A system of a multi-rotor aircraft that capitalizes on the advantages of fixed wing elements combined with rotary wing structures. The fixed wing elements can help to generate lift once the aircraft is airborne and can thus reduce the need for larger lifting rotors which can allow for longer flight times and distances. Additionally, the systems disclosed herein take advantage of a partial in-wing configuration with a number of rotors to reduce the overall footprint of the vehicle while maintaining the flight efficiency that comes with combining features of fixed and rotary wing elements, and increasing operator safety by shrouding rotating parts. The unique configurations allow for a decoupling of the pitch, yaw and roll authority to reduce the complexity in control systems and improve the flight efficiency of the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque.
B64C 13/20 - Dispositifs amorçant la mise en œuvre actionnés automatiquement, p. ex. répondant aux détecteurs de rafales utilisant des émissions de signaux
B64C 11/46 - Aménagements ou caractéristiques de construction des hélices multiples
B64C 29/00 - Aéronefs capables d'atterrir ou de décoller à la verticale, p. ex. aéronefs à décollage et atterrissage verticaux [ADAV, en anglais VTOL]
B64C 39/08 - Aéronefs non prévus ailleurs à ailes multiples
B64U 10/20 - Aéronefs à décollage et atterrissage verticaux [ADAV, en anglais VTOL]
A collective pitch adjustment mechanism for a variable-pitch rotor that has blades for rotation about a rotor axis, e.g., for a flight vehicle or drone, via a motor. The mechanism has a servo actuator and a bearing cage for blade rotation. The servo actuator varies the collective pitch of the blades via a pushrod, and a servo actuator arm is configured for rotation and connected to the pushrod via a joint. Mounting portions are provided for securement of the blades and an actuation horn is coupled to the pushrod. The blades are rotationally and/or translationally coupled to the actuation horn via the mounting portions. The servo actuator causes rotational movement of the servo actuator arm, which in turn causes translational movement of the pushrod, which causes linear movement of the actuation horn to thereby collectively cause a collective change in a pitch angle, i.e. the collective pitch, of the blades.
A collective pitch adjustment mechanism for a variable-pitch rotor that has blades for rotation about a rotor axis, e.g., for a flight vehicle or drone, via a motor. The mechanism has a servo actuator and a bearing cage for blade rotation. The servo actuator varies the collective pitch of the blades via a pushrod, and a servo actuator arm is configured for rotation and connected to the pushrod via a joint. Mounting portions are provided for securement of the blades and an actuation horn is coupled to the pushrod. The blades are rotationally and/or translationally coupled to the actuation horn via the mounting portions. The servo actuator causes rotational movement of the servo actuator arm, which in turn causes translational movement of the pushrod, which causes linear movement of the actuation horn to thereby collectively cause a collective change in a pitch angle, i.e. the collective pitch, of the blades.
B64U 40/10 - Dispositions mécaniques embarquées pour régler les surfaces de commande ou les rotorsDispositions mécaniques embarquées pour régler en vol la configuration de base pour régler les surfaces de commande ou les rotors
B64U 10/14 - Plates-formes volantes comportant quatre axes distincts de rotors, p. ex. quadcoptères
A coaxial rotor pair assembly, e.g., for a flight vehicle or drone, with a fixed-pitch rotor and a variable-pitch rotor that are axially spaced relative to one another on a rotor axis for rotation via rotor shafts. A first motor and a second motor are provided for the rotors to drive the respective rotor about the rotor axis. The first and second motors are each controlled by a speed controller, and speed controllers are controlled by a vehicle flight controller. A collective pitch of the plurality of blades of the variable-pitch rotor is configured to be selectively varied by the vehicle flight controller during rotation of both the fixed-pitch rotor and the variable-pitch rotor about the rotor axis. The plurality of blades of the fixed-pitch rotor are maintained a constant, fixed pitch, e.g., during operation of the flight vehicle.
B64U 40/10 - Dispositions mécaniques embarquées pour régler les surfaces de commande ou les rotorsDispositions mécaniques embarquées pour régler en vol la configuration de base pour régler les surfaces de commande ou les rotors
B64U 30/29 - Caractéristiques de construction des rotors ou des supports de rotorLeurs agencements
B64C 39/02 - Aéronefs non prévus ailleurs caractérisés par un emploi spécial
5.
COAXIAL ROTOR PAIR ASSEMBLY WITH VARIABLE COLLECTIVE PITCH ROTOR / PROPELLER FOR FLIGHT VEHICLE OR DRONE
A coaxial rotor pair assembly, e.g., for a flight vehicle or drone, with a fixed-pitch rotor and a variable-pitch rotor that are axially spaced relative to one another on a rotor axis for rotation via rotor shafts. A first motor and a second motor are provided for the rotors to drive the respective rotor about the rotor axis. The first and second motors are each controlled by a speed controller, and speed controllers are controlled by a vehicle flight controller. A collective pitch of the plurality of blades of the variable-pitch rotor is configured to be selectively varied by the vehicle flight controller during rotation of both the fixed-pitch rotor and the variable-pitch rotor about the rotor axis. The plurality of blades of the fixed-pitch rotor are maintained a constant, fixed pitch, e.g., during operation of the flight vehicle.
