This composite amine absorbent comprises (a) a diamine containing amino groups having different grades, (b) a cyclic diamine containing amino groups having the same grade, (c) a cyclic compound represented by chemical formula (1), and (d) water. The composite amine absorbent also comprises (e) a chain monoamine. (In the formula, R8 is hydrogen or a methyl group.)
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A composite amine absorbent that absorbs at least one of CO2 and H2S in a gas includes: (a) a chain monoamine; (b) a diamine containing amino groups having the same number of substituents; (c) a chain diamine containing amino groups having different numbers of substituents; and (d) water.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
F28F 19/06 - Prévention de la formation de dépôts ou de la corrosion, p. ex. en utilisant des filtres en utilisant des revêtements, p. ex. des revêtements vitreux ou émaillés de métal
2S in a gas includes: a chain monoamine; a diamine; a cyclic compound represented by the following chemical formula:
3: any one of hydrogen, a hydrocarbon group having a carbon number of 1 to 4, and a hydroxyalkyl group; and water.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
22222S in a gas, the solution including: (a) a chain monoamine; (b) a diamine; (c) a cyclic compound having the chemical formula, where R1is any one of hydrogen, a hydrocarbon group having a carbon number of 1 to 4, or a hydroxyalkyl group, R2is oxygen or N-R3, and R3 is any one of hydrogen, a hydrocarbon group having a carbon number of 1 to 4, or a hydroxyalkyl group; and (d) water.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
6.
COMPOSITE AMINE ABSORBENT, REMOVAL UNIT, AND REMOVAL METHOD
An object of the present invention is to provide a fast reaction rate and to efficiently release absorbed CO2 and H2S. A composite amine absorbent to absorb at least one of CO2 and H2S in a gas, the composite amine absorbent including: a chain monoamine (a); a diamine (b); a cyclic compound (c) represented by the following chemical formula: where R1: any one of hydrogen, a hydrocarbon group having a carbon number of 1 to 4, and a hydroxyalkyl group, R2: oxygen or N-R3, and R3: any one of hydrogen, a hydrocarbon group having a carbon number of 1 to 4, and a hydroxyalkyl group; and water (d).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
C07C 215/02 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné
C07D 233/36 - Un atome d'oxygène avec des radicaux hydrocarbonés, substitués par des atomes d'azote, liés aux atomes d'azote du cycle
C07D 241/04 - Composés hétérocycliques contenant des cycles diazine-1,4 ou diazine-1,4 hydrogéné non condensés avec d'autres cycles ne comportant pas de liaisons doubles entre chaînons cycliques ou entre chaînons cycliques et chaînons non cycliques
C07D 263/62 - Composés hétérocycliques contenant des cycles oxazole-1, 3 ou oxazole-1, 3 hydrogéné condensés avec des carbocycles ou avec des systèmes carbocycliques avec plusieurs systèmes cycliques contenant des cycles condensés d'oxazole-1, 3
7.
COMPOSITE AMINE ABSORBENT, REMOVAL UNIT, AND REMOVAL METHOD
Provided is a composite amine absorbing liquid or the like that has a high reaction rate. This composite amine absorbing liquid is for absorbing CO2 and/or H2S in a gas, and contains (a) a chain-like monoamine, (b) a diamine including amino groups having the same grade, (c) a chain-like diamine including amino groups having different grades, and (d) water.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
C07C 215/08 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné le squelette carboné étant saturé et acyclique avec un seul groupe hydroxy et un seul groupe amino liés au squelette carboné
8.
COMPOSITE AMINE ABSORBING LIQUID, REMOVAL APPARATUS, AND REMOVAL METHOD
MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
Inventeur(s)
Tanaka, Hiroshi
Hirata, Takuya
Tsujiuchi, Tatsuya
Sugiura, Takuya
Kamijo, Takashi
Noborisato, Tomoki
Abrégé
222S in a gas, and contains (a) a chain-like monoamine, (b) a diamine including amino groups having the same grade, (c) a chain-like diamine including amino groups having different grades, and (d) water.
C07C 215/08 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné le squelette carboné étant saturé et acyclique avec un seul groupe hydroxy et un seul groupe amino liés au squelette carboné
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
NOVEL MICROORGANISM, AGENT AGAINST WHITE SPOT SYNDROME VIRUS CONTAINING NOVEL MICROORGANISM OR LIKE, METHOD FOR PRODUCING SAME, AND CONTROLLING METHOD AGAINST WHITE SPOT SYNDROME VIRUS
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF MARINE SCIENCE AND TECHNOLOGY (Japon)
Inventeur(s)
Tanaka, Satoshi
Okuhata, Hiroshi
Hirono, Ikuo
Kondo, Hidehiro
Ito, Kai
Abrégé
The present invention achieves an agent against white spot syndrome virus that has an excellent effect of controlling white spot syndrome virus. An agent against white spot syndrome virus according to one embodiment of the present invention contains an ingredient derived from Rhodovulum sp.
A01N 63/20 - BactériesSubstances produites par des bactéries ou obtenues à partir de celles-ci
A01K 61/59 - Élevage des animaux aquatiques des coquillages des crustacés, p. ex. des homards ou des crevettes
A01N 25/00 - Biocides, produits repoussant ou attirant les animaux nuisibles, ou régulateurs de croissance des végétaux, caractérisés par leurs formes, ingrédients inactifs ou modes d'applicationSubstances réduisant les effets nocifs des ingrédients actifs vis-à-vis d'organismes autres que les animaux nuisibles
A01P 1/00 - DésinfectantsComposés antimicrobiens ou leurs mélanges
C12P 1/04 - Préparation de composés ou de compositions, non prévue dans les groupes , utilisant des micro-organismes ou des enzymesProcédés généraux de préparation de composés ou de compositions utilisant des micro-organismes ou des enzymes utilisant des bactéries
10.
SPECIMEN TESTING DEVICE AND SPECIMEN TESTING METHOD
Provided is a specimen testing device and specimen testing method which make it possible to decrease the likelihood that an error in measurement caused by a shift in the cartridge installment position will occur. A specimen testing device for measuring the coloration state in the coloration region of an insoluble carrier which has a coloration region which undergoes coloration as a result of a reaction to a test substance, said device being: equipped with a light-emitting part capable of emitting light at a specimen adhered to the insoluble carrier from the rear surface side of the insoluble carrier, an imaging unit capable of imaging the coloration region of the insoluble carrier from the surface side of the insoluble carrier, and a light-scattering member which has light-transmitting and light-scattering properties; and characterized in that the light-scattering member is positioned between the insoluble carrier and the light-emitting part.
G01N 35/00 - Analyse automatique non limitée à des procédés ou à des matériaux spécifiés dans un seul des groupes Manipulation de matériaux à cet effet
G01N 33/50 - Analyse chimique de matériau biologique, p. ex. de sang ou d'urineTest par des méthodes faisant intervenir la formation de liaisons biospécifiques par ligandsTest immunologique
G01N 33/543 - Tests immunologiquesTests faisant intervenir la formation de liaisons biospécifiquesMatériaux à cet effet avec un support insoluble pour l'immobilisation de composés immunochimiques
G01N 21/17 - Systèmes dans lesquels la lumière incidente est modifiée suivant les propriétés du matériau examiné
11.
