42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Application service provider featuring application programming interface (API) software featuring information provided by proprietary satellites in the fields of maritime, aviation, weather, and Earth; Providing websites featuring technology that enables users to track, monitor, locate, collect, transfer, analyze, and access data provided by proprietary satellites regarding maritime vessels, cargo vessels, flights, weather, and Earth for commercial and business purposes
2.
Optimization system of heterogeneous low earth orbit multi-use spacecraft
A constellation planning system receives a request, from a client, to plan an optimal set of tasks for one or more satellites in a constellation of satellites and at least one ground station in a constellation of ground stations. The request includes a planning problem object. The system generates a status of the planning task describing a progress of the planning task, and returns the status to the client. If the status of a task is successful, then the client may retrieve the resulting schedule and publish it to the constellation.
B64G 1/24 - Appareils de guidage ou de commande, p. ex. de commande d'assiette
B64G 1/10 - Satellites artificielsSystèmes de tels satellitesVéhicules interplanétaires
G01S 19/02 - Détails des installations de contrôle terrestres ou spatiales
G01S 19/06 - Éléments coopérantsInteraction ou communication entre les différents éléments coopérants ou entre les éléments coopérants et les récepteurs fournissant des données d'assistance utilisant une estimation initiale de la position du récepteur comme données d'assistance ou lors de la génération de données d'assistance
G01S 19/20 - Contrôle d'intégrité, détection ou isolation des défaillances du segment spatial
G01S 19/26 - Acquisition ou poursuite des signaux émis par le système faisant intervenir une mesure par capteur pour faciliter l'acquisition ou la poursuite
Certain implementations of the disclosed technology may include systems and methods for reducing noise in dual-frequency GNSS signal observation. The method can include: receiving, at a GNSS receiver, a first signal and a second signal. At least the second signal includes noise. The first signal is characterized by a first carrier frequency, and the second signal is characterized by a second carrier frequency. The method includes: down converting, sampling, cross-correlating, accumulating, determining ambiguous instantaneous phases, determining non-ambiguous instantaneous phases, producing normalized non-ambiguous instantaneous first phase samples, constructing a normalized first counter rotation phasor, generating a counter-rotated second observable, applying a low pass filter to remove noise; and outputting the filtered second observable.
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
Systems and methods are disclosed herein for adaptively coordinating among satellite communication channels. A method, according to an example implementation of the disclosed technology, can include: receiving, at a radio frequency receiver disposed on a target satellite, a plurality of signals associated with a corresponding plurality of candidate satellite communication channels; detecting, among the plurality of signals, a command structure; selecting, for communications with a first ground station, a first channel of the candidate satellite communication channels, based at least in part, on information in the detected command structure; establishing a communication link with the first ground station using the first channel; receiving, via the first channel, and from the first ground station, one or more downlink instructions; selecting a downlink communication channel based on the received one or more downlink instructions; and transmitting information to the first ground station via the selected downlink communication channel.
Certain implementations of the disclosed technology may include systems and methods for reducing noise in dual-frequency GNSS signal observation. The method can include: receiving, at a GNSS receiver, a first signal and a second signal. At least the second signal includes noise. The first signal is characterized by a first carrier frequency, and the second signal is characterized by a second carrier frequency. The method includes: down converting, sampling, cross-correlating, accumulating, determining ambiguous instantaneous phases, determining non-ambiguous instantaneous phases, producing normalized non-ambiguous instantaneous first phase samples, constructing a normalized first counter rotation phasor, generating a counter-rotated second observable, applying a low pass filter to remove noise; and outputting the filtered second observable.
Methods and systems detect physical locations of vessels. A first satellite includes a first image sensor. A second satellite includes a second image sensor. The processor receives a first image of a target area from the first image sensor, and a second image of the target area from the second image sensor. Both images are taken within a predetermined time frame. The processor performs image recognition to identify a vessel that appears in both the first image and the second image. The processor receives the first satellite's location and orientation when the first image is taken and the second satellite's location and orientation when the second image is taken. Each satellite's location and orientation are determined by the satellite's geographic determination module. The processor determines the vessel's location by performing triangulation based on the first satellite's location and orientation and the second satellite's location and orientation. The processor outputs data representative of the vessel's determined location. The vessel's speed and bearing are also determined by the processor.