09 - Appareils et instruments scientifiques et électriques
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable computer software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Downloadable computer software for route mapping for drones and unmanned aerial vehicles (UAVs) Drones; Unmanned aerial vehicles (UAVs); Air vehicles in the nature of unmanned aerial vehicles (UAVs); Unmanned aerial systems (UASs) being drones Providing on-line non-downloadable software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Providing on-line nondownloadable software for route mapping for drones and unmanned aerial vehicles (UAVs)
09 - Appareils et instruments scientifiques et électriques
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable computer software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Downloadable computer software for route mapping for drones and unmanned aerial vehicles (UAVs) Drones; Unmanned aerial vehicles (UAVs); Air vehicles in the nature of unmanned aerial vehicles (UAVs); Unmanned aerial systems (UASs) being drones Providing on-line non-downloadable software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Providing on-line nondownloadable software for route mapping for drones and unmanned aerial vehicles (UAVs)
09 - Appareils et instruments scientifiques et électriques
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable computer software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Downloadable computer software for route mapping for drones and unmanned aerial vehicles (UAVs) Drones; Unmanned aerial vehicles (UAVs); Air vehicles in the nature of unmanned aerial vehicles (UAVs); Unmanned aerial systems (UASs) being drones Providing on-line non-downloadable software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Providing on-line non-downloadable software for route mapping for drones and unmanned aerial vehicles (UAVs)
09 - Appareils et instruments scientifiques et électriques
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable computer software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Downloadable computer software for route mapping for drones and unmanned aerial vehicles (UAVs) Drones; Unmanned aerial vehicles (UAVs); Air vehicles in the nature of unmanned aerial vehicles (UAVs); Unmanned aerial systems (UASs) being drones Providing on-line non-downloadable software for controlling and coordinating drones and unmanned aerial vehicles (UAVs); Providing on-line nondownloadable software for route mapping for drones and unmanned aerial vehicles (UAVs
10.
Systems and methods for efficient cruise and hover in VTOL
A system of a multi-rotor aircraft that capitalizes on the advantages of fixed wing elements combined with rotary wing structures. The fixed wing elements can help to generate lift once the aircraft is airborne and can thus reduce the need for larger lifting rotors which can allow for longer flight times and distances. Additionally, the systems disclosed herein take advantage of a partial in-wing configuration with a number of rotors to reduce the overall footprint of the vehicle while maintaining the flight efficiency that comes with combining features of fixed and rotary wing elements, and increasing operator safety by shrouding rotating parts. The unique configurations allow for a decoupling of the pitch, yaw and roll authority to reduce the complexity in control systems and improve the flight efficiency of the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque.
B64C 13/20 - Dispositifs amorçant la mise en œuvre actionnés automatiquement, p. ex. répondant aux détecteurs de rafales utilisant des émissions de signaux
B64C 11/46 - Aménagements ou caractéristiques de construction des hélices multiples
B64C 29/00 - Aéronefs capables d'atterrir ou de décoller à la verticale, p. ex. aéronefs à décollage et atterrissage verticaux [ADAV, en anglais VTOL]
B64C 39/08 - Aéronefs non prévus ailleurs à ailes multiples
B64U 10/20 - Aéronefs à décollage et atterrissage verticaux [ADAV, en anglais VTOL]
A system of a multi-rotor aircraft that capitalizes on the advantages of fixed wing elements combined with rotary wing structures. The fixed wing elements can help to generate lift once the aircraft is airborne and can thus reduce the need for larger lifting rotors which can allow for longer flight times and distances. Additionally, the systems disclosed herein take advantage of a partial in-wing configuration with a number of rotors to reduce the overall footprint of the vehicle while maintaining the flight efficiency that comes with combining features of fixed and rotary wing elements, and increasing operator safety by shrouding rotating parts. The unique configurations allow for a decoupling of the pitch, yaw and roll authority to reduce the complexity in control systems and improve the flight efficiency of the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque.
A system and method for controlling a multi-rotor aircraft that implements the unconventional use of different sized rotors. The different sized rotors than the main rotors tend to generate an unbalanced torque and pitch on the aircraft that effectively decouples the pitch and yaw control from the main rotors. The atypical design tends to lend itself to improved control capabilities and simplified control systems. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque from the odd auxiliary rotor.
A system and method for controlling a multi-rotor aircraft that implements the unconventional use of different sized rotors. The different sized rotors than the main rotors tend to generate an unbalanced torque and pitch on the aircraft that effectively decouples the pitch and yaw control from the main rotors. The atypical design tends to lend itself to improved control capabilities and simplified control systems. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque from the odd auxiliary rotor.
