LiX, and optionally NaY inclusions, embedded in said single-crystal matrix. A can be selected among I and Cl; C can be selected among Ca, Sr, Ba and Mg, preferably among Sr and Ca; X can be selected among F, Cl, Br, I and combinations thereof. Y can be selected among F, Cl, Br, I and combinations thereof. 0 ≤ x ≤ 0.5; 0 ≤ y ≤ 0.02; 0 ≤ v ≤ 0.1; 0 ≤ w ≤ 0.02, preferably w = 0; 0 ≤ z ≤ 1; 0 ≤ z +v ≤ 1; 0 < a ≤ 0.20; 0 ≤ b ≤ 0.20; a, b, x, v, y, w and z can be molar indices for LiX, NaY, A, C, Li, Na and Ce, respectively.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C01F 17/30 - Composés contenant des métaux de terres rares et au moins un élément autre qu’un métal des terres rares, l'oxygène ou l'hydrogène, p. ex. La4S3Br6
G01T 3/06 - Mesure de flux de neutrons avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
G01N 33/58 - Analyse chimique de matériau biologique, p. ex. de sang ou d'urineTest par des méthodes faisant intervenir la formation de liaisons biospécifiques par ligandsTest immunologique faisant intervenir des substances marquées
11.
SCINTILLATION COMPOUND INCLUDING A RARE EARTH ELEMENT AND A PROCESS OF FORMING THE SAME
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
Various single crystals are disclosed including sapphire as well as methods of forming the same. A method of forming a crystalline structure is disclosed as well. The method can include providing a melt in a crucible having a die. The die can include a ventilation opening. The method can further include growing the crystalline structure from the die using an enclosed seed. The single crystals can have desirable geometric properties, including a length greater than a diameter greater than a thickness.
C30B 9/04 - Croissance des monocristaux à partir de bains fondus utilisant des solvants fondus par refroidissement du bain
C30B 29/60 - Monocristaux ou matériaux polycristallins homogènes de structure déterminée caractérisés par leurs matériaux ou par leur forme caractérisés par la forme
Various single crystals are disclosed including sapphire as well as methods of forming the same. A method of forming a crystalline structure is disclosed as well. The method can include providing a melt in a crucible having a die. The die can include a ventilation opening. The method can further include growing the crystalline structure from the die using an enclosed seed. The single crystals can have desirable geometric properties, including a length greater than a diameter greater than a thickness.
C30B 29/66 - Cristaux de forme géométrique complexe, p. ex. tubes, cylindres
14.
CsI(T1) scintillator crystal including co-dopants antiomy and bismuth to reduce afterglow, and a radiation detection apparatus including the scintillation crystal
A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsI:Tl, Me, where Me represents co-doped Sb and Bi. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium, a second dopant including an antimony, and a third dopant including a bismuth.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/75 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant de l'arsenic, de l'antimoine ou du bismuth contenant de l'antimoine
G01N 23/046 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en transmettant la radiation à travers le matériau et formant des images des matériaux en utilisant la tomographie, p. ex. la tomographie informatisée
G01N 23/083 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p. ex. rayons X ou neutrons, non couvertes par les groupes , ou en transmettant la radiation à travers le matériau et mesurant l'absorption le rayonnement consistant en rayons X
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Synthetic sapphire in the nature of aluminium oxides for general industrial purposes for use in optical and opto-electronic applications, namely, optical components, lenses, reflectors, prisms, mirrors, windows, windshields, domes, beam expander-condensers, waveplates, substrates, rods, tubes, plates, and display panels; Inorganic polycrystalline scintillation crystals. Scintillation counters; Gamma scintillation detectors; Optical lenses; Optical fibers; Scientific measuring instruments, namely, an energy dispersive x-ray analyzer; X-ray apparatus not for medical use, namely, x-ray detectors, x-ray spectrometers and component parts therefor, wavelength dispersive spectrometers, crystallographic analyzers for electron crystallography, elemental analyzers for calculating the concentrations of chemical elements in an object; Radiation detectors; Solid state laser materials, namely, single crystal materials in the nature of synthetic crystals in the form of rods, slabs, slices and discs sold for use as a component of lasers not for medical use; Measuring or testing machines and instruments, namely, americium thickness gauges and gamma scintillation detectors; Electronic and information apparatus and instruments for electronics, new material and semiconductor industries, namely, energy dispersive x-ray analyzers, x-ray fluorescence analyzers, carbon analyzers, carbon/sulfur analyzers, oxygen/nitrogen/hydrogen analyzers, particle size distribution analyzers, optical crystals, scintillation crystals and x-ray detectors; Distance measuring and recording apparatus, namely, distance measuring apparatus and laser distance measurers; Transparent protective armor, namely, protective clothing; Head Up Displays (HUDs). Product research and development; Scientific research and development; Research and development in the field of materials.
16.