G01S 19/45 - Détermination de position en combinant les mesures des signaux provenant du système de positionnement satellitaire à radiophares avec une mesure supplémentaire
G01S 5/02 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant les ondes radioélectriques
G01S 5/16 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant des ondes électromagnétiques autres que les ondes radio
G01S 11/12 - Systèmes pour déterminer la distance ou la vitesse sans utiliser la réflexion ou la reradiation utilisant des ondes électromagnétiques autres que les ondes radio
G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
10.
Systems and methods for satellite solar panel deployment
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
Systems and methods are disclosed herein for adaptively coordinating among satellite communication channels. A method, according to an example implementation of the disclosed technology, can include: receiving, at a radio frequency receiver disposed on a target satellite, a plurality of signals associated with a corresponding plurality of candidate satellite communication channels; detecting, among the plurality of signals, a command structure; selecting, for communications with a first ground station, a first channel of the candidate satellite communication channels, based at least in part, on information in the detected command structure; establishing a communication link with the first ground station using the first channel; receiving, via the first channel, and from the first ground station, one or more downlink instructions; selecting a downlink communication channel based on the received one or more downlink instructions; and transmitting information to the first ground station via the selected downlink communication channel.
The disclosed technology relates to systems and methods for determining three-dimensional atmospheric and ionospheric density using refraction of electromagnetic waves. A method is provided for receiving, at a processing system, and from a plurality of Global Navigation Satellite Systems (GNSS) stations, navigation data corresponding to computed positions of the plurality of GNSS stations. The method can further include determining, based at least in part on received navigation data and received GNSS transmitter information, ionosphere and atmosphere refractivity corresponding to intersections of two or more GNSS signals. The method can include calculating, based on the determined 3D density states, data fields of a model representing the three-3D density states. The method can include transmitting position adjustment data to calibrate a navigation position of at least one of the plurality of the GNSS stations based at least in part on the calculated data fields of the model.
G01S 19/07 - Éléments coopérantsInteraction ou communication entre les différents éléments coopérants ou entre les éléments coopérants et les récepteurs fournissant des données pour corriger les données de positionnement mesurées, p. ex. DGPS [GPS différentiel] ou corrections ionosphériques
G01S 19/08 - Éléments coopérantsInteraction ou communication entre les différents éléments coopérants ou entre les éléments coopérants et les récepteurs fournissant des informations d'intégrité, p. ex. la santé des satellites ou la qualité des éphémérides
G01S 19/25 - Acquisition ou poursuite des signaux émis par le système faisant intervenir des données d'assistance reçues en provenance d'un élément coopérant, p. ex. un GPS assisté
15.
Systems and methods for satellite solar panel stowage and deployment
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
A constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. By coordinating the collection and processing of the data using state of the art receivers on a constellation of low earth orbit satellites and networked processing, highly accurate calculation of atmospheric conditions and related future weather events are possible.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according to at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
A method is provided that can include designating as a control node, a first communication node of a plurality of communication nodes associated with a satellite communications system. The method can include, designating as a listening node, a second communication node of the plurality of communication nodes. The listening node is responsive to instructions provided by the control node. The method includes receiving, at a tuning module, one or more input tuning factors, wherein the one or more input tuning factors can include at least a resource burden factor. Responsive to receiving the one or more input tuning factors, the method includes adjusting by the tuning module, one or more tunable output parameters. The method includes sending, from the control node to the listening node, instructions comprising one or more of the tunable output parameters, and executing the instructions at the listening node.
Certain implementations of the disclosed technology may include systems and methods for data alignment without requiring an external synchronizing trigger. A method is provided that can include receiving a signal that represents a plurality of frames, each of the plurality of the frames include an optional data portion and a predetermined portion. The method includes sampling and buffering at least a portion of the received signal to produce a buffered digital sequence. The method includes processing, by a sequence alignment module, the buffered digital sequence using a known sequence, where the known sequence corresponds to the predetermined portion. The method includes determining, using the sequence alignment module, respective positions of the buffered digital sequence corresponding to the known sequence, comparing the known sequence with the buffered digital sequence at the respective determined positions, and outputting one or more parameters based at least in part on the comparing.
H04L 7/02 - Commande de vitesse ou de phase au moyen des signaux de code reçus, les signaux ne contenant aucune information de synchronisation particulière
H04L 1/00 - Dispositions pour détecter ou empêcher les erreurs dans l'information reçue
21.
