Provided are purification systems and methods of using such systems for purifying various environments, such as indoor air, outdoor air, vehicle emissions, and industrial emissions. A purification system comprises an ionizing purifier having a substrate and an active coating. The active coating comprises a pyroelectric and/or piezoelectric material. During the operation, an incoming stream is directed toward the active coating while controlling the average pressure exerting on the active coating. This contact between the incoming stream and the active coating generates negative ions from components of the incoming stream via change in temperature and pressure/force/vibration, etc. The negative ions then interact with pollutants, transforming them into safe, purified materials of the outgoing stream. Unlike the pollutants in the incoming stream, the purified materials are non-harmful, and/or can be easily removed from the outgoing stream, e.g., by filtering and/or other separation techniques.
B03C 3/36 - Parties constitutives ou accessoires, ou leur fonctionnement commandant le débit de gaz ou de vapeurs
B03C 3/30 - Installations fonctionnant sans alimentation en électricité, p. ex. utilisant des "électrets" dans lesquelles la charge électrostatique est créée par le passage des gaz, c.-à-d. triboélectricité
B03C 3/38 - Postes de chargement ou d'ionisation des particules, p. ex. utilisant des décharges électriques, des radiations radioactives ou des flammes
F24F 8/30 - Traitement, p. ex. purification, de l'air fourni aux locaux de résidence ou de travail des êtres humains autrement que par chauffage, refroidissement, humidification ou séchage par ionisation
2.
METHODS AND SYSTEMS FOR NEGATIVE ION-BASED AND RADIATION-BASED POLLUTION REDUCTION
Provided are purification systems and methods of using such systems for purifying various environments, such as indoor air, outdoor air, vehicle emissions, and industrial emissions. A purification system comprises an ionizing purifier having a substrate and an active coating. The active coating comprises a pyroelectric and/or piezoelectric material as well as a radioactive material. During the operation, an incoming stream is directed toward the active coating while controlling the average pressure exerted on the active coating. This contact between the incoming stream and the active coating generates negative ions from components of the incoming stream via the change in temperature and pressure/force/vibration, etc. The negative ions then interact with pollutants, transforming them into safe, purified materials of the outgoing stream. Unlike the pollutants in the incoming stream, the purified materials are non-harmful, and/or can be easily removed from the outgoing stream, e.g., by filtering and/or other separation techniques.
Provided are purification systems and methods of using such systems for purifying various environments, such as indoor air, outdoor air, vehicle emissions, and industrial emissions. A purification system comprises an ionizing purifier having a substrate and an active coating. The active coating comprises a pyroelectric and/or piezoelectric material as well as a radioactive material. During the operation, an incoming stream is directed toward the active coating while controlling the average pressure exerted on the active coating. This contact between the incoming stream and the active coating generates negative ions from components of the incoming stream via the change in temperature and pressure/force/vibration, etc. The negative ions then interact with pollutants, transforming them into safe, purified materials of the outgoing stream. Unlike the pollutants in the incoming stream, the purified materials are non-harmful, and/or can be easily removed from the outgoing stream, e.g., by filtering and/or other separation techniques.
B01D 53/88 - Manipulation ou montage des catalyseurs
B01D 53/94 - Épuration chimique ou biologique des gaz résiduaires des gaz d'échappement des moteurs à combustion par des procédés catalytiques
B01D 53/32 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par effets électriques autres que ceux prévus au groupe
40 - Traitement de matériaux; recyclage, purification de l'air et traitement de l'eau
Produits et services
Providing information related to performing material treatments, namely, adhering or chemically coating metals with an active
catalytic coating that generates an electric charge and negative ions to remove pollutants, namely, CO2, CO, and NOx, from
emission streams or the atmosphere; Providing information related to material treatment services by means of emissions control
equipment and atmospheric direct air capture systems for mitigation of pollutants and undesired emissions; Providing information
related to material treatment services for providing an active coating that generates an electric charge and negative ions;
Environmental remediation services, namely, galvanizing or chemically coating metals with an active catalytic coating that
generates an electric charge and negative ions to remove pollutants, namely, CO2, CO, and NOx from emission streams or the
atmosphere; Material treatment services by means of emissions control equipment and atmospheric direct air capture systems for
mitigation of pollutants and undesired emissions; Material treatment services by means of an active coating that generates an
electric charge and negative ions; Material coating services, namely adhering or chemically coating metals with an active coating
that generates an electric charge and negative ions
5.
METHODS AND SYSTEMS FOR NEGATIVE ION-BASED POLLUTION REDUCTION
Provided are purification systems and methods of using such systems for purifying various environments, such as indoor air, outdoor air, vehicle emissions, and industrial emissions. A purification system comprises an ionizing purifier having a substrate and an active coating. The active coating comprises a pyroelectric and/or piezoelectric material. During the operation, an incoming stream is directed toward the active coating while controlling the average pressure exerting on the active coating. This contact between the incoming stream and the active coating generates negative ions from components of the incoming stream via change in temperature and pressure/force/vibration, etc. The negative ions then interact with pollutants, transforming them into safe, purified materials of the outgoing stream. Unlike the pollutants in the incoming stream, the purified materials are non-harmful, and/or can be easily removed from the outgoing stream, e.g., by filtering and/or other separation techniques.
This disclosure relates to a system that provides an environmentally friendly method to clean air over towns and cities. The system utilizes tourmaline filters and rocks, sunlight, and water to simulate the cleaning properties of waterfalls in order to create an ionized surface within a cylindrical tube and creates raindrops and mist to simulate precipitation. The system eliminates pollutants instead of transferring them to the surrounding environment.
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
B01D 46/00 - Filtres ou procédés spécialement modifiés pour la séparation de particules dispersées dans des gaz ou des vapeurs
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/32 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par effets électriques autres que ceux prévus au groupe
7.
METHODS AND SYSTEMS FOR NEGATIVE ION-BASED POLLUTION REDUCTION
Provided are purification systems and methods of using such systems for purifying various environments, such as indoor air, outdoor air, vehicle emissions, and industrial emissions. A purification system comprises an ionizing purifier having a substrate and an active coating. The active coating comprises a pyroelectric and/or piezoelectric material. During the operation, an incoming stream is directed toward the active coating while controlling the average pressure exerting on the active coating. This contact between the incoming stream and the active coating generates negative ions from components of the incoming stream via change in temperature and pressure/force/vibration, etc. The negative ions then interact with pollutants, transforming them into safe, purified materials of the outgoing stream. Unlike the pollutants in the incoming stream, the purified materials are non-harmful, and/or can be easily removed from the outgoing stream, e.g., by filtering and/or other separation techniques.