Scintillation crystal including a co-doped rare earth silicate, a radiation detection apparatus including the scintillation crystal, and a process of forming the same
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at % in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 15/00 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Synthetic sapphire in the nature of aluminium oxides for general industrial purposes for use in optical and opto-electronic applications, namely, optical components, lenses, reflectors, prisms, mirrors, windows, windshields, domes, beam expander-condensers, waveplates, substrates, rods, tubes, plates, and display panels; Inorganic polycrystalline scintillation crystals used for detecting gamma rays Scintillation counters; gamma scintillation detectors; optical lenses; Optical fibers; Scientific measuring instruments, namely, an energy dispersive x-ray analyzer; X-ray apparatus not for medical use, namely, x-ray detectors, x-ray spectrometers and component parts therefor; Wavelength dispersive spectrometers, crystallographic analyzers for electron crystallography, elemental analyzers for calculating the concentrations of chemical elements in an object; Radiation detectors; Solid state laser materials, namely, single crystal materials in the nature of synthetic crystals in the form of rods, slabs, slices and discs sold for use as a component of lasers not for medical use; Measuring or testing machines and instruments, namely, americium thickness gauges and gamma scintillation detectors; Electronic and information apparatus and instruments for electronics, new material and semiconductor industries, namely, energy dispersive x-ray analyzers, x-ray fluorescence analyzers, carbon analyzers, carbon/sulfur analyzers, oxygen/nitrogen/hydrogen analyzers, particle size distribution analyzers, optical crystals, scintillation crystals and x-ray detectors; Distance measuring and recording apparatus, namely, distance measuring apparatus and laser distance measurers; Transparent armor used for transparent armored windows for vehicles; Head up displays (HUDs) used for vehicles and goggles, namely, transparent electronic displays for providing users with navigational and operational information Product research and development; Scientific research and development; Research and development in the field of materials including synthetic sapphire and scintillation crystals
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Synthetic sapphire in the nature of aluminium oxides for general industrial purposes for use in optical and opto-electronic applications, namely, optical components, lenses, reflectors, prisms, mirrors, windows, windshields, domes, beam expander-condensers, waveplates, substrates, rods, tubes, plates, and display panels; Inorganic polycrystalline scintillation crystals. Scintillation counters; Gamma scintillation detectors; Optical lenses; Optical fibers; Scientific measuring instruments, namely, an energy dispersive x-ray analyzer; X-ray apparatus not for medical use, namely, x-ray detectors, x-ray spectrometers and component parts therefor, wavelength dispersive spectrometers, crystallographic analyzers for electron crystallography, elemental analyzers for calculating the concentrations of chemical elements in an object; Radiation detectors; Solid state laser materials, namely, single crystal materials in the nature of synthetic crystals in the form of rods, slabs, slices and discs sold for use as a component of lasers not for medical use; Measuring or testing machines and instruments, namely, americium thickness gauges and gamma scintillation detectors; Electronic and information apparatus and instruments for electronics, new material and semiconductor industries, namely, energy dispersive x-ray analyzers, x-ray fluorescence analyzers, carbon analyzers, carbon/sulfur analyzers, oxygen/nitrogen/hydrogen analyzers, particle size distribution analyzers, optical crystals, scintillation crystals and x-ray detectors; Distance measuring and recording apparatus, namely, distance measuring apparatus and laser distance measurers; Transparent protective armor, namely, protective clothing; Head Up Displays (HUDs). Product research and development; Scientific research and development; Research and development in the field of materials.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Synthetic sapphire in the nature of aluminium oxides for general industrial purposes for use in optical and opto-electronic applications, namely, optical components, lenses, reflectors, prisms, mirrors, windows, windshields, domes, beam expander-condensers, waveplates, substrates, rods, tubes, plates, and display panels; Inorganic polycrystalline scintillation crystals used for detecting gamma rays Scintillation counters; gamma scintillation detectors; optical lenses; optical fibers; Scientific measuring instruments, namely, an energy dispersive x-ray analyzer; X-ray apparatus not for medical use, namely, x-ray detectors, x-ray spectrometers and component parts therefor; Wavelength dispersive spectrometers, crystallographic analyzers for electron crystallography, elemental analyzers for calculating the concentrations of chemical elements in an object; radiation detectors; Solid state laser materials, namely, single crystal materials in the nature of synthetic crystals in the form of rods, slabs, slices and discs sold for use as a component of lasers not for medical use; Measuring or testing machines and instruments, namely, americium thickness gauges and gamma scintillation detectors; Electronic and information apparatus and instruments for electronics, new material and semiconductor industries, namely, energy dispersive x-ray analyzers, x-ray fluorescence analyzers, carbon analyzers, carbon/sulfur analyzers, oxygen/nitrogen/hydrogen analyzers, particle size distribution analyzers, optical crystals, scintillation crystals and x-ray detectors; Distance measuring and recording apparatus, namely, distance measuring apparatus and laser distance measurers; Transparent armor used for transparent armored windows for vehicles; Head up displays (HUDs) used for vehicles and goggles, namely, transparent electronic displays for providing users with navigational and operational information Product research and development; Scientific research and development; Research and development in the field of materials including synthetic sapphire and scintillation crystals
20.