AIS spoofing and dark-target detection methodology
Methods and systems detect physical locations of vessels. A first satellite includes a first image sensor. A second satellite includes a second image sensor. The processor receives a first image of a target area from the first image sensor, and a second image of the target area from the second image sensor. Both images are taken within a predetermined time frame. The processor performs image recognition to identify a vessel that appears in both the first image and the second image. The processor receives the first satellite's location and orientation when the first image is taken and the second satellite's location and orientation when the second image is taken. Each satellite's location and orientation are determined by the satellite's geographic determination module. The processor determines the vessel's location by performing triangulation based on the first satellite's location and orientation and the second satellite's location and orientation. The processor outputs data representative of the vessel's determined location. The vessel's speed and bearing are also determined by the processor.
G01S 19/45 - Détermination de position en combinant les mesures des signaux provenant du système de positionnement satellitaire à radiophares avec une mesure supplémentaire
G01S 5/02 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant les ondes radioélectriques
G01S 5/16 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant des ondes électromagnétiques autres que les ondes radio
G01S 11/12 - Systèmes pour déterminer la distance ou la vitesse sans utiliser la réflexion ou la reradiation utilisant des ondes électromagnétiques autres que les ondes radio
G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
22.
Satellite operating system, architecture, testing and radio communication system
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
A method is provided that can include designating as a control node, a first communication node of a plurality of communication nodes associated with a satellite communications system. The method can include, designating as a listening node, a second communication node of the plurality of communication nodes. The listening node is responsive to instructions provided by the control node. The method includes receiving, at a tuning module, one or more input tuning factors, wherein the one or more input tuning factors can include at least a resource burden factor. Responsive to receiving the one or more input tuning factors, the method includes adjusting by the tuning module, one or more tunable output parameters. The method includes sending, from the control node to the listening node, instructions comprising one or more of the tunable output parameters, and executing the instructions at the listening node.
The disclosed technology relates to systems and methods for managing one or more ground stations that track satellites. A non-transitory computer-readable storage medium stores information of a ground station at a first position at a first time. A processor receives from a sensor information of the ground station at a second position at a second time. The processor detects an anomaly of a positional characteristic of the ground station based on a difference between the first position and the second position. The processor outputs an instruction to calibrate the ground station based on the detected anomaly.
A power distribution system and a method thereof regulate power distribution in a small form factor satellite flight system. The power distribution system may include a power source and a plurality of power channels. The power channels may distribute power from the power source to a plurality of systems in the small form factor satellite flight system. A processor may monitor power availability of the power source. The processor may also collect housekeeping information of the plurality of systems in the small form factor satellite flight system. The processor may regulate the power channels based on the power availability and the housekeeping information.
B64G 1/42 - Aménagements ou adaptations des systèmes fournissant l'énergie
H02J 7/35 - Fonctionnement en parallèle, dans des réseaux, de batteries avec d'autres sources à courant continu, p. ex. batterie tampon avec des cellules sensibles à la lumière
B64G 1/44 - Aménagements ou adaptations des systèmes fournissant l'énergie utilisant des radiations, p. ex. panneaux solaires déployables
G05B 15/02 - Systèmes commandés par un calculateur électriques
B60R 16/033 - Circuits électriques ou circuits de fluides spécialement adaptés aux véhicules et non prévus ailleursAgencement des éléments des circuits électriques ou des circuits de fluides spécialement adapté aux véhicules et non prévu ailleurs électriques pour l'alimentation des sous-systèmes du véhicule en énergie électrique caractérisé par l'utilisation de cellules électriques ou de batteries
B64G 1/10 - Satellites artificielsSystèmes de tels satellitesVéhicules interplanétaires
26.
Processor system for control of modular autonomous system
A cubesat communications system includes an on-board computer implemented on a hardware platform. The on-board computer may include a system on module having a processor and a memory storing “boot” information. The on-board computer may also include a plurality of hardware interfaces implemented on the hardware platform to facilitate communication between the processor and a plurality of peripherals external to the on-board computer. The on-board computer may have a backplane having a plurality of connectors connecting the processor to the peripherals.
A back-plane connector connects component boards for a cubesat with a processing unit and a board connector electrically connected to the back-plane connector. The board connector mates with complimentary connectors on the component boards. The arrangement facilitates assembly, testing and operational reliability. An image capture system may be included and has an image capture device with a multiplexer for interactive collection and storage of image and video data.