BOILER COMBUSTION CONTROL SYSTEM AND BOILER COMBUSTION CONTROL METHOD FOR SUPERCRITICAL PRESSURE ONCE-THROUGH BOILER AND ULTRA SUPERCRITICAL PRESSURE ONCE-THROUGH BOILER
THE KANSAI ELECTRIC POWER COMPANY,INCORPORATED (Japon)
Inventeur(s)
Okamura, Yuji
Kuwano, Satoshi
Nakazawa, Tadahiro
Matsui, Yasunobu
Abrégé
A boiler combustion control system 301 comprises: a load demand correction unit 310 that, on the basis of a total fuel flow rate FRR and a water-fuel ratio master signal WFR for performing control so that the water-fuel ratio defined by the weight ratio between the amount of water supply to a boiler and the fuel input amount has a prescribed value, corrects a load demand MWD' after feedback correction and calculates the load demand after correction based on the total fuel flow rate FFR and the water-fuel ratio master signal WFR; and a fuel correction factor calculation unit 14 that calculates a fuel correction factor K on the basis of the ratio between a load demand MWD before feedback correction and the load demand after correction based on the total fuel flow rate FFR and the water-fuel ratio master signal WFR.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
An absorbing liquid according to the present invention absorbs CO2, H2S, or both present in a gas, and includes, as components, a (a) secondary linear monoamine, a (b) tertiary linear monoamine, and a (c) secondary cyclic diamine, with the concentration of the (a) secondary linear monoamine being more than 30 wt% to less than 45 wt% and the concentration of the (b) tertiary linear monoamine being more than 15 wt% to less than 30 wt%. As a result, the present invention achieves an absorbing liquid in which the ability to absorb CO2, H2S, or both is excellent and dissipation of the absorbed CO2 or H2S when reclaiming the absorbing liquid is excellent, and it is possible to reduce the amount of water vapor from a reboiler 26 used when reclaiming the absorbing liquid in a CO2 recovery device 12.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
C07C 43/11 - Polyéthers contenant des unités —O—(C—C—O—)n, avec 2 ≤n ≤ 10
C07C 43/13 - Éthers saturés contenant des groupes hydroxyle ou O-métal
C07C 215/08 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné le squelette carboné étant saturé et acyclique avec un seul groupe hydroxy et un seul groupe amino liés au squelette carboné
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A composite amine absorption solution according to the present invention is an absorption solution capable of absorbing CO2 or H2S or both of them in a gas, and is prepared by dissolving (1) a linear monoamine, (2) a diamine and (3) a compound specified by chemical formula (I), e.g., a propylene glycol alkyl ether, in water. In the composite amine absorption solution, these components are multiply intertwined with one another and, as a result, the absorption of CO2 or H2S or both of them becomes satisfactory and the diffusion of the absorbed CO2 or H2S during the regeneration of the absorption solution also becomes satisfactory due to the synergetic effect of these components. As a result, the amount of water vapor in a reboiler 26 that is used in the regeneration of the absorption solution in a CO2 recovery device 12 can be decreased. R1-O-(R2-O)n-R3··· (I)
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
C07C 43/11 - Polyéthers contenant des unités —O—(C—C—O—)n, avec 2 ≤n ≤ 10
C07C 43/13 - Éthers saturés contenant des groupes hydroxyle ou O-métal
C07C 215/08 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné le squelette carboné étant saturé et acyclique avec un seul groupe hydroxy et un seul groupe amino liés au squelette carboné
18.
Carbon dioxide recovery system and carbon dioxide recovery method
A carbon dioxide recovery system includes: a heat exchanger that is disposed between a boiler and a desulfurization device, configured to cool exhaust gas flowing from the boiler to the desulfurization device, and configured to heat a heat medium; and a carbon dioxide recovery device that is configured to, when supplied with heat of the heat medium, separate and recover carbon dioxide from an absorber which has absorbed the carbon dioxide.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
F01K 17/02 - Utilisation de la vapeur ou des condensats provenant soit du soutirage, soit de la sortie des ensembles fonctionnels de machines motrices à vapeur pour le chauffage, p. ex. industriel, domestique
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. (Japon)
OSAKA CITY UNIVERSITY (Japon)
NEWJEC INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
MORIKAWA SAKUSEN INDUSTRIES CO., LTD. (Japon)
Inventeur(s)
Sakai, Masanobu
Fuchimoto, Takeshi
Sai, Rinnichi
Nakao, Masaki
Nakamura, Kazuhiro
Nakaso, Yasuhisa
Morikawa, Toshihide
Sakae, Shinsuke
Abrégé
A geothermal heat utilization system (10) includes a pumping well (20), a water injection well (30), a pipe (13) having two ends which are immersed in water stored in the pumping well (20) and the water injection well (30) so as to connect the pumping well (20) and the water injection well (30) to each other, a pump (21) and a pump (31) which are respectively provided inside the pumping well (20) and the water injection well (30) and pump up stored water through the pipe (13), a valve (25) and a valve (35) which are respectively provided on a pressurization side of the pump (21) inside the pumping well (20) and a pressurization side of the pump (31) inside the water injection well (30), and a heat exchanger (14) which is configured to exchange heat with the pipe (13).
F24T 10/20 - Collecteurs géothermiques utilisant l’eau souterraine comme fluide vecteurCollecteurs géothermiques utilisant un fluide vecteur injecté directement dans le sol, p. ex. utilisant des puits d’injection et des puits de récupération
20.
BOILER FACILITY AND THERMAL POWER GENERATION FACILITY
A boiler facility (20) comprises: flow path formation equipment (21, 22) forming a flow path through which there flows an exhaust gas that has been discharged as a result of the combustion of a fuel; a first heat exchanger (23) that is disposed inside this flow path; and a second heat exchanger (24) that is disposed inside this flow path and that is arranged further upstream in the exhaust gas flow than the first heat exchanger (23) is. The first heat exchanger (23) includes an outer surface that has stronger anti-corrosion properties than the second heat exchanger (24) does with regard to an acidic condensation, which is an acid produced when a component contained in the exhaust gas forms condensation.
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
Inventeur(s)
Kobayashi Takayuki
Katsurayama Yohei
Nakayama Hiroshi
Tokunaga Yasuharu
Abrégé
A refrigerant circuit (2) has: a first flow path (C1) through which the downstream side of a first evaporator (11) and the upstream side of a lower-stage side compressor (3) are connected; a first valve (21) that opens/closes the first flow path (C1); a second flow path (C2) through which the downstream side of the first evaporator (11) and the upstream side of a higher-stage side compressor (4) are connected; a second valve (22) that opens/closes the second flow path (C2); a third flow path (C3) through which the downstream side of a second evaporator (12) and the upstream side of the lower-stage side compressor (3) are connected; a third valve (23) that opens/closes the third flow path (C3); a fourth flow path (C4) through which the downstream side of the second evaporator (12) and the upstream side of the higher-stage side compressor (4) are connected; and a fourth valve (24) that opens/closes the fourth flow path (C4).
F25B 1/10 - Machines, installations ou systèmes à compression à cycle irréversible à compression multi-étagée
F25B 5/02 - Machines, installations ou systèmes à compression, avec plusieurs circuits d'évaporateurs, p. ex. pour faire varier la puissance frigorifique disposés en parallèle
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
Inventeur(s)
Kobayashi Takayuki
Katsurayama Yohei
Abrégé
A heat pump comprises: a low-stage compressor (3); a high-stage compressor (4) connected in series to the downstream side of the low-stage compressor (3); a condenser (5) connected to the downstream side of the high-stage compressor (4); an expansion valve (6) connected to the downstream side of the condenser (5); an evaporator (10) connected to the downstream side of the expansion valve (6); a second valve unit (18) and a third valve unit (19) capable of selectively introducing a refrigerant (R) from the evaporator (10) to either the low-stage compressor (3) or the high-stage compressor (4); a low-stage gas-liquid separator (21) provided at the inlet of the low-stage compressor (3) and capable of separating the liquid phase of the refrigerant (R) and introducing the gas phase to the low-stage compressor (3); and a high-stage gas-liquid separator (22) provided at the inlet of the high-stage compressor (4) and capable of separating the liquid phase of the refrigerant (R) and introducing the gas phase to the high-stage compressor (4).