Scintillation compound including a rare earth element and a process of forming the same
1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
21.
Radiation detection apparatus having an analyzer within a housing
A radiation detection apparatus can include a scintillator to emit scintillating light in response to absorbing radiation; a photosensor to generate an electronic pulse in response to receiving the scintillating light; an analyzer to determine a characteristic of the radiation; and a housing that contains the scintillator, the photosensor, and the analyzer, wherein the radiation detection apparatus to is configured to allow functionality be changed without removing the analyzer from the housing. The radiation detection apparatus can be more compact and more rugged as compared to radiation detection apparatuses that include a photomultiplier tube.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 7/00 - Détails des instruments de mesure des radiations
22.
CsI(T1) scintillator crystal including antiomy and other multi valance cations to reduce afterglow, and a radiation detection apparatus including the scintillation crystal
A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/62 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du gallium, de l'indium ou du thalium
23.
Photosensors arranged on a surface of a scintillator
A radiation detector can include a scintillator having opposing end surfaces and a plurality of discrete photosensors disposed on an end surface of the scintillator. In an embodiment, the photosensors are disposed at the corners or along the peripheral edge of the end surface, as opposed to being disposed at the center of the end surface. In an embodiment, the plurality of discrete photosensors may cover at most 80% of a surface area of the end surface of the scintillator and may not cover a center of the end surface of the scintillator. In a further embodiment, an aspect ratio of the monolithic scintillator can be selected to improve energy resolution.
A radiation detection apparatus may include a scintillator to emit scintillating light in response to absorbing radiation, a photosensor to generate an electronic pulse in response to receiving the scintillating light, and a reflector surrounding the photosensor. The photosensor may be coupled to a wiring board and the reflector may be coupled to the wiring board. The radiation detection apparatus can be more compact and more rugged as compared to radiation detection apparatuses that include a photomultiplier tube.
z, wherein RE is a rare earth element, HT is an element or an interstitial site that provides a hole trap, DET is a dopant that provides a relatively deep electron trap, SET is a dopant that provides a relatively shallow electron trap, X is one or more halides, each of A, B, and C has a value greater at least 0.00001 and at most 0.09, and Z has a value in a range of 2 to 4. In an embodiment, a ratio of B:C is selected so that luminescent material has good linearity performance. In another embodiment, the ratio of B:C can be in a range of 10:1 to 100:1.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
z, wherein RE is a rare earth element, HT is an element or an interstitial site that provides a hole trap, DET is a dopant that provides a relatively deep electron trap, SET is a dopant that provides a relatively shallow electron trap, X is one or more halides, each of A, B, and C has a value greater at least 0.00001 and at most 0.09, and Z has a value in a range of 2 to 4. In an embodiment, a ratio of B:C is selected so that luminescent material has good linearity performance. In another embodiment, the ratio of B:C can be in a range of 10:1 to 100:1.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
CsI(TI) scintillator crystal including antiomy and other multi valence cations to reduce afterglow, and a radiation detection apparatus including the scintillation crystal
A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/62 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du gallium, de l'indium ou du thalium
28.
CsI(Tl) scintillator crystal including multi valence cations to reduce afterglow, and a radiation detection apparatus including the scintillation crystal
−7 mol % to 0.5 mol %. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including a cation.
A wavelength shifting fiber and method of making the same is disclosed. A wavelength shifting fiber can include a plastic core and a coating surrounding the plastic core. The numerical aperture for the wavelength shifting fiber can be at least about 0.53. A method of making a wavelength shifting fiber can include heating and drawing a plastic core precursor to form a plastic core, coating the plastic core with a liquid coating, and curing the liquid coating around the plastic core to form a wavelength shifting fiber.
A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
31.
Radiation detection apparatus having an analyzer within a housing
A radiation detection apparatus can include a scintillator to emit scintillating light in response to absorbing radiation; a photosensor to generate an electronic pulse in response to receiving the scintillating light; an analyzer to determine a characteristic of the radiation; and a housing that contains the scintillator, the photosensor, and the analyzer, wherein the radiation detection apparatus to is configured to allow functionality be changed without removing the analyzer from the housing. The radiation detection apparatus can be more compact and more rugged as compared to radiation detection apparatuses that include a photomultiplier tube.