B64C 27/82 - GiravionsRotors propres aux giravions caractérisés par l'existence d'un rotor auxiliaire ou d'un dispositif à jet fluide pour contrebalancer le couple du rotor de sustentation ou faire varier la direction du giravion
39 - Services de transport, emballage et entreposage; organisation de voyages
Produits et services
Business management of logistics for others; Business management services, namely, supply chain logistics, reverse logistics, and business management of the delivery of goods for others; Business operation, business administration and office function services relating to product distribution, logistics, reverse logistics, supply chain, and distribution services; Transportation logistics services, namely, arranging the planning and scheduling of shipments of goods for users of transportation services; transportation logistics services, namely, arranging the transportation of goods for others; transportation logistics services, namely, planning and scheduling shipments for users of transportation services; business management in the field of transportation of goods Transportation services, namely, transportation of cargo and goods; parcel delivery; Shipping and delivery service, namely, pickup, transportation, and delivery of packages by various modes of transportation; providing a website featuring transport information in the field of logistics and transportation services of goods; providing a website featuring information in the field of supply chain logistics services, namely, transportation and delivery of goods for others; delivery of goods
15.
HIGH-RESOLUTION CAMERA NETWORK FOR AI-POWERED MACHINE SUPERVISION
A network of high-resolution cameras for monitoring and controlling a drone within a specific operational environment such that the latency time for communication between the cameras and drone is less than that of human controlled drones. The drone can communication drone health data to the network of cameras where such information can be combined with visual image data of the drone to determine the appropriate flight path of the drone within the operational environment. The drone can then subsequently be controlled by the network of cameras by maintaining a constant visual image and flight control data of the drone as it operates within the environment.
A network of high-resolution cameras for monitoring and controlling a drone within a specific operational environment such that the latency time for communication between the cameras and drone is less than that of human controlled drones. The drone can communication drone health data to the network of cameras where such information can be combined with visual image data of the drone to determine the appropriate flight path of the drone within the operational environment. The drone can then subsequently be controlled by the network of cameras by maintaining a constant visual image and flight control data of the drone as it operates within the environment.
A system and method for controlling a multi-rotor aircraft that implements the unconventional use of an odd number of rotors. The odd or auxiliary rotor is designed to be smaller in diameter than the remaining main rotors and accordingly generates a smaller unbalanced torque and pitch on the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque from the odd auxiliary rotor.
B64C 27/82 - GiravionsRotors propres aux giravions caractérisés par l'existence d'un rotor auxiliaire ou d'un dispositif à jet fluide pour contrebalancer le couple du rotor de sustentation ou faire varier la direction du giravion
B64C 39/02 - Aéronefs non prévus ailleurs caractérisés par un emploi spécial
A system and method for controlling a multi-rotor aircraft that implements the unconventional use of an odd number of rotors. The odd or auxiliary rotor is designed to be smaller in diameter than the remaining main rotors and accordingly generates a smaller unbalanced torque and pitch on the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque from the odd auxiliary rotor.
A system and method for controlling a multi-rotor aircraft that implements the unconventional use of different sized rotors. The different sized rotors than the main rotors tend to generate an unbalanced torque and pitch on the aircraft that effectively decouples the pitch and yaw control from the main rotors. The atypical design tends to lend itself to improved control capabilities and simplified control systems. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque from the odd auxiliary rotor.
A network of high-resolution cameras for monitoring and controlling a drone within a specific operational environment such that the latency time for communication between the cameras and drone is less than that of human controlled drones. The drone can communication drone health data to the network of cameras where such information can be combined with visual image data of the drone to determine the appropriate flight path of the drone within the operational environment. The drone can then subsequently be controlled by the network of cameras by maintaining a constant visual image and flight control data of the drone as it operates within the environment.
G05D 1/225 - Dispositions de commande à distance actionnées par des ordinateurs externes
G05D 1/226 - Liaisons de communication avec les dispositions de commande à distance
G05D 1/249 - Dispositions pour déterminer la position ou l’orientation utilisant des signaux fournis par des sources artificielles extérieures au véhicule, p. ex. balises de navigation provenant de capteurs de positionnement situés à l’extérieur du véhicule, p. ex. caméras
H04N 7/18 - Systèmes de télévision en circuit fermé [CCTV], c.-à-d. systèmes dans lesquels le signal vidéo n'est pas diffusé
A system of a multi-rotor aircraft that capitalizes on the advantages of fixed wing elements combined with rotary wing structures. The fixed wing elements can help to generate lift once the aircraft is airborne and can thus reduce the need for larger lifting rotors which can allow for longer flight times and distances. Additionally, the systems disclosed herein take advantage of a partial in-wing configuration with a number of rotors to reduce the overall footprint of the vehicle while maintaining the flight efficiency that comes with combining features of fixed and rotary wing elements, and increasing operator safety by shrouding rotating parts. The unique configurations allow for a decoupling of the pitch, yaw and roll authority to reduce the complexity in control systems and improve the flight efficiency of the aircraft. Additional configurations implement the use of smaller thrust rotors that can be used to generate thrust as well as control yaw and thus counteract any remaining unbalanced torque.