H04N 5/232 - Dispositifs pour la commande des caméras de télévision, p.ex. commande à distance
H01Q 1/28 - Adaptation pour l'utilisation dans ou sur les avions, les missiles, les satellites ou les ballons
H01Q 1/42 - Enveloppes non intimement mécaniquement associées avec les éléments rayonnants, p. ex. radome
H04N 5/77 - Circuits d'interface entre un appareil d'enregistrement et un autre appareil entre un appareil d'enregistrement et une caméra de télévision
A cubesat design includes selected subsystems for managing communications to other satellites and ground stations. In one embodiment, the subsystem includes a deployable antenna having compact size and low weight that reliably releases and detects an extended antenna after launch.
H04N 5/232 - Dispositifs pour la commande des caméras de télévision, p.ex. commande à distance
H01Q 1/42 - Enveloppes non intimement mécaniquement associées avec les éléments rayonnants, p. ex. radome
H05K 7/14 - Montage de la structure de support dans l'enveloppe, sur cadre ou sur bâti
H04N 5/77 - Circuits d'interface entre un appareil d'enregistrement et un autre appareil entre un appareil d'enregistrement et une caméra de télévision
29.
Satellite operating system, architecture, testing and radio communication system
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
A constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. By coordinating the collection and processing of the data using state of the art receivers on a constellation of low earth orbit satellites and networked processing, highly accurate calculation of atmospheric conditions and related future weather events are possible.
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Providing an internet website portal featuring information provided by proprietary satellites in the field of tracking, locating and monitoring maritime vessels for commercial purposes; electronic data collection for business purposes using proprietary satellites in the field of maritime vessel movement Providing an internet website portal featuring information provided by proprietary satellites in the field of weather patterns; Software as a service (SAAS) services featuring data collection software using proprietary satellites for collecting, transferring, evaluating and analyzing weather data
32.
SYSTEM AND METHOD FOR WIDESPREAD LOW COST ORBITAL SATELLITE ACCESS
A large constellation of low-cost satellites with a satellite support and administration system that allows widespread user access to advanced satellite technology at extremely low costs. Any portion of the constellation can be tasked and configured for specific data capture. In one embodiment, a constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. Alternately, the constellation can be configured as a vehicle location tracking system that receives multiple vehicle tracking signals and based thereon, track within a system grid each vehicle under surveillance. The system can use AIS for ocean going vessels, ADS-B for aircraft, and AEI for trains. Use of the system permits extended tracking of key cargos and the protection of vehicles from piracy and the like.
G01S 1/68 - Marqueur, balise d'extrémité, indicatif d'appel ou toutes balises analogues transmettant des signaux ne portant pas d'information directionnelle
G01S 19/02 - Détails des installations de contrôle terrestres ou spatiales
G01W 1/08 - Adaptations de ballons, de fusées ou d'aéronefs à des fins météorologiquesRadiosondes
A large constellation of low-cost satellites with a satellite support and administration system that allows widespread user access to advanced satellite technology at extremely low costs. Any portion of the constellation can be tasked and configured for specific data capture. In one embodiment, a constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. Alternately, the constellation can be configured as a vehicle location tracking system that receives multiple vehicle tracking signals and based thereon, track within a system grid each vehicle under surveillance. The system can use AIS for ocean going vessels, ADS-B for aircraft, and AEI for trains. Use of the system permits extended tracking of key cargos and the protection of vehicles from piracy and the like.
B64G 1/10 - Satellites artificielsSystèmes de tels satellitesVéhicules interplanétaires
G01S 1/00 - Radiophares ou systèmes de balisage émettant des signaux ayant une ou des caractéristiques pouvant être détectées par des récepteurs non directionnels et définissant des directions, situations ou lignes de position déterminées par rapport aux émetteurs de radiophareRécepteurs travaillant avec ces systèmes
G01S 19/03 - Éléments coopérantsInteraction ou communication entre les différents éléments coopérants ou entre les éléments coopérants et les récepteurs
G01W 1/08 - Adaptations de ballons, de fusées ou d'aéronefs à des fins météorologiquesRadiosondes
34.
System and method for widespread low cost orbital satellite access
A satellite support and administration system includes a web based portal to allow widespread user access to advanced satellite technology at extremely low costs. The system supports the sequential launch of increasingly sophisticated satellites having limited life spans. Each satellite is equipped with a powerful array of sensors for space based measurement of scientifically and commercially important phenomena. A ground based platform supports and encourages the development of software and custom applications to operate experiments utilizing the processors and sensor array on the satellite.