Apparatuses and methods as described herein can be used to help stabilize the gain of a semiconductor-based photomultiplier. In an embodiment, an apparatus can include a semiconductor-based photomultiplier. The apparatus can be configured to inject a first input pulse into the semiconductor-based photomultiplier; determine a revised bias voltage for the semiconductor-based photomultiplier based at least in part on a first output pulse corresponding to the first input pulse and a second output pulse from the semiconductor-based photomultiplier that is obtained at another time as compared to the first output pulse; and adjust a bias voltage for the semiconductor-based photomultiplier to the revised bias voltage. A calibration light source, a temperature sensor, and temperature information are not required to be used for the method.
H01L 31/02 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails
33.
Scintillation crystal including a co-doped rare earth silicate, a radiation detection apparatus including the scintillation crystal, and a process of forming the same
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at % in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
C30B 15/00 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
A radiation detection apparatus may include a scintillator to emit scintillating light in response to absorbing radiation, a photosensor to generate an electronic pulse in response to receiving the scintillating light, and a reflector surrounding the photosensor. The photosensor may be coupled to a wiring board and the reflector may be coupled to the wiring board. The radiation detection apparatus can be more compact and more rugged as compared to radiation detection apparatuses that include a photomultiplier tube.
3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
C04B 35/515 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes
C04B 35/553 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de fluorures
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
37.
Radiation detection apparatus having an analyzer within a housing
A radiation detection apparatus can include a scintillator to emit scintillating light in response to absorbing radiation; a photosensor to generate an electronic pulse in response to receiving the scintillating light; an analyzer to determine a characteristic of the radiation; and a housing that contains the scintillator, the photosensor, and the analyzer, wherein the radiation detection apparatus to is configured to allow functionality be changed without removing the analyzer from the housing. The radiation detection apparatus can be more compact and more rugged as compared to radiation detection apparatuses that include a photomultiplier tube.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01T 7/00 - Détails des instruments de mesure des radiations
38.
CsI(TI) scintillator crystal including antiomy and other multi valence cations to reduce afterglow, and a radiation detection apparatus including the scintillation crystal
A scintillation crystal can include a cesium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include CsX:Tl, Me, where X represents a halogen, and Me represents a Group 5A element. In a particular embodiment, the scintillation crystal may have a cesium iodide host material, a first dopant including a thallium cation, and a second dopant including an antimony cation.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/62 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du gallium, de l'indium ou du thalium
39.
Scintillation crystal including a co-doped rare earth silicate, a radiation detection apparatus including the scintillation crystal, and a process of forming the same
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
C30B 15/00 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
40.
Substrate including scintillator materials, system including substrate, and method of use
A substrate can include at least two scintillator materials that are mixed at a predetermined ratio. In an embodiment, the scintillator materials can have a decay time difference of at least 50% when exposed to a same radiation source. In another embodiment, the scintillator materials can have a maximum emission wavelength difference of at least 25 nm when exposed to a same radiation source. At least one of the scintillator materials has a decay time of at most 10 μs. A system can include the substrate and a logic element configured to determine an identity represented by the substrate. A method can include generating an electronic pulse in response to the substrate being exposed to a radiation source; and analyzing the electronic pulse to determine an identity represented by the substrate.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G07D 7/06 - Vérification spécialement adaptée à la détermination de l’identité ou de l’authenticité de papiers de valeur ou pour discriminer ceux qui sont inacceptables, p. ex. qui ne correspondent pas à une monnaie à l'aide d'un rayonnement ondulatoire ou corpusculaire
G07D 7/202 - Vérification de motifs des papiers en utilisant la mise en correspondance de motifs
G07D 7/12 - Lumière visible, rayonnement infrarouge ou ultraviolet
G07D 7/206 - Mise en correspondance de motifs types
Apparatuses and methods as described herein can be used to help stabilize the gain of a semiconductor-based photomultiplier. In an embodiment, an apparatus can include a semiconductor-based photomultiplier. The apparatus can be configured to inject a first input pulse into the semiconductor-based photomultiplier; determine a revised bias voltage for the semiconductor-based photomultiplier based at least in part on a first output pulse corresponding to the first input pulse and a second output pulse from the semiconductor-based photomultiplier that is obtained at another time as compared to the first output pulse; and adjust a bias voltage for the semiconductor-based photomultiplier to the revised bias voltage. A calibration light source, a temperature sensor, and temperature information are not required to be used for the method.
H01L 31/02 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails
42.
Fabrication of a scintillator material of elpasolite type
y representing the atomic fraction of substitution of C by M and being in the range extending from 0 to 0.05, comprising its crystallization by cooling from a melt bath comprising r moles of A and s moles of B, the melt bath in contact with the material containing A and B in such a way that 2s/r is above 1. The process shows an improved fabrication yield. Moreover, the crystals obtained can have compositions closer to stoichiometry and have improved scintillation properties.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
43.
Transparent composite having a laminated structure
Novel transparent composites have been developed that have relatively lower areal densities of conventional transparent composites, where the composites are tested for the same threat levels as specified in the NIT or STANAG standards. Particular transparent composites can withstand projectiles having relatively high kinetic energy, for example, using STANAG 4 testing conditions. Further, the novel transparent composites can withstand multiple hits using Multiple Hit Testing at a STANAG 2 threat level.
