An optical security element to limit counterfeiting. The element includes a lens array with a first side and a second planar side opposite the first side. A plurality of lenses are formed on the first side of the lens array, and an ink layer is provided proximate the second planar side. The ink layer provides an interlaced image, which includes a matrix of frame or image elements under each of a plurality of lens sets or “virtual lenses,” each of which includes at least four lenses arranged in a grouping with an equal or unequal number of lenses on a side (e.g., a 2 by 2 array or a 2 by 3 array). The interlaced element are arranged in non-sequential order in two interlacing axes (e.g., via non-sequential interlacing in both directions) to be distributed throughout an area under the at least four lenses rather than under a single lens.
An optical security element to limit counterfeiting. The element includes a lens array with a first side and a second planar side opposite the first side. A plurality of lenses are formed on the first side of the lens array, and an ink layer is provided proximate the second planar side. The ink layer provides an interlaced image, which includes a matrix of frame or image elements under each of a plurality of lens sets or “virtual lenses,” each of which includes at least four lenses arranged in a grouping with an equal or unequal number of lenses on a side (e.g., a 2 by 2 array or a 2 by 3 array). The interlaced element are arranged in non-sequential order in two interlacing axes (e.g., via non-sequential interlacing in both directions) to be distributed throughout an area under the at least four lenses rather than under a single lens.
An optical diffuser includes a body formed of a material that is at least translucent to light, a back surface for receiving output light from a light source and for scattering the output light received on the back surface to provide diffuse light, and a front surface, on the body opposite the back surface on the body, for transmitting the output light scattered by the back surface as diffuse light with a predefined light distribution.
A solar or photovoltaic (PV) system that includes a PV device with an upper surface configured for receiving sunlight and converting the received sunlight into electrical energy. An infrared (IR) reflecting film is placed over the upper surface to increase the efficiency of the PV device by retaining its operating temperature in more desired ranges. The IR reflecting film includes a substrate with a top surface and a bottom surface, and the bottom surface is mated with the upper surface of the PV device. The IR reflecting film also includes a plurality of structures, each with a recessed surface, formed on the top surface of the substrate. The IR reflecting film includes a reflective mask on the top surface of the substrate that includes reflective elements each disposed in the structures' recessed surfaces. In use, the IR reflecting film reflects sunlight having a wavelength greater than about 950 nanometers (nm).
H01L 31/052 - Moyens de refroidissement directement associés ou intégrés à la cellule PV, p.ex. éléments Peltier intégrés pour refroidissement actif ou puits thermiques directement associés aux cellules PV
H01L 31/054 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] Éléments optiques directement associés ou intégrés à la cellule PV, p.ex. moyens réflecteurs ou concentrateurs de lumière
5.
Micro-optic anticounterfeiting elements for currency and other items using virtual lens systems
An optical security element to limit counterfeiting. The element includes a lens array with a first side and a second planar side opposite the first side. A plurality of lenses are formed on the first side of the lens array, and an ink layer is provided proximate the second planar side. The ink layer provides an interlaced image, which includes a matrix of frame or image elements under each of a plurality of lens sets or “virtual lenses,” each of which includes at least four lenses arranged in a grouping with an equal or unequal number of lenses on a side (e.g., a 2 by 2 array or a 2 by 3 array). The interlaced element are arranged in non-sequential order in two interlacing axes (e.g., via non-sequential interlacing in both directions) to be distributed throughout an area under the at least four lenses rather than under a single lens.
B42D 25/00 - Cartes ou structures de type feuille portant des informations caractérisées par leurs éléments d’identification ou de sécuritéLeur fabrication
An optical security element to limit counterfeiting is disclosed. The element includes a lens array with a first side and a second planar side opposite the first side. A plurality of lenses are formed on the first side of the lens array, and an ink layer is provided proximate the second planar side. The ink layer provides an interlaced image, which includes a matrix of frame or image elements under each of a plurality of lens sets or "virtual lenses," each of which includes at least four lenses arranged in a grouping with an equal or unequal number of lenses on a side. The interlaced element are arranged in non-sequential order in two interlacing axes to be distributed throughout an area under the at least four lenses rather than under a single lens.