F25B 1/10 - Machines, installations ou systèmes à compression à cycle irréversible à compression multi-étagée
F25B 1/00 - Machines, installations ou systèmes à compression à cycle irréversible
F25B 43/00 - Dispositions pour la séparation ou la purification des gaz ou des liquidesDispositions pour la vaporisation des résidus de fluides frigorigènes, p. ex. par la chaleur
24.
REACTIVE PAINT FOR STEEL MATERIALS IMPARTING HIGH CORROSION RESISTANCE
THE KANSAI ELECTRIC POWER COMPANY, INCORPORATED (Japon)
MITSUBISHI HITACHI POWER SYSTEMS, LTD. (Japon)
Inventeur(s)
Yamashita Masato
Kuwano Satoshi
Itokawa Atsushi
Nanjo Shinichiro
Yanagi Shogo
Abrégé
Provided is a paint containing barium oxide and/or barium hydroxide, and also a metal sulfate, wherein the amount of metal sulfate that dissolves in 100 g of water at 5°C is 0.5 g or higher.
C23F 11/00 - Inhibition de la corrosion de matériaux métalliques par application d'inhibiteurs sur la surface menacée par la corrosion ou par addition d'inhibiteurs à l'agent corrosif
25.
REACTIVE COATING MATERIAL FOR STEEL MATERIAL PROVIDING HIGH CORROSION RESISTANCE
THE KANSAI ELECTRIC POWER COMPANY, INCORPORATED (Japon)
MITSUBISHI HITACHI POWER SYSTEMS, LTD. (Japon)
Inventeur(s)
Yamashita Masato
Kuwano Satoshi
Itokawa Atsushi
Nanjo Shinichiro
Yanagi Shogo
Abrégé
Provided is a coating material comprising barium oxide and/or barium hydroxide, and a metal sulfate, wherein the soluble amount of the metal sulfate in 100 g of water at 5ºC is 0.5 g or more.
This heating monitoring system 10 of coal is provided with: a suction hose 12 suspended from the top of a coal silo 100; a suction hose length adjusting apparatus 16 which adjusts the length of the suction hose 12 on the basis of height information of coal 120 stored in the coal silo 100 such that the suction port of the suction hose 12 is positioned near the surface of the stored coal 120, and a gas sensor 18 which detects the concentration of a prescribed component in the gas suctioned by the suction hose 12.
G01N 1/22 - Dispositifs pour prélever des échantillons à l'état gazeux
A62C 3/04 - Prévention, limitation ou extinction des incendies spécialement adaptées pour des objets ou des endroits particuliers pour la poussière, pour les matériaux en balles ou en tas non compacts, p. ex. dans des silos ou des cheminées
B65D 90/48 - Aménagements des dispositifs indicateurs ou de mesure
This coal silo 100 is provided with a lateral wall 104 which is erected on a base 102, and a temperature measuring cable 10 which includes a thermocouple for detecting heating of the coal stored in the coal silo 100. The temperature measuring cable 10 is suspended near the lateral wall 104, and the thermocouple is embedded in the coal near the lateral wall 104.
G01K 13/10 - Thermomètres spécialement adaptés à des fins spécifiques pour mesurer la température à l'intérieur de matériaux empilés ou entassés
G01K 7/02 - Mesure de la température basée sur l'utilisation d'éléments électriques ou magnétiques directement sensibles à la chaleur utilisant des éléments thermo-électriques, p. ex. des thermocouples
B65D 90/48 - Aménagements des dispositifs indicateurs ou de mesure
A01F 25/00 - Emmagasinage des produits agricoles ou horticolesSuspension de fruits récoltés
29.
HEATING MONITORING SYSTEM OF STORED PRODUCT, AND SILO
This heating monitoring system 10 of coal is provided with an optical fiber 12 which is routed in the bottom of a coal silo 100, and a measurement device 14 where an optical pulse is incident to the optical fiber 12 and which measures the temperature distribution along the optical fiber 12 by detecting backscatter of the optical pulse from the optical fiber 12.
G01K 11/32 - Mesure de la température basée sur les variations physiques ou chimiques, n'entrant pas dans les groupes , , ou utilisant des changements dans la transmittance, la diffusion ou la luminescence dans les fibres optiques
B65D 90/48 - Aménagements des dispositifs indicateurs ou de mesure
A01F 25/00 - Emmagasinage des produits agricoles ou horticolesSuspension de fruits récoltés
30.
CARBON DIOXIDE RECOVERY SYSTEM AND CARBON DIOXIDE RECOVERY METHOD
A carbon dioxide recovery system (400) is provided with: a first heat exchanger (430), which is disposed between a boiler (100) and a desulfurization device (440) and is for cooling exhaust gas g flowing from the boiler (100) to the desulfurization device (440) and heating a first heat medium w1; and a carbon dioxide recovery device (460) for separating and recovering carbon dioxide from an absorbent, which has absorbed carbon dioxide, through the supplying of heat held by the first heat medium w1.
B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
F01K 17/02 - Utilisation de la vapeur ou des condensats provenant soit du soutirage, soit de la sortie des ensembles fonctionnels de machines motrices à vapeur pour le chauffage, p. ex. industriel, domestique
31.
Geothermal heat utilization system and geothermal heat utilization method
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
OSAKA CITY UNIVERSITY (Japon)
NEWJEC INC. (Japon)
Inventeur(s)
Sakai, Masanobu
Fuchimoto, Takeshi
Sai, Rinnichi
Nakaso, Yasuhisa
Sakae, Shinsuke
Nakao, Masaki
Nishioka, Masatoshi
Nakamura, Kazuhiro
Abrégé
A geothermal heat utilization system includes a heat source well facility, a heat source device having a refrigeration cycle including a compressor, a condenser, an expanded portion, and an evaporator, a primary refrigerant circuit that is connected to a first unit which is one of the condenser and the evaporator of the heat source device, heat exchange being able to be performed between the first unit and the well-side pipe, a secondary refrigerant circuit that is connected to a second unit which is the other of the condenser and the evaporator of the heat source device, heat exchange being able to be performed between the second unit and a load, and a mode switching unit that switches between a cold heat storage operation mode in which the primary refrigerant circuit is connected to the evaporator and the secondary refrigerant circuit is connected to the condenser and a cold heat discharge operation mode in which the primary refrigerant circuit is connected to the condenser and the secondary refrigerant circuit is connected to the evaporator.