F41H 5/04 - Structure des plaques composées de plus d'une couche
B32B 17/06 - Produits stratifiés composés essentiellement d'une feuille de verre ou de fibres de verre, de scorie ou d'une substance similaire comprenant du verre comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 18/00 - Produits stratifiés composés essentiellement de céramiques, p. ex. de produits réfractaires
44.
Scintillation crystal including a co-doped sodium halide
A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
45.
Scintillation crystal, a radiation detection system including the scintillation crystal, and a method of using the radiation detection system
3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
C04B 35/515 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes
C04B 35/553 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de fluorures
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
A radiation detector can include a logic element configured to determine an adjusted value for light emission of a luminescent material. A method of using the radiation detector can include determining an adjusted value of a luminescent material. The adjustment can be based on an inverse correlation between decay times corresponding to signal pulses and values of light emissions corresponding to the signal pulses. In an embodiment, the logic element may be further configured to obtain a measured value of a decay time and a measured value for the light emission, and determining an adjusted value for the light emission can be based on the measured value of the decay time and measured value for the light emission.
X is chosen from among F, Cl, Br, I,
y representing the atomic fraction of substitution of C by M and being in the range extending from 0 to 0.05, comprising its crystallization by cooling from a melt bath comprising r moles of A and s moles of B, the melt bath in contact with the material containing A and B in such a way that 2s/r is above 1. The process shows an improved fabrication yield. Moreover, the crystals obtained can have compositions closer to stoichiometry and have improved scintillation properties.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
48.
Scintillation crystal including a co-doped sodium halide
A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
49.
Scintillation compound including a rare earth element and a process of forming the same
1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
50.
Scintillation compound including a rare earth element in a tetravalent state
1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
51.
Scintillation crystal, a radiation detection system including the scintillation crystal, and a method of using the radiation detection system
3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
C04B 35/553 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de fluorures
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
C04B 35/515 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
52.
Photosensors arranged on a surface of a scintillator
A radiation detector can include a scintillator having opposing end surfaces and a plurality of discrete photosensors disposed on an end surface of the scintillator. In an embodiment, the photosensors are disposed at the corners or along the peripheral edge of the end surface, as opposed to being disposed at the center of the end surface. In an embodiment, the plurality of discrete photosensors may cover at most 80% of a surface area of the end surface of the scintillator and may not cover a center of the end surface of the scintillator. In a further embodiment, an aspect ratio of the monolithic scintillator can be selected to improve energy resolution.
C09K 11/62 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant du gallium, de l'indium ou du thalium
G01T 3/06 - Mesure de flux de neutrons avec des détecteurs à scintillation
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
54.
Fabrication of a scintillator material of elpasolite type
(6-y) wherein: A is chosen from among Cs, Rb, K, Na; B is chosen from among Li, K, Na; C is chosen from among the rare earths, Al, Ga; M is chosen from among the alkaline earths, X is chosen from among F, Cl, Br, I; y representing the atomic fraction of substitution of C by M and being in the range extending from 0 to 0.05, comprising its crystallization by cooling from a melt bath comprising r moles of A and s moles of B, the melt bath in contact with the material containing A and B in such a way that 2s/r is above 1. The process shows an improved fabrication yield. Moreover, the crystals obtained can have compositions closer to stoichiometry and have improved scintillation properties.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
55.
Scintillator array and methods of forming a scintillator array and a radiation detector
Embodiments of the present disclosure relate to a scintillator array including a reflector disposed between the scintillator pixels, and methods of forming the scintillator array and radiation detector. In an embodiment, the reflector can be used in the scintillator array without an adhesive. In another embodiment, the reflector can be disposed in a zigzag pattern between the scintillator pixels.
A ceramic product includes a transparent ceramic panel having a non-planar geometry including a bend having a slippage plane, an increased haze, a non-uniform thickness, or a combination thereof. A method includes providing a transparent ceramic panel, heating the panel, bending the panel to conform to a non-planar geometry.
C04B 35/10 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base d'oxydes à base d'oxyde d'aluminium
B28B 11/00 - Appareillages ou procédés pour le traitement ou le travail des objets façonnés
C04B 35/622 - Procédés de mise en formeTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
C30B 15/34 - Croissance des cristaux par alimentation de couche avec contrôle de surface en utilisant des matrices de formage ou des fentes de guidage
57.