Optical or light diffusers (or, simply, "diffusers") designed and manufactured to include numerous facets arranged in cells or sets in which the planar faces or outward-facing surfaces have orientations and transmission angles (as may be defined by direction cosines of normal) to redirect received light to a. region or portion of a predefined light distribution. A method of designing or defining the facets of the diffuser is also provides as are methods of manufacturing the diffusers and apparatus or products that include the new diffusers (such as microdisplays and lighting components). The diffusers are optically designed to produce a user-specified distribution of light. The diffusers can be engineered through the configuration of the facets on its front or' outer surface (light transmission surface) to produce nearly any type of light distribution or shape, and the diffuser design facilitates their manufacture using extrusion processes as well as other fabrication techniques.
An antimicrobial protective film that can be applied to a surface such as a screen of a smartphone or computing device. The user is able to view items displayed on the screen and to interact with the screen via touch or the like. The protective film includes a base layer or film upon which a second layer is formed, and this second layer includes numerous structures, e.g., micro or nano structures. The structures have a geometry that is unfriendly for viruses and bacteria. The structures are embedded with antimicrobial and/or antiviral agents that migrate out of the structures and kill or at least detrimentally affect the viruses or bacteria received within the second layer. This effect is combined with the fact that the structures are made with geometries particularly devastating to microbes during elongation and contraction of structures with thermal-based expansion and contraction of underlying base layer.
B32B 27/28 - Produits stratifiés composés essentiellement de résine synthétique comprenant des copolymères de résines synthétiques non complètement couverts par les sous-groupes suivants
B32B 3/26 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche continue dont le périmètre de la section droite a une allure particulièreProduits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche comportant des cavités ou des vides internes
B32B 5/04 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par une couche qui est spécifiée comme extensible en raison de sa structure ou de sa disposition
B81B 3/00 - Dispositifs comportant des éléments flexibles ou déformables, p. ex. comportant des membranes ou des lamelles élastiques
9.
Diffuser combining a multi-faceted surface and a lens-covered surface to provide specific light distributions
Optical or light diffusers (or, simply, “diffusers”) designed and manufactured to include numerous facets randomly arranged in cells or sets on the diffuser outer (or front) surface in which the planar faces or outward-facing surfaces have orientations and transmission angles (as may be defined by direction cosines of normal) to redirect received light to a region or portion of a predefined light distribution. The diffusers are optically designed to produce a user-specified distribution of light. The diffusers can be engineered through the configuration of the facets on its (light transmission surface to produce nearly any type of light distribution or shape, and the diffuser design facilitates their manufacture using extrusion processes as well as other fabrication techniques.
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
Optical or light diffusers (or, simply, “diffusers”) designed and manufactured to include numerous facets randomly arranged in cells or sets on the diffuser outer (or front) surface in which the planar faces or outward-facing surfaces have orientations and transmission angles (as may be defined by direction cosines of normal) to redirect received light to a region or portion of a predefined light distribution. Methods of designing or defining the facets of the diffuser is also provided. The diffusers are optically designed to produce a user-specified distribution of light. The diffusers can be engineered through the configuration of the facets on its light transmission surface to produce nearly any type of light distribution or shape, and the diffuser design facilitates their manufacture using extrusion processes as well as other fabrication techniques.
Optical or light diffusers (or, simply, “diffusers”) designed and manufactured to include numerous facets arranged in cells or sets in which the planar faces or outward-facing surfaces have orientations and transmission angles (as may be defined by direction cosines of normal) to redirect received light to a region or portion of a predefined light distribution. A method of designing or defining the facets of the diffuser is also provides as are methods of manufacturing the diffusers and apparatus or products that include the new diffusers (such as microdisplays and lighting components). The diffusers are optically designed to produce a user-specified distribution of light. The diffusers can be engineered through the configuration of the facets on its front or outer surface (light transmission surface) to produce nearly any type of light distribution or shape, and the diffuser design facilitates their manufacture using extrusion processes as well as other fabrication techniques.
Optical or light diffusers (or, simply, "diffusers") designed and manufactured to include numerous facets arranged in cells or sets in which the planar faces or outward-facing surfaces have orientations and transmission angles (as may be defined by direction cosines of normal) to redirect received light to a region or portion of a predefined light distribution. Method of designing or defining the facets of the diffuser is also provides as are methods of manufacturing the diffusers and apparatus or products that include the new diffusers (such as microdisplays and lighting components). The diffusers are optically designed to produce a user-specified distribution of light. The diffusers can be engineered through the configuration of the facets on its front or outer surface (light transmission surface) to produce nearly any type of light distribution or shape, and the diffuser design facilitates their manufacture using extrusion processes as well as other fabrication techniques.