F28D 20/00 - Appareils ou ensembles fonctionnels d'accumulation de chaleur en généralAppareils échangeurs de chaleur de régénération non couverts par les groupes ou
F25B 25/00 - Machines, installations ou systèmes utilisant une combinaison des principes de fonctionnement compris dans plusieurs des groupes
F24T 10/20 - Collecteurs géothermiques utilisant l’eau souterraine comme fluide vecteurCollecteurs géothermiques utilisant un fluide vecteur injecté directement dans le sol, p. ex. utilisant des puits d’injection et des puits de récupération
F24F 11/30 - Aménagements de commande ou de sécurité en relation avec le fonctionnement du système, p. ex. pour la sécurité ou la surveillance
F25D 17/00 - Dispositions pour la circulation des fluides de refroidissementDispositions pour la circulation de gaz, p. ex. d'air, dans les enceintes refroidies
F25B 30/06 - Pompes à chaleur caractérisées par la source de chaleur à faible potentiel
F24F 5/00 - Systèmes ou appareils de conditionnement d'air non couverts par ou
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. (Japon)
OSAKA CITY UNIVERSITY (Japon)
NEWJEC INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
MORIKAWA SAKUSEN INDUSTRIES CO., LTD. (Japon)
Inventeur(s)
Sakai Masanobu
Fuchimoto Takeshi
Sai Rinnichi
Nakao Masaki
Nakamura Kazuhiro
Nakaso Yasuhisa
Morikawa Toshihide
Sakae Shinsuke
Abrégé
This geothermal heat utilization system (10) is provided with: a pumping well (20) and a water injection well (30); a pipe (13) both ends of which are immersed in storage water which is in the pumping well (20) and the water injection well (30), so as to connect the pumping well (20) and the water injection well (30); a pump (21) and a pump (31) which are respectively provided in the pumping well (20) and in the water injection well (30), and pump up the storage water through the pipe (13); a valve (25) and a valve (35) which are respectively provided on a pressurizing side of the pump (31) in the water injection well (30) and on a pressurizing side of the pump (21) in the pumping well (20); and a heat exchanger (14) for exchanging heat with the pipe (13).
F24T 10/20 - Collecteurs géothermiques utilisant l’eau souterraine comme fluide vecteurCollecteurs géothermiques utilisant un fluide vecteur injecté directement dans le sol, p. ex. utilisant des puits d’injection et des puits de récupération
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/96 - Régénération, réactivation ou recyclage des réactifs
B01J 23/80 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe du cuivre ou des métaux du groupe du fer en combinaison avec des métaux, oxydes ou hydroxydes prévus dans les groupes avec du zinc, du cadmium ou du mercure
Provided is a heating and stirring device (100) that heats and stirs material (20) to be processed that is accommodated in a container (13), wherein the heating and stirring device (100) is provided with a stirring blade (1), a rotating shaft (2), an electrification unit (10), and an electrical supply unit (4). The stirring blade (1) is disposed within the container (13), and a conductive part is formed on at least one part thereof. The rotating shaft (2) is connected to the stirring blade (1) and rotates the stirring blade (1). The electrification unit (10) has a conductive part and an insulator part covering the outer periphery of the conductive part. The electrical supply unit (4) is disposed outside of the container (13) and supplies high-frequency current to the electrification unit (10). At least part of the electrification unit (10) is disposed in the vicinity of the stirring blade (1) within the container (13).
The present invention provides: an absorbent liquid for CO2 and/or H2S, which is capable of reducing the amount of reboiler heat when the absorbent liquid is recycled; and an apparatus and a method, which use this absorbent liquid. An absorbent liquid according to the present invention absorbs CO2 and/or H2S in a gas, and contains, as constituents, (a) a secondary linear monoamine, (b1) a tertiary linear monoamine or (b2) a hindered primary monoamine, and (c) a secondary cyclic diamine. The concentrations of these constituents are less than 30% by weight.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
MITSUBISHI HEAVY INDUSTRIES ENGINEERING, LTD. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
Inventeur(s)
Tanaka, Hiroshi
Hirata, Takuya
Kondo, Masami
Kamijo, Takashi
Tsujiuchi, Tatsuya
Abrégé
The present invention provides: an absorbent liquid for CO2 and/or H2S, which is capable of reducing the amount of reboiler heat when the absorbent liquid is recycled; and an apparatus and a method, which use this absorbent liquid. An absorbent liquid according to the present invention absorbs CO2 and/or H2S in a gas, and contains, as constituents, (a) a secondary linear monoamine, (b1) a tertiary linear monoamine or (b2) a hindered primary monoamine, and (c) a secondary cyclic diamine. The concentrations of these constituents are less than 30% by weight.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Provided is an absorbing liquid which absorbs CO2, H2S, or both contained in a gas comprising: at least one tertiary-monoamine main agent, at least one secondary-diamine first additive, and at least one secondary-monoamine secondary additive; wherein a concentration of the secondary-diamine concentration is calculated so that an additive concentration index is between 0.05 to 0.5, wherein the additive concentration index is represented by Formula (I), wherein an acid dissociation index is measured at 20.degree.C using water as a solvent, and wherein the weight ratio of the secondary monoamine is within a range of 0.05 to 0.6 with respect to a total % by weight of a tertiary monoamine and a secondary diamine. Also provided is a method for preparing the absorbing liquid, and a device for removing CO2, H2S, or both.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A composite amine absorption solution absorbs the CO2 and/or H2S within a gas, the composite amine absorption solution being created by dissolving, in water, at least one type of amine compound (1) and a disulfide compound (2) which is an oxidation degradation inhibitor for the absorption solution, wherein the disulfide compound is represented by the following chemical formula (I): R1-S-S-R2. In the formula, R1 and R2 represent a C1-4 alkyl group, hydroxyethyl group, carboxyethyl group, cyclohexyl group, or dibutyl thio carbamoyl group.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
C07C 321/14 - Sulfures, hydropolysulfures ou polysulfures ayant des groupes thio liés à des atomes de carbone acycliques d'un squelette carboné acyclique saturé
C07C 321/16 - Sulfures, hydropolysulfures ou polysulfures ayant des groupes thio liés à des atomes de carbone acycliques d'un squelette carboné saturé contenant des cycles
C07C 323/12 - Thiols, sulfures, hydropolysulfures ou polysulfures substitués par des halogènes, des atomes d'oxygène ou d'azote ou par des atomes de soufre ne faisant pas partie de groupes thio contenant des groupes thio et des atomes d'oxygène, liés par des liaisons simples, liés au même squelette carboné ayant les atomes de soufre des groupes thio liés à des atomes de carbone acycliques du squelette carboné le squelette carboné étant acyclique et saturé
C07C 323/52 - Thiols, sulfures, hydropolysulfures ou polysulfures substitués par des halogènes, des atomes d'oxygène ou d'azote ou par des atomes de soufre ne faisant pas partie de groupes thio contenant des groupes thio et des groupes carboxyle liés au même squelette carboné ayant les atomes de soufre des groupes thio liés à des atomes de carbone acycliques du squelette carboné le squelette carboné étant acyclique et saturé
An absorbent regenerator 15 is divided into at least two parts and includes: a rich solution supply line L1 through which a rich solution 14 is supplied to the absorbent regenerator 15 from a CO2 absorber 13; a lean solution supply line L2 through which a lean solution 16 is supplied to the CO2 absorber 13 from the absorbent regenerator 15; a lean-rich solution heat exchanger 17 that is provided at an intersection of the lean solution supply line L2 and the rich solution supply line L1 to exchange heat between the lean solution 16 and the rich solution 14; a branch portion 18 that branches some 14a of the rich solution 14 at a downstream side of the lean-rich solution heat exchanger 17 on the rich solution supply line Ll; and a first mixing portion 20a that mixes the some 14a of the rich solution 14 branched at the branch portion 18 with a semi-lean solution 19 in which CO2 has been partially removed from the rich solution 14 in the absorbent regenerator 15.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
In the present invention, an absorption liquid reproduction column (15) is divided at least into two. The present invention is equipped with: a rich solution supply line (L1) for supplying a rich solution (14) to the absorption liquid reproduction column (15) from a CO2 absorption column (13); a lean solution supply line (L2) for supplying a lean solution (16) to the CO2 absorption column (13) from the absorption liquid reproduction column (15); a lean-rich solution heat exchanger (17) which is disposed at an intersecting part between the lean solution supply line (L2) and the rich solution supply line (L1) and which exchanges the heat between the lean solution (16) and the rich solution (14); a branching part (18) which branches the rich solution supply line (L1) at the rear-flow side of the lean-rich solution heat exchanger (17) so that a portion (14a) of the rich solution (14) becomes separated; and a first mixing unit (20a) for mixing the portion (14a) of the rich solution (14) that separated at the branching part (18) with a semi-lean solution (19) which is obtained by removing a portion of CO2 from the rich solution (14) at the absorption liquid reproduction column (15).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
The objective of the present invention is to provide a CO2 recovery apparatus which is capable of recovering CO2 by using only low-quality exhaust heat at 100°C or less. This CO2 recovery apparatus is provided with: an absorption tower wherein a basic aqueous solution is caused to absorb CO2; and a regenerator that heats the basic aqueous solution, which has absorbed CO2, using a heat medium at 100°C or less, so that CO2 is desorbed therefrom.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Provided is a method with which it is possible to simply, accurately, rapidly and at a high extraction rate carry out on-site the pre-treatment of samples when measuring the quantity of toxic elements in agricultural produce samples of cereals, beans or seeds. This is a pre-treatment method for samples for measuring of the quantity of at least one element selected from a group consisting of cadmium, arsenic, zinc, manganese, copper, lead and chromium, in agricultural produce samples selected from cereals, beans and seeds, characterized by containing: (i) a step in which the sample is coarsely ground; (ii) a step in which water is added to the coarsely ground sample and heated, transforming the β starch contained in the sample into α starch; (iii) a step in which an enzyme is added to the sample, transforming the α starch in the sample into sugar; (iv) a step in which hydrochloric acid is added to the sample to extract the elements being measured in the sample; and (v) a step in which solids are removed from the extracted liquid. The rough grinding of the sample is preferably carried out when measuring the moisture content of the sample, and the heating of the roughly-ground sample is preferably carried out by microwave.