Scintillation crystal including a co-doped rare earth silicate, a radiation detection apparatus including the scintillation crystal, and a process of forming the same
A scintillation crystal can include a rare earth silicate, an activator, and a Group 2 co-dopant. In an embodiment, the Group 2 co-dopant concentration may not exceed 200 ppm atomic in the crystal or 0.25 at % in the melt before the crystal is formed. The ratio of the Group 2 concentration/activator atomic concentration can be in a range of 0.4 to 2.5. In another embodiment, the scintillation crystal may have a decay time no greater than 40 ns, and in another embodiment, have the same or higher light output than another crystal having the same composition except without the Group 2 co-dopant. In a further embodiment, a boule can be grown to a diameter of at least 75 mm and have no spiral or very low spiral and no cracks. The scintillation crystal can be used in a radiation detection apparatus and be coupled to a photosensor.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
A scintillation crystal can include a sodium halide that is co-doped with thallium and another element. In an embodiment, the scintillation crystal can include NaX:Tl, Me, wherein X represents a halogen, and Me represents a Group 1 element, a Group 2 element, a rare earth element, or any combination thereof. In a particular embodiment, the scintillation crystal has a property including, for radiation in a range of 300 nm to 700 nm, an emission maximum at a wavelength no greater than 430 nm; or an energy resolution less than 6.4% when measured at 662 keV, 22° C., and an integration time of 1 microsecond. In another embodiment, the co-dopant can be Sr or Ca. The scintillation crystal can have lower energy resolution, better proportionality, a shorter pulse decay time, or any combination thereof as compared to the sodium halide that is doped with only thallium.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
59.
Method of forming a scintillation crystal including a rare earth halide
3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value in a range of 0 to 1, and X represents a halogen. In an embodiment, RE is Ce, and the scintillation crystal is doped with Sr, Ba, or a mixture thereof at a concentration of at least approximately 0.0002 wt. %. In another embodiment, the scintillation crystal can have unexpectedly improved linearity and unexpectedly improved energy resolution properties. In a further embodiment, a radiation detection system can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection system can be useful in a variety of radiation imaging applications.
G01T 1/202 - Mesure de l'intensité de radiation avec des détecteurs à scintillation le détecteur étant du cristal
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G21K 4/00 - Écrans de conversion pour transformer une distribution spatiale de particules ou de rayonnements ionisants en images visibles, p. ex. écrans fluorescents
C04B 35/515 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes
C04B 35/553 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de fluorures
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
(6-y) can include conducting crystallization by cooling from a melt bath including r moles of A and s moles of B. A is chosen from Cs, Rb, K, and Na. B is chosen from Li, K, and Na. C is chosen from athe rare earth elements, Al, and Ga. M is chosen from the alkaline earth elements. X is chosen from F, Cl, Br, and I, and y represents the atomic fraction of substitution of C by M and is in the range extending from 0 to 0.05. The melt bath can be in contact with the material containing A and B in such a way that 2s/r is above 1. The process shows an improved fabrication yield. The crystals formed therefrom can have improved scintillation properties.
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
C30B 11/02 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger sans solvants
C30B 11/04 - Croissance des monocristaux par simple solidification ou dans un gradient de température, p. ex. méthode de Bridgman-Stockbarger en introduisant dans le bain fondu le matériau à cristalliser ou les réactifs le formant in situ
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p. ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p. ex. pour une jonction n–p
61.
Scintillation compound including a rare earth element and a process of forming the same
1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
C09K 11/79 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares contenant du silicium
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
62.
Scintillator array and methods of forming a scintillator array and a radiation detector
Embodiments of the present disclosure relate to a scintillator array including a reflector disposed between the scintillator pixels, and methods of forming the scintillator array and radiation detector. In an embodiment, the reflector can be used in the scintillator array without an adhesive. In another embodiment, the reflector can be disposed in a zigzag pattern between the scintillator pixels.
A scintillator stack includes a light-transportation layer and a scintillator layer. The scintillator stack can be included in a scintillator device. The scintillator stack can be made using a co-extrusion method.
G01V 5/00 - Prospection ou détection au moyen de rayonnement ionisant, p. ex. de la radioactivité naturelle ou provoquée
B29C 47/56 - utilisant plus d'une extrudeuse pour alimenter une matrice unique
B29C 47/00 - Moulage par extrusion, c. à d. en exprimant la matière à mouler dans une matrice ou une filière qui lui donne la forme désirée; Appareils à cet effet (moulage par extrusion-soufflage B29C 49/04)
A radiation detector can include a solid organic/plastic scintillator that enables neutron and gamma interactions to be readily distinguished via pulse-shape discrimination. Embodiments make use of a scintillator including a polymer matrix with a dispersed scintillation material exhibiting thermally activated delayed fluorescence. The scintillation material can include an organic luminescent material that is free of heavy metals and in which excited triplet states are efficiently promoted into excited singlet states by thermal energy, the excited singlet states then generating a delayed fluorescence when decaying to ground state. As a result, the scintillation material, when exposed to ionizing radiation, can produce a combination of prompt and delayed fluorescence sufficient to enable neutron and gamma interactions to be readily distinguished via pulse-shape discrimination techniques.