F21V 5/02 - Réfracteurs pour sources lumineuses de forme prismatique
F21S 41/20 - Dispositifs d’éclairage spécialement adaptés à l’extérieur des véhicules, p. ex. phares caractérisés par des réfracteurs, des glaces de fermeture transparentes, des guides ou des filtres de lumière
14.
Method of manufacturing items with lens-based security features using multiple lenses dedicated to individual colors
Products, such as branding labels, credit cards, and currency, that are fabricated so as to include an optical security element, which is designed to provide enhanced optical focusing onto each color used in the printed image (or in the ink layer). The optical security assembly may include a carrier film or substrate. An image element, e.g., a printed ink layer, is provided on a first surface of the carrier film/substrate, and the optical security assembly further includes an array or plurality of micro lenses on a second surface of the carrier film/substrate opposite the image element (when the substrate/carrier film is transparent). In order to make the registration and print requirements easier, pixels are isolated into sections of the printed ink layer, which can then be arranged to align with sets of lenses (i.e., each set/group of lenses may be dedicated to focusing upon a particular color of ink).
B42D 25/351 - Pièces translucides ou en partie translucides, p. ex. fenêtres
B42D 25/21 - Cartes ou structures de type feuille portant des informations caractérisées par leurs éléments d’identification ou de sécuritéLeur fabrication caractérisées par une utilisation ou une finalité particulières pour finalités multiples
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
Products, such as branding labels and currency, fabricated to include an optical security element. The optical security assembly may include a carrier film or substrate. An image element, e.g., a printed ink layer, is provided on a first surface of the carrier film/substrate, and the optical security assembly further includes an array or plurality of micro lenses on a second surface of the carrier film/substrate opposite the image element. In order to make the registration and print requirements easier, a mask is provided between the printed ink layer to define color pixels, and the printed ink layer is provided in the form of color blocks in a checkboard pattern with each block aligned with a portion of the mask and a subset of the holes or openings that define the viewable color pixels.
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface reflecting the ambient light to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
Products, such as branding labels and currency, fabricated to include an optical security element. The optical security assembly may include a carrier film or substrate. An image element, e.g., a printed ink layer, is provided on a first surface of the carrier film/substrate, and the optical security assembly further includes an array or plurality of micro lenses on a second surface of the carrier film/substrate opposite the image element. In order to make the registration and print requirements easier, a mask is provided between the printed ink layer to define color pixels, and the printed ink layer is provided in the form of color blocks in a checkboard pattern with each block aligned with a portion of the mask and a subset of the holes or openings that define the viewable color pixels.
G03F 7/00 - Production par voie photomécanique, p. ex. photolithographique, de surfaces texturées, p. ex. surfaces impriméesMatériaux à cet effet, p. ex. comportant des photoréservesAppareillages spécialement adaptés à cet effet
B05D 1/00 - Procédés pour appliquer des liquides ou d'autres matériaux fluides aux surfaces
B05D 3/10 - Traitement préalable des surfaces sur lesquelles des liquides ou d'autres matériaux fluides doivent être appliquésTraitement ultérieur des revêtements appliqués, p. ex. traitement intermédiaire d'un revêtement déjà appliqué, pour préparer les applications ultérieures de liquides ou d'autres matériaux fluides par d'autres moyens chimiques
B41J 2/21 - Machines à écrire ou mécanismes d'impression sélective caractérisés par le procédé d'impression ou de marquage pour lequel ils sont conçus caractérisés par la mise en contact sélective d'un liquide ou de particules avec un matériau d'impression à jet d'encre pour l'impression à plusieurs couleurs
H04N 1/46 - Systèmes de transmission d'images en couleurs
Products, such as branding labels, credit cards, and currency, that are fabricated so as to include an optical security element, which is designed to provide enhanced optical focusing onto each color used in the printed image (or in the ink layer). The optical security assembly may include a carrier film or substrate. An image element, e.g., a printed ink layer, is provided on a first surface of the carrier film/substrate, and the optical security assembly further includes an array or plurality of micro lenses on a second surface of the carrier film/substrate opposite the image element (when the substrate/carrier film is transparent). In order to make the registration and print requirements easier, pixels are isolated into sections of the printed ink layer, which can then be arranged to align with sets of lenses (i.e., each set/group of lenses may be dedicated to focusing upon a particular color of ink).