The present invention provides a method by which it is possible, using a chromatographic process, to visually determine a concentration, the method including: a contact step in which a liquid sample and an antibody that binds specifically to a target substance are brought into contact; a first capture step in which the antibody that has not formed a complex with the target substance in the contact step is captured by a first capture substance; a second capture step in which the antibody that was not captured in the first capture step is captured by a second capture substance; and a measurement step in which the concentration of the target substance is measured.
G01N 33/53 - Tests immunologiquesTests faisant intervenir la formation de liaisons biospécifiquesMatériaux à cet effet
G01N 33/543 - Tests immunologiquesTests faisant intervenir la formation de liaisons biospécifiquesMatériaux à cet effet avec un support insoluble pour l'immobilisation de composés immunochimiques
A CO2 recovery device for recovery and removal of CO2 in CO2-containing exhaust gas (11A) that contains CO2 using a CO2-absorbing liquid (12) inside a CO2 absorption tower (13), wherein the CO2 absorption tower (13) is obtained by being provided with: a CO2-absorbing unit (13A) for absorbing CO2 in CO2-containing exhaust gas; a main aqueous cleaning unit (13C), which is provided on the gas flow downstream side of the CO2-absorbing unit (13A) and which uses rinsing water (20) to cool the decarbonated exhaust gas while using the rinsing water (20) to recover the accompanying CO2-absorbing liquid; and a preliminary aqueous cleaning unit (13B) provided between the CO2-absorbing unit (13A) and the main aqueous cleaning unit (13C). A portion (20a) of the rinsing water (20) containing the CO2-absorbing liquid that is circulating in the main aqueous cleaning unit (13C) is extracted and used for pre-rinsing in the preliminary aqueous cleaning unit (13B) and the pre-rinsing water is made to flow down directly to the CO2-absorbing unit (13A) side and merge with the CO2-absorbing liquid (12).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A CO2 recovery device for recovery and removal of CO2 in CO2-containing exhaust gas (11A) that contains CO2 using a CO2-absorbing liquid (12) inside a CO2 absorption tower (13), wherein the CO2 absorption tower (13) is obtained by being provided with: a CO2-absorbing unit (13A) for absorbing CO2 in CO2-containing exhaust gas; a main aqueous cleaning unit (13C), which is provided on the gas flow downstream side of the CO2-absorbing unit (13A) and which uses rinsing water (20) to cool the decarbonated exhaust gas while using the rinsing water (20) to recover the accompanying CO2-absorbing liquid; and a preliminary aqueous cleaning unit (13B) provided between the CO2-absorbing unit (13A) and the main aqueous cleaning unit (13C). A portion (20a) of the rinsing water (20) containing the CO2-absorbing liquid that is circulating in the main aqueous cleaning unit (13C) is extracted and used for pre-rinsing in the preliminary aqueous cleaning unit (13B) and the pre-rinsing water is made to flow down directly to the CO2-absorbing unit (13A) side and merge with the CO2-absorbing liquid (12).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
1) Monoethanol amine (MEA) and 2) a primary amine shown by formula (1) below having high steric hindrance are dissolved in water to form an absorbing solution, whereby CO2 or H2S are satisfactorily diffused when the absorbing solution is reclaimed, and the amount of water vapor used in reclaiming the absorbing solution can be reduced in the equipment for recovering the CO2 or H2S. R1-R3: H or a C1-3 hydrocarbon group, at least one of R1-R3 being a hydrocarbon.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
1) Monoethanol amine (MEA) and 2) a primary amine shown by formula (1) below having high steric hindrance are dissolved in water to form an absorbing solution, whereby CO2 or H2S are satisfactorily diffused when the absorbing solution is reclaimed, and the amount of water vapor used in reclaiming the absorbing solution can be reduced in the equipment for recovering the CO2 or H2S. R1-R3: H or a C1-3 hydrocarbon group, at least one of R1-R3 being a hydrocarbon.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
A CO2 recovery device which recovers and removes CO2 in a CO2-containing discharge gas (11A) including CO2, in a CO2 absorption tower (13), using a CO2 absorbing solution (12) is provided with: a first heat exchanger (23A) serving as a preheating means for preheating, to a temperature equal to or less than the temperature of a lean solution, a rich solution portion (12A1) separated, at a separation section (X), from a rich solution (12A) which has absorbed CO2 in the absorption tower; and a rich/lean solution heat exchanger (52) for performing heat exchange between the lean solution (12B) which has had CO2 released therefrom, and a merged rich solution (12A3) obtained by merging a rich solution portion (12A2) preheated by the preheating means with the rich solution (12A0) at a merging section (Y).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
Provided is a CO2 desorption catalyst having excellent CO2 desorption activity, to be used in place of a metal filler. A CO2 desorption catalyst comprising an inorganic powder or a molding of an inorganic powder, the CO2 desorption catalyst being characterized in that the BET specific surface area of the inorganic powder or the molding of an inorganic powder is at least 7 m2/g.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01J 23/825 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe du cuivre ou des métaux du groupe du fer en combinaison avec des métaux, oxydes ou hydroxydes prévus dans les groupes avec du gallium, de l'indium ou du thallium
B01J 23/835 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe du cuivre ou des métaux du groupe du fer en combinaison avec des métaux, oxydes ou hydroxydes prévus dans les groupes avec du germanium, de l'étain ou du plomb
B01J 35/10 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général solides caractérisés par leurs propriétés de surface ou leur porosité
1) a first amine, said amine being a straight-chain secondary monoamine, 2) a second amine, said amine being a cyclic secondary polyamine serving as a reaction accelerator, and 3) a third amine consisting of one type selected from a secondary or tertiary cyclic amine group and a straight-chain amine group with a high steric hinderance are combined to obtain an absorbent solution which, by way of the synergistic effect of these components, exhibits excellent absorption of CO2 and/or H2S and excellent dissipation of the CO2 and/or H2S absorbed when recycling the absorbent solution, and can be used to reduce the amount of water vapour used in CO2 capturing equipment when recycling the absorbent solution.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
In order to appropriately monitor the state of the whole power system, a power system state estimation device estimates the power state at an arbitrary point in the power system at a high accuracy. The power system state estimation device comprises: a power system data database for holding node information indicating the positions in the power system and equipment information including sensors in correspondence to each other; a sensor data database for holding sensor outputs; an estimation environment setting unit for, using the information in the power system data database, determining a sensor used when estimating the power state at a specific node; and a state estimation unit for obtaining, from the sensor data database, the sensor output corresponding to the sensor used at the specific node determined by the estimation environment setting unit and estimating the state of the whole power system. The estimation environment setting unit includes: a sensor specifying unit for specifying that the sensor installed in the power system is a sensor exhibiting a specific tendency; and a sensor changing unit for changing a sensor to be used at the node corresponding to the specified sensor.