The present disclosure is directed to an apparatus and method for growing a sapphire sheet via edge-defined film-fed growth (EFG) including an angled heat shield with respect to the a side surface of a die tip. The present disclosure is further directed to an sapphire sheets and batches of such sheets having features such as a particular maximum low spot thickness.
A radiation detection system can include a photosensor to receive light from a scintillator via an input and to send an electrical pulse at an output in response to receiving the light. The radiation detection system can also include a pulse analyzer that can determine whether the electrical pulse corresponds to a neutron-induced pulse, based on a ratio of an integral of a particular portion of the electrical pulse to an integral of a combination of a decay portion and a rise portion of the electrical pulse. Each of the integrals can be integrated over time. In a particular embodiment, the pulse analyzer can be configured to compare the ratio with a predetermined value and to identify the electrical pulse as a neutron-induced pulse when the ratio is at least the predetermined value.
The present disclosure relates to a scintillation assembly. The assembly may include a scintillator having a surface, a pressure sensitive adhesive layer contacting at least a portion of said surface, and a reflector proximal to the scintillator surface and adhered to the scintillator surface by the pressure sensitive adhesive layer, wherein the adhesive layer exhibits a TTV of 0.01 mm or less.
A61B 6/00 - Appareils ou dispositifs pour le diagnostic par radiationsAppareils ou dispositifs pour le diagnostic par radiations combinés avec un équipement de thérapie par radiations
A detector assembly includes a cap assembly configured to close an end of a detector housing that is configured to contain a sensor therein, the cap assembly has a radially expandable member configured to expand radially within the detector housing and lock the position of the cap assembly relative to the detector housing.
A scintillation device is disclosed and can include a scintillator and a pliable encapsulating barrier completely surrounding the scintillator. The scintillation device can be used within a detector device. The detector device can include a housing and a photosensor within the housing. The scintillation device can be within the housing adjacent to the photosensor.
A luminescent material can be formed by a process using a vacancy-filling agent that includes vacancy-filling atoms. In an embodiment, the process can include forming a mixture of a constituent corresponding to the luminescent material and the vacancy-filling agent. The process can further include forming the luminescent material from the mixture, wherein the luminescent material includes at least some of the vacancy-filling atoms from the vacancy-filling agent. In another embodiment, the process can include melting a constituent corresponding to the luminescent material to form a melt and adding a vacancy-filling agent into the melt. The process can also include forming the luminescent material from the melt, wherein the luminescent material includes at least some of the vacancy-filling atoms from the vacancy-filling agent. The luminescent material may have one or more improved performance properties as compared to a corresponding base material of the luminescent material.
C09K 11/08 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes
C09K 11/77 - Substances luminescentes, p. ex. électroluminescentes, chimiluminescentes contenant des substances inorganiques luminescentes contenant des métaux des terres rares
71.
Scintillation detection device with pressure sensitive adhesive interfaces
A scintillator device includes an optically clear substrate, a scintillator plastic layer overlying the optically clear substrate, and an optically clear polymer layer between the optically clear substrate and the scintillator plastic layer. The optically clear polymer layer can mechanically and optically couple the scintillator plastic layer to the optically clear substrate. Further, the clear polymer layer can be configured to substantially reduce the formation of cracks in the scintillator plastic layer due to thermal expansion, thermal contraction, or a combination thereof, of the scintillator device.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
G01V 5/04 - Prospection ou détection au moyen de rayonnement ionisant, p. ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage
A method and system for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage.
A radiation detection system can include a photosensor to receive light from a scintillator via an input and to send an electrical pulse at an output in response to receiving the light. The radiation detection system can also include a pulse analyzer that can determine whether the electrical pulse corresponds to a neutron-induced pulse, based on a ratio of an integral of a particular portion of the electrical pulse to an integral of a combination of a decay portion and a rise portion of the electrical pulse. Each of the integrals can be integrated over time. In a particular embodiment, the pulse analyzer can be configured to compare the ratio with a predetermined value and to identify the electrical pulse as a neutron-induced pulse when the ratio is at least the predetermined value.
A radiation sensing unit for a radiation detection system can include a scintillator and a photosensor optically coupled to the scintillator. In an embodiment, the radiation detection system may provide an output signal to a particular radiation flux that is substantially temperature independent over a normal operating temperature range for the scintillator. The radiation sensing unit may further include a controllable radiation source configured to emit radiation and another photosensor coupled to controllable radiation source. A radiation detection system can include a radiation sensing unit and a control module that is coupled to the controllable radiation source and the photosensors. The control module may control the controllable radiation source and control a power supply coupled to the second photosensor in response to signals from the photosensors. In another aspect, a dynode tap from a photomultiplier tube can be used during calibration. Methods of using the foregoing are disclosed.