B42D 25/21 - Cartes ou structures de type feuille portant des informations caractérisées par leurs éléments d’identification ou de sécuritéLeur fabrication caractérisées par une utilisation ou une finalité particulières pour finalités multiples
Products, such as branding labels, credit cards, and currency, that are fabricated so as to include an optical security element, which is designed to provide enhanced optical focusing onto each color used in the printed image (or in the ink layer). The optical security assembly may include a carrier film or substrate. An image element, e.g., a printed ink layer, is provided on a first surface of the carrier film/substrate, and the optical security assembly further includes an array or plurality of micro lenses on a second surface of the carrier film/substrate opposite the image element (when the substrate/carrier film is transparent). In order to make the registration and print requirements easier, pixels are isolated into sections of the printed ink layer, which can then be arranged to align with sets of lenses (i.e., each set/group of lenses may be dedicated to focusing upon a particular color of ink).
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
G02B 17/00 - Systèmes avec surfaces réfléchissantes, avec ou sans éléments de réfraction
G02B 27/00 - Systèmes ou appareils optiques non prévus dans aucun des groupes ,
G02B 27/22 - Autres systèmes optiques; Autres appareils optiques pour produire des effets stéréoscopiques ou autres effets de relief
G03B 25/00 - Visionneuses, autres que celles fonctionnant par projection, donnant des effets cinématographiques par persistance de la vision, p. ex. zootrope
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
A visual display assembly useful as an authentication or anti-counterfeiting element. The assembly includes a substrate and, on a surface of the substrate, an array of micro mirrors receiving ambient light. Each mirror includes a reflective surface to reflect the ambient light so as to display an image that appears to float in a plane, which is spaced a distance apart from the surface of the substrate. The image includes a plurality of pixels, and the array of micro mirrors includes for each of the pixels a set of the micro mirrors each having a reflective surface oriented to reflect the ambient light toward a point on the plane corresponding to one of the pixels. Each of the sets of the micro mirrors includes a plurality of the micro mirrors, and the reflected ambient light each set of micro mirrors intersects to illuminate or write a pixel of an image.
An optical security element for currency or other products. The security element includes a film or substrate and an image element provided on an exterior surface of this substrate. The substrate is formed of a transparent material. A concave focusing element is formed upon the opposite side or surface of the substrate, with a focusing substrate with a first side abutting the substrate and a second side facing away from the substrate. Concave lenses are provided in this second side of the concave focusing element. The optical security element includes an outer layer formed of a transparent material that is applied so as to cover the concave focusing element and to "fill in" the concave lenses. The materials, e.g., a polyester or polypropylene, are chosen for the optical security element such that the concave focusing element has an index of refraction that is lower than that of the outer layer.
An optical product that includes a transparent lens sheet, which has a first side with a plurality of side-by-side sets of linearly arranged lenses. Each of the sets of lenses is at a slant angle in the range of 10 to 46 degrees from a vertical or a horizontal axis of the lens sheet. The product includes an image layer that includes pixels from a number of digital images. The pixels are arranged in a pattern of pixel locations providing non-orthogonal interlacing of the digital images relative to each of the sets of the linearly arranged lenses. The pattern of pixel locations aligns a number of the pixels from each of the digital images to be parallel to a line extending through a center of the linearly arranged lenses in each set. Each of the linearly arranged lenses may have a round base, a hexagonal base, or a square base.
An optical product that includes a transparent lens sheet, which has a first side with a plurality of side-by-side sets of linearly arranged lenses. Each of the sets of lenses is at a slant angle in the range of 10 to 46 degrees from a vertical or a horizontal axis of the lens sheet. The product includes an image layer that includes pixels from a number of digital images. The pixels are arranged in a pattern of pixel locations providing non-orthogonal interlacing of the digital images relative to each of the sets of the linearly arranged lenses. The pattern of pixel locations aligns a number of the pixels from each of the digital images to be parallel to a line extending through a center of the linearly arranged lenses in each set. Each of the linearly arranged lenses may have a round base, a hexagonal base, or a square base.