The present invention is provided with: a CO2 absorption unit (13A) that absorbs CO2 in CO2-containing exhaust gas (11A) by means of a CO2-absorbing liquid (12); a water washing unit (13B) that is provided to the top of the CO2 absorption unit (13A), cools the CO2-eliminated exhaust gas, and recovers the associated CO2-absorbing liquid (12); a washing liquid circulation line (L1) that directly circulates a washing liquid (20) containing the CO2-absorbing liquid (12) recovered at the water washing unit (13B) from the apex of the water washing unit (13B); an extraction line (L2) that extracts a portion of the washing liquid (20) containing the CO2-absorbing liquid (12) as an extraction liquid (21) from the washing liquid circulation line (L1); a concentration unit (22) that concentrates the CO2-absorbing liquid while separating the gaseous component (water vapor) (24) from the extraction liquid (21); and a concentrated liquid feed line (L3) that feeds the concentrated liquid (23) resulting from concentrating at the concentration unit (22) to an absorbing liquid regeneration tower (14) side.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
The present invention is a CO2 recovery device provided with: a CO2 absorption tower (13) that contacts a CO2-containing exhaust gas (11A) to a CO2-absorbing liquid (12), eliminating the CO2 and resulting in purified exhaust gas (11B); and an absorbing liquid regeneration tower (14) that separates the CO2 from the CO2-absorbing liquid to regenerate the CO2-absorbing liquid (12); and the lean solution (12B) from which the CO2 has been eliminated in the absorbing liquid regeneration tower (14) is reused at the CO2 absorption tower (13). A cooling tower (70) that cools the CO2-containing exhaust gas that contains CO2 is provided to the upstream side of the CO2 absorption tower (13); the temperature (T2) of the purified exhaust gas (11B) discharged from the CO2 absorption tower is set lower (T1 > T2) than the temperature (T1) of the CO2-containing exhaust gas (11A) containing CO2 and cooled at the cooling tower; and the condensed water (44) resulting from condensing water vapor discharged from the absorbing liquid regeneration tower (14) is vaporized at an evaporator (90).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
An axial flow compressor includes: a rotor having a rotor vane; a first pressing member joined to one end surface of the rotor; a second pressing member joined to the other end surface of the rotor; a rotor shaft portion penetrating the first pressing member, the rotor and the second pressing member; and a nut which fixes the first pressing member and the second pressing member on the rotor shaft portion with the first pressing member and the second pressing member holding the rotor between. The rotor shaft portion is made of a material having a lower linear expansion coefficient than that of a material making at least a part of the rotor. The material making at least a part of the rotor may be aluminum or aluminum alloy.
The refrigerator includes: a cooling-water line having a cooling-water pump to thereby send water for cooling a refrigerant inside of a condenser; a lubricating-water supply line connecting the part downstream from the cooling-water pump on the cooling-water line and a compressor 4 and supplying water flowing through the cooling-water line as a lubricant to the compressor 4; and a backup portion supplying water to the lubricating-water supply line instead of supplying water from the cooling-water line when the cooling-water pump is not driven.
F04C 18/16 - Pompes à piston rotatif spécialement adaptées pour les fluides compressibles du type à engrènement extérieur, c.-à-d. avec un engagement des organes coopérants semblable à celui d'engrenages dentés d'un autre type qu'à axe interne avec des pistons rotatifs dentés à dents hélicoïdales, p. ex. du type ayant la forme d'un chevron, du type à vis
F04C 23/00 - Combinaisons de plusieurs pompes, chacune étant du type à piston rotatif ou oscillant spécialement adaptées pour les fluides compressiblesInstallations de pompage spécialement adaptées pour les fluides compressiblesPompes multiétagées spécialement adaptées pour les fluides compressibles
F25B 9/00 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé
F04C 28/02 - Commande, surveillance ou dispositions de sécurité pour les pompes ou les installations de pompage spécialement adaptées pour les fluides compressibles spécialement adaptées pour plusieurs pompes connectées en série ou en parallèle
F04C 28/06 - Commande, surveillance ou dispositions de sécurité pour les pompes ou les installations de pompage spécialement adaptées pour les fluides compressibles spécialement adaptées pour arrêter, pour démarrer, pour le ralenti ou pour un fonctionnement à charge nulle
F25B 25/00 - Machines, installations ou systèmes utilisant une combinaison des principes de fonctionnement compris dans plusieurs des groupes
This CO2 recovery device is equipped with: a CO2 absorption unit (13A) that absorbs CO2 from a CO2-containing gas (11A) in a CO2 absorption fluid (12); a washing unit (13B) that cools discharge gas (11B) from which the CO2 has been removed, and recovers the accompanying CO2 absorption fluid (12); a circulation line (L1) that directly circulates wash water (20) from the top of the washing unit (13B); an extraction line (L2) that extracts part of the wash water (20) containing the CO2 absorption fluid (12) as extraction fluid (21); a first gas-liquid separation unit (22A) that separates a gas component (24) from the extraction fluid (21); a concentration unit (22B) that concentrates the CO2 absorption fluid (12) in the extraction fluid (21) and separates the gas component (24); a concentrated fluid return line (L3) that returns a concentrated fluid (23), in which the CO2 absorption fluid (12) is concentrated, to the CO2 absorption unit (13A) side below the washing unit (13B); and a gas inlet line (L4) that introduces the separated gas component (24) into an absorption tower (13).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Tokyo Electric Power Company, Incorporated (Japon)
Chubu Electric Power Company, Incorporated (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Fujisawa, Ryo
Toshima, Masatake
Nakayama, Yoshihiro
Baba, Yoshitaka
Ide, Satoshi
Iizuka, Koichiro
Suto, Kunihiko
Egawa, Hiroshi
Sakuraba, Ichirou
Hayashi, Daisuke
Sugano, Keiji
Madsboll, Hans
Damgaard Kristensen, Klaus
Abrégé
A condensing device (71) is provided with: a compressor (10) having a compressing section (20) for compressing operating fluid; a condenser (13) for condensing the operating fluid compressed by the compressing section (20); and a spray mechanism (81) having a nozzle (82) which, in order to cool the operating fluid flowing through the fluid path (91) between the outlet opening (CS2) of the compressing section (20) and the inlet opening (13a) of the condenser (13), sprays cooling fluid into the fluid path (91).