A scintillator device includes a polymeric polymer matrix, a neutron sensing particulate material dispersed within the polymer matrix, and a scintillating particulate material dispersed within the polymer matrix. In an embodiment, the neutron sensing particulate material has an average characteristic length of not greater than about 3 microns. The scintillating particulate material has an average characteristic length of at least about 16 microns. In another embodiment, a ratio of the average characteristic length of the scintillating particulate material to the average characteristic length of the neutron sensing particulate material is at least about 55. In a further embodiment, an energy deposited in the scintillating particulate material by a positively charged particle is at least about 1.25 MeV.
A method for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage.
A detector assembly includes a cap assembly configured to close an end of a detector housing that is configured to contain a sensor therein, the cap assembly has a radially expandable member configured to expand radially within the detector housing and lock the position of the cap assembly relative to the detector housing.
A radiation detection system can include a first material to produce a first light in response to receiving a target radiation. The radiation detection system can also include a second material to propagate a second light to a first end of the second material and to a second end of the second material, in response to receiving the first light. The radiation detection system can also include a reflector coupled to the first end of the second material. In an embodiment, the reflector can reflect the second light, so that the reflected second light can be received by a photosensor coupled to a second end of the second material.
G01V 5/04 - Prospection ou détection au moyen de rayonnement ionisant, p. ex. de la radioactivité naturelle ou provoquée spécialement adaptée au carottage
80.
Rare-earth halide scintillator coated with a light absorber or light reflector
A scintillator material comprises a rare-earth halide coated with a layer comprising a resin and a pigment. In an embodiment, the scintillator material is used in an ionizing-radiation detector, and in particular embodiment, a gamma camera. The layer can adhere well and act as an absorbent or reflector depending on the color of the pigment.
G01T 1/20 - Mesure de l'intensité de radiation avec des détecteurs à scintillation
81.
Scintillator and detector assembly including a single photon avalanche diode and a device of a quenching circuit having a same wide band-gap semiconductor material
A detector comprising a photodetector including a single photon avalanche diode (SPAD), wherein the SPAD comprises a wide band-gap semiconductor material, and a quenching circuit electrically coupled to the photodetector comprising a first device, wherein the first device comprises a wide band-gap semiconductor material having a band-gap of at least about 1.7 eV at about 26° C.
H01L 31/00 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails
Various single crystals are disclosed including sapphire. The single crystals have desirable geometric properties, including a width not less than about 15 cm and the thickness is not less than about 0.5 cm. The single crystal may also have other features, such as a maximum thickness variation, and as-formed crystals may have a generally symmetrical neck portion, particularly related to the transition from the neck to the main body of the crystal. Methods and for forming such crystals and an apparatus for carrying out the methods are disclosed as well.
A method and system for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage.
A scintillation article including a scintillation detector coupled to a photomultiplier tube (PMT) housing, and a PMT assembly disposed within the PMT housing. The scintillation article further includes a cap assembly selectively coupled to the PMT assembly, wherein upon moving the cap assembly from an assembled position in which the cap assembly is engaged with the housing to an extracted position in which the cap assembly is disengaged and removed from the housing, the cap assembly mechanically engages the PMT assembly and extracts the PMT assembly from the PMT housing.
A charge calibrator for simulating the output of a scintillation detector. The calibrator includes a processor for executing a Gaussian random number generator algorithm to produce an output comprising a Gaussian random number distribution having at least one characteristic established in response to a user input.
G06F 7/60 - Méthodes ou dispositions pour effectuer des calculs en utilisant une représentation numérique non codée, c.-à-d. une représentation de nombres sans baseDispositifs de calcul utilisant une combinaison de représentations de nombres codées et non codées
G06F 13/10 - Commande par programme pour dispositifs périphériques
A detector includes a scintillator crystal having a front face and a rear face, a backplate disposed proximal to the rear face of the scintillator crystal, and a biasing member disposed proximal to the backplate and applying a biasing force to the backplate. In turn, the backplate applies a biasing force to the scintillator crystal in a direction toward the front face. The biasing member comprises a single-turn, round-section wire wave spring.
A method of assembling a detector includes conditioning a rare-earth halide scintillator crystal in a sealed container, wherein the conditioning process includes heating the scintillator crystal, reducing the pressure within the sealed container for an evacuation period while heating, and flowing a purging gas through the sealed container for a flowing duration while heating. The method further includes assembling a detector comprising the scintillator crystal in an assembly environment comprising an inert gas.
A scintillation article including a scintillation detector coupled to a photomultiplier tube (PMT) housing, and a PMT assembly disposed within the PMT housing. The scintillation article further includes a cap assembly selectively coupled to the PMT assembly, wherein upon moving the cap assembly from an assembled position in which the cap assembly is engaged with the housing to an extracted position in which the cap assembly is disengaged and removed from the housing, the cap assembly mechanically engages the PMT assembly and extracts the PMT assembly from the PMT housing.