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
B42D 25/21 - Cartes ou structures de type feuille portant des informations caractérisées par leurs éléments d’identification ou de sécuritéLeur fabrication caractérisées par une utilisation ou une finalité particulières pour finalités multiples
An assembly adapted for use as a polymer bank note with optical-based security features. The apparatus includes a planar substrate formed of a thin layer or sheet of transparent polymer such as a polypropylene. The apparatus includes an image stack (e.g., multiple layers of ink and other materials) applied to a first side of the planar substrate. An optical security assembly is provided that includes an array of lenses on the first side of the planar substrate that extends on the first side adjacent to the image stack. The optical security assembly includes an image element, such as interlaced images, on a second side of the planar substrate opposite the lens array. The lenses are each configured to have a focal length corresponding to the thickness of the planar substrate and to focus at the second side upon a portion of the image element to provide "in-substrate focusing"
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
A computer-implemented method of preparing a digital image file or files for lenticular printing involves selectively blanking pixels of multiples images that are or are to comprise a composite interlaced image file for lenticular printing, such that the blanked pixels are distributed amongst the multiple images in successive complementary pixel sets distributed across the composite interlaced image file. As a result, the data integrity of the file is maintained, and the multiple images are represented in the composite interlaced image file without loss of information.
A waveguide for use in solar power systems to capture sunlight without solar tracking. The waveguide includes a first transparent layer with a first surface receiving sunlight, and the waveguide includes a second surface, opposite the first surface of the first layer, including recessed surfaces (or "microstructures") each defined by sidewalls extending from the second surface toward the first surface of the first layer. The waveguide includes a second layer of transparent material with a first surface proximate to the second surface of the first layer for receiving a portion of the sunlight transmitted through the first layer. The second layer has a second surface, opposite the first surface, including recessed surfaces of the same or differing shape, size, location, and orientation as those of the first layer. The recessed surfaces of the first and second layers capture sunlight of differing ranges of incidence angles with total internal reflection (TIR).
H01L 31/054 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] Éléments optiques directement associés ou intégrés à la cellule PV, p.ex. moyens réflecteurs ou concentrateurs de lumière
H01L 31/042 - Modules PV ou matrices de cellules PV individuelles
32.
Multi-layered waveguide for capturing solar energy
A waveguide for use in solar power systems to capture sunlight without solar tracking. The waveguide includes a first transparent layer with a first surface receiving sunlight, and the waveguide includes a second surface, opposite the first surface of the first layer, including recessed surfaces (or “microstructures”) each defined by sidewalls extending from the second surface toward the first surface of the first layer. The waveguide includes a second layer of transparent material with a first surface proximate to the second surface of the first layer for receiving a portion of the sunlight transmitted through the first layer. The second layer has a second surface, opposite the first surface, including recessed surfaces of the same or differing shape, size, location, and orientation as those of the first layer. The recessed surfaces of the first and second layers capture sunlight of differing ranges of incidence angles with total internal reflection (TIR).
F21V 8/00 - Utilisation de guides de lumière, p. ex. dispositifs à fibres optiques, dans les dispositifs ou systèmes d'éclairage
H01L 31/054 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] Éléments optiques directement associés ou intégrés à la cellule PV, p.ex. moyens réflecteurs ou concentrateurs de lumière
An optical product that includes a transparent lens sheet, which has a first side with a plurality of side-by-side sets of linearly arranged lenses. Each of the sets of lenses is at a slant angle in the range of 10 to 46 degrees from a vertical or a horizontal axis of the lens sheet. The product includes an image layer that includes pixels from a number of digital images. The pixels are arranged in a pattern of pixel locations providing non-orthogonal interlacing of the digital images relative to each of the sets of the linearly arranged lenses. The pattern of pixel locations aligns a number of the pixels from each of the digital images to be parallel to a line extending through a center of the linearly arranged lenses in each set. Each of the linearly arranged lenses may have a round base, a hexagonal base, or a square base.
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
A method interlacing of images into an interlaced print file for controlling an output device. The interlacing method involves arranging a set of pixels in a line that is traverse but non-orthogonal to the longitudinal axis of a slant lens or lenticule. Each of these pixels is associated with a different frame/image, e.g., six or more frames are used in each interlaced image, with one being visible through the lens or lenticule at a time by a viewer. The slant lens interlacing method does not involve slicing each frame and the splicing these slices together. Instead, individual pixels from each frame are combined within a digital print file in a unique pattern to provide the non-orthogonal interlacing described herein (e.g., the new interlacing may be considered "matrix interlacing" or "angular-offset interlacing"), and a significantly larger amount of information is presented under each slant lens.