F25B 1/00 - Machines, installations ou systèmes à compression à cycle irréversible
F28B 1/02 - Condenseurs dans lesquels la vapeur d'eau ou autre vapeur est séparée de l'agent de refroidissement par des parois, p. ex. condenseur à surface utilisant l'eau ou un autre liquide comme agent de refroidissement
F28B 9/02 - Systèmes auxiliaires, aménagements ou dispositifs accessoires pour amener la vapeur d'eau ou autre vapeur aux condenseurs
F28B 9/04 - Systèmes auxiliaires, aménagements ou dispositifs accessoires pour amener, recueillir et emmagasiner l'eau ou autre liquide de refroidissement
A CO2 recovery device according to one embodiment includes a cooling tower including a cooling unit for bringing flue gas, which contains CO2, into contact with water so as to cool flue gas; a CO2-absorbing unit for bringing flue gas into contact with a CO2 absorbent (lean solution) so as to remove CO2 from flue gas; and a regenerator including an absorbent regenerating unit for releasing CO2 from a rich solution so as to regenerate the CO2 absorbent. The CO2-absorbing unit includes: a cocurrent flow CO2-absorbing unit provided in a cocurrent flow CO2 absorber, for bringing flue gas into contact with the CO2 absorbent in a cocurrent flow so as to remove CO2 from flue gas and a countercurrent CO2-absorbing unit provided in a CO2 absorber, for bringing flue gas into contact with the CO2 absorbent in a countercurrent flow so as to remove CO2 from flue gas.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
The CO2 recovery device (10) of the embodiment comprises: a cooling tower (16) including a cooling part (11) that cools exhaust gas (14A) by bringing CO2-containing exhaust gas (14A) into contact with water (15); a CO2-absorbing part (12) that removes the CO2 from the exhaust gas (14B) by bringing the exhaust gas (14B) into contact with a CO2-absorbing solution (lean solution) (17); and a regeneration tower (21) including an absorption solution-regenerating part (13) that regenerates the CO2-absorbing solution (17) by releasing CO2 from the rich solution (18). The CO2-absorbing part (12) comprises: a parallel flow CO2-absorbing part (19) that is provided inside a parallel flow CO2-absorbing tower (22) and removes CO2 from the exhaust gas (14B) by bringing the exhaust gas (14B) in contact with the CO2-absorbing solution (17) in a parallel flow; and a countercurrent CO2-absorbing part (20) that is provided inside a CO2-absorbing tower (23) and removes CO2 from the exhaust gas (14C) by bringing the exhaust gas (14C) into contact with the CO2-absorbing solution (17) in a countercurrent flow.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
HOKKAIDO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
THE JAPAN ATOMIC POWER COMPANY (Japon)
NIPPON STEEL & SUMITOMO METAL CORPORATION (Japon)
Inventeur(s)
Maeguchi Takaharu
Hiro Takafumi
Otsuka Shigemitsu
Yokoyama Yutaka
Mimaki Hidehito
Shimizu Shunsuke
Kinomura Shoji
Okada Hirokazu
Kanzaki Manabu
Abrégé
This material for a nuclear power device contains, in percentages by mass, 34 to 38% Cr, 44 to 56% Ni, 0.01 to 0.025% C, over 0% but not more than 0.5% Si, 0.05 to 0.5% Mn, not more than 0.003% S, not more than 0.015% P, not more than 0.05% N, not more than 0.5% Ti, and 0.05 to 0.5% Al. The remainder comprises Fe and unavoidable impurities. This heat transfer tube for a steam generator comprises the material for the nuclear power device. This steam generator is provided with the heat transfer tube for the steam generator. This nuclear power plant is provided with the steam generator.
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
HOKKAIDO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
THE JAPAN ATOMIC POWER COMPANY (Japon)
NIPPON STEEL & SUMITOMO METAL CORPORATION (Japon)
Inventeur(s)
Maeguchi Takaharu
Hiro Takafumi
Otsuka Shigemitsu
Yokoyama Yutaka
Mimaki Hidehito
Shimizu Shunsuke
Kinomura Shoji
Okada Hirokazu
Kanzaki Manabu
Abrégé
This material for a nuclear power device contains, in percentages by mass, 24.5 to 26.5% Cr, 22 to 40% Ni, not more than 0.04% C, 0.05 to 0.5% Si, 0.05 to 0.52% Mn, not more than 0.18% N, not more than 0.5% Ti, and 0.045 to 0.5% Al. The remainder comprises Fe and unavoidable impurities. This heat transfer tube for a steam generator comprises the material for the nuclear power device. This steam generator is provided with the heat transfer tube for the steam generator. This nuclear power plant is provided with the steam generator.
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
F16L 11/16 - Manches, c.-à-d. tuyaux flexibles en un matériau rigide, p. ex. en métal ou en matériaux plastiques durs faites d'enroulements de bandes ou de lanières profilées
G21D 1/00 - Détails des installations à énergie nucléaire
C22C 38/52 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cobalt
A CO2 recovery system according to the present invention includes: a cooling tower (14) that uses cooling water (13) to cool a CO2-containing exhaust gas (12) discharged from industrial equipment such as a boiler (11) or a gas turbine; a CO2 absorber (16) that brings the cooled CO2-containing exhaust gas (12) into contact with a CO2-absorbent (15) that absorbs CO2, thereby removing the CO2 from the exhaust gas (12); and a first absorbent regenerator (18-1) and a second absorbent regenerator (18- 2) that release CO2 from a CO2-absorbent that has absorbed CO2 (rich solution) (17), thereby regenerating the CO2-absorbent (15). A second lean solution at the outlet of the second absorbent regenerator is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorbent regenerator.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
The present invention has: a CO2 absorption tower (16) that brings a cooled CO2-containing exhaust gas (12) into contact with a CO2-absorption solution (15) that absorbs CO2, thereby removing the CO2 from said exhaust gas (12); an absorption-solution regeneration tower (18) that releases CO2 from the CO2-absorption solution that has absorbed CO2 (rich solution) (17), thereby regenerating the absorption solution (15); and a lean-solution temperature-reduction means (50) that recovers heat from a lean solution (15) discharged from the absorption-solution regeneration tower (18).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A CO2 recovery system according to the present invention includes: a cooling tower (14) that uses cooling water (13) to cool a CO2-containing exhaust gas (12) discharged from industrial equipment such as a boiler (11) or a gas turbine; a CO2 absorber (16) that brings the cooled CO2-containing exhaust gas (12) into contact with a CO2-absorbent (15) that absorbs CO2, thereby removing the CO2 from the exhaust gas (12); and a first absorbent regenerator (18-1) and a second absorbent regenerator (18-2) that release CO2 from a CO2-absorbent that has absorbed CO2 (rich solution) (17), thereby regenerating the CO2-absorbent (15). A second lean solution at the outlet of the second absorbent regenerator is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorbent regenerator.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