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
B44F 1/10 - Tableaux changeants, amusants ou à secret
G02B 27/22 - Autres systèmes optiques; Autres appareils optiques pour produire des effets stéréoscopiques ou autres effets de relief
G09F 19/14 - Moyens de publicité ou de présentation non prévus ailleurs utilisant des effets optiques particuliers présentant des signes différents selon le point d'où un observateur les regarde
A method for generating additional views from a stereo image defined by a left eye image and a right eye image. The method includes receiving as input at least one stereo image. The method includes, for each of the stereo images, generating a plurality of additional images. The method includes interlacing the additional images for each of the stereo images to generate three dimensional (3D) content made up of multiple views of the scenes presented by each of the stereo images. The interlacing may be performed such that the generated 3D content is displayable on a 3D display device including a barrier grid or a lenticular lens array on the monitor screen. The additional images may include 12 to 40 or more frames providing views of the one or more scenes from differing viewing angles than provided by the left and right cameras used to generate the original stereo image.
A method for generating additional views from a stereo image defined by a left eye image and a right eye image. The method includes receiving as input at least one stereo image. The method includes, for each of the stereo images, generating a plurality of additional images. The method includes interlacing the additional images for each of the stereo images to generate three dimensional (3D) content made up of multiple views of the scenes presented by each of the stereo images. The interlacing may be performed such that the generated 3D content is displayable on a 3D display device including a barrier grid or a lenticular lens array on the monitor screen. The additional images may include 12 to 40 or more frames providing views of the one or more scenes from differing viewing angles than provided by the left and right cameras used to generate the original stereo image.
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
G02B 30/27 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en fournissant des première et seconde images de parallaxe à chacun des yeux gauche et droit d’un observateur du type autostéréoscopique comprenant des réseaux lenticulaires
An optical product that includes a transparent lens sheet, which has a first side with a plurality of side-by-side sets of linearly arranged lenses. Each of the sets of lenses is at a slant angle in the range of 10 to 46 degrees from a vertical or a horizontal axis of the lens sheet. The product includes an image layer that includes pixels from a number of digital images. The pixels are arranged in a pattern of pixel locations providing non-orthogonal interlacing of the digital images relative to each of the sets of the linearly arranged lenses. The pattern of pixel locations aligns a number of the pixels from each of the digital images to be parallel to a line extending through a center of the linearly arranged lenses in each set. Each of the linearly arranged lenses may have a round base, a hexagonal base, or a square base.
B44F 1/04 - Dessins ou peintures caractérisés par des effets de lumière particuliers ou inhabituels produits par la lumière réfléchie, p. ex. surfaces mates, surfaces brillantes après son passage à travers des couches superficielles, p. ex. tableaux avec miroirs sur le fond
G02B 30/27 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en fournissant des première et seconde images de parallaxe à chacun des yeux gauche et droit d’un observateur du type autostéréoscopique comprenant des réseaux lenticulaires
G09F 19/12 - Moyens de publicité ou de présentation non prévus ailleurs utilisant des effets optiques particuliers
42.
PIXEL MAPPING, ARRANGING, AND IMAGING FOR ROUND AND SQUARE-BASED MICRO LENS ARRAYS TO ACHIEVE FULL VOLUME 3D AND MULTI-DIRECTIONAL MOTION
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
G02B 30/27 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en fournissant des première et seconde images de parallaxe à chacun des yeux gauche et droit d’un observateur du type autostéréoscopique comprenant des réseaux lenticulaires
A method of interlacing images into an interlaced print file for controlling an output device. The interlacing method involves arranging a set of pixels in a line that is transverse but non-orthogonal to the longitudinal axis of a slant lens or lenticule. Each of these pixels is associated with a different frame/image, e.g., six or more frames are used in each interlaced image, with one being visible through the lens or lenticule at a time by a viewer. The slant lens interlacing method does not involve slicing each frame and then splicing these slices together. Instead, individual pixels from each frame are combined within a digital print file in a unique pattern to provide the non-orthogonal interlacing described herein (e.g., the new interlacing may be considered "matrix interlacing" or "angular-offset interlacing"), and a significantly larger amount of information is presented under each slant lens.
G02B 30/27 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en fournissant des première et seconde images de parallaxe à chacun des yeux gauche et droit d’un observateur du type autostéréoscopique comprenant des réseaux lenticulaires