The present invention has: a cooling tower (14) that uses cooling water (13) to cool a CO2-containing exhaust gas (12) discharged from industrial equipment such as a boiler (11) or a gas turbine; a CO2 absorption tower (16) that brings the cooled CO2-containing exhaust gas (12) into contact with a CO2-absorption solution (15) that absorbs CO2, thereby removing the CO2 from said exhaust gas (12); and a first absorption-solution regeneration tower (18-1) and second absorption-solution regeneration tower (18-2) that release CO2 from the CO2-absorption solution that has absorbed CO2 (rich solution) (17), thereby regenerating the absorption solution (15). A second lean solution at the outlet of the second absorption-solution regeneration tower is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorption-solution regeneration tower.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A reclaiming apparatus having an airtight container (106a) that functions as an absorption/storage unit and stores some of the absorbing liquid that has absorbed CO2 from exhaust gas, and a heater that heats the absorbing liquid stored in the airtight container (106a), wherein some of the absorbing liquid stored in the airtight container (106a) is made to flow, and a gas is made to flow in a countercurrent so as to contact the flowing absorbing liquid. As a result, some of the absorbing liquid stored in the absorption/storage unit contacts the gas flowing in the countercurrent, causing an absorbing liquid component to volatilize and separate from depleted material; therefore, it is possible to remove the absorbing liquid component from the depleted material, and reduce the loss of absorbing liquid.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Tokyo Electric Power Company, Incorporated (Japon)
Chubu Electric Power Company, Incorporated (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Fujisawa, Ryo
Toshima, Masatake
Kanemura, Toshikatsu
Nakayama, Yoshihiro
Iizuka, Koichiro
Ide, Satoshi
Suto, Kunihiko
Kurashige, Kazutaka
Sakuraba, Ichirou
Hayashi, Daisuke
Sugano, Keiji
Shato, Shinji
Madsboll, Hans
Damgaard Kristensen, Klaus
Abrégé
Provided is a freezing machine which maintains supply of a lubricant to a compressor, and which is also eco-friendly and has a simple structure. The freezing machine comprises a cooling water line (14), a lubricating water supply line (32), and a backup means (60). The cooling water line (14) includes a cooling water pump (18), and water flows in the cooling water line (14) to cool a refrigerant in a condenser (6). A portion of the cooling water line (14) located at the downstream side of the cooling water pump (18) is connected to a compressor (4) through the lubricating water supply line (32) so that the water flowing in the cooling water line (14) is supplied to the compressor (4) as a lubricant. When the cooling water pump (18) is not operated, water is supplied to the lubricating water supply line (32) from the backup means (60) as a substitute for the supply of water from the cooling water line (14).
Tokyo Electric Power Company, Incorporated (Japon)
Chubu Electric Power Company, Incorporated (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Nakayama, Yoshihiro
Baba, Yoshitaka
Ide, Satoshi
Iizuka, Koichiro
Fujisawa, Ryo
Toshima, Masatake
Suto, Kunihiko
Kurashige, Kazutaka
Sakuraba, Ichirou
Hayashi, Daisuke
Sugano, Keiji
Rasmussen, Svend
Al-Janabi, Ziad
Jensen, Finn
Moller, Lars Bay
Madsboll, Hans
Svarregaard-Jensen, Christian
Damgaard Kristensen, Klaus
Abrégé
An axial flow compressor (10) comprises: a rotor (31) having rotor blades (34); a first pressing member (41) that is connected to one end surface of the rotor (31); a second pressing member (42) that is connected to the other end surface of the rotor (31); a rotor shaft (46) that passes through a first pressing member (41), the rotor (31) and second pressing member (42); and a nut (43) that fixes the first pressing member (41) and second (42) pressing member (42) with the rotor (31) held in between the first pressing member (41) and second pressing member (42). The rotor shaft (46) is made from a material having a linear expansion coefficient lower than the material used to at least partially constitute the rotor (31). The material used to at least partially constitute the rotor (31) may be aluminum or an aluminum alloy.
Tokyo Electric Power Company, Incorporated (Japon)
Chubu Electric Power Company, Incorporated (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Nakayama, Yoshihiro
Baba, Yoshitaka
Ide, Satoshi
Iizuka, Koichiro
Fujisawa, Ryo
Toshima, Masatake
Suto, Kunihiko
Kurashige, Kazutaka
Egawa, Hiroshi
Sakuraba, Ichirou
Hayashi, Daisuke
Sugano, Keiji
Rasmussen, Svend
Al-Janabi, Ziad
Jensen, Finn
Moller, Lars Bay
Madsboll, Hans
Svarregaard-Jensen, Christian
Damgaard Kristensen, Klaus
Abrégé
An axial flow compressor (10) comprises: an electric motor (22) having a rotating shaft (22a); a drive shaft (40) that is connected to the rotating shaft (22a) of the electric motor (22) without passing through a step-up gear; and a rotor (31) that rotates together with this drive shaft (40). The axial flow compressor (10) is also provided with a compressor unit (20) that compresses a working fluid by driving the drive shaft (40), and a deceleration portion (24) having a space for reducing the flow rate of the working fluid discharged from the discharge port of the compressor unit (20). The rotating shaft (22a) of the electric motor (22) is connected to the end on the discharge port side of the drive shaft (40), and the deceleration portion (24) is positioned so as to surround the electric motor (22).
Disclosed is a CO2 recovery device which includes: an absorption tower in which CO2 contained in a discharge gas (101) discharged from a combustion system (50) is absorbed into an absorption liquid and removed; a regeneration tower in which the absorption liquid that has absorbed CO2 is heated to release the CO2 and regenerate the absorption liquid and from which the regenerated absorption liquid is supplied to the absorption tower; and a regeneration heater with which steam (106) heated in the combustion system (50) is used to heat the absorption liquid in the regeneration tower and from which condensed water (106a) resulting from the heating is returned to the combustion system (50). The device is equipped with a condensed water/discharge gas heat exchanger (57) in which the condensed water (106a) to be returned to the combustion system (50) from the regeneration heater is heated by heat exchange with the discharge gas (101) flowing through the flue (51) of the combustion system (50).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A CO2 recovery unit includes an absorber that reduces CO2 in flue gas (101) discharged from a combustion facility (50) by absorbing CO2 by an absorbent, a regenerator that heats the absorbent having absorbed CO2 to emit CO2, and regenerates and supplies the absorbent to the absorber, and a regenerating heater that uses steam (106) supplied from the combustion facility (50) for heating the absorbent in the regenerator and returns heated condensed water (106a) to the combustion facility (50). The CO2 recovery unit further includes a condensed water/flue gas heat exchanger (57) that heats the condensed water (106a) to be returned from the regenerating heater to the combustion facility (50) by heat-exchanging the condensed water (106a) with the flue gas (101) in a flue gas duct (51) in the combustion facility (50).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Disclosed is a system for recovering heat from a CO2 recovery device (55) that includes an absorption tower in which CO2 contained in a combustion gas (101) discharged from a boiler (51) is absorbed into an absorption liquid and removed and a regeneration tower in which the CO2 is released from the absorption liquid that has absorbed CO2, thereby rendering the absorption liquid reusable in the absorption tower, the system being equipped with: a Ljungstrom heat exchanger (57) which performs heat exchange between a combustion gas (101) that has been discharged from the boiler (51) and has not yet reached to the CO2 recovery device (55) and air for combustion (102) to be supplied to the boiler (51); and an air preheater (58) in which the air for combustion (102) that has not yet reached to the Ljungstrom heat exchanger (57) is preheated by means of waste heat taken out of the CO2 recovery device (55).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
[Object] To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. [Means of Solution] A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein. The CO2 recovery system further includes a concentrating unit 24 for concentrating the wash water 104 from the water-washing section 22. Condensed water generated during concentration is returned to the water-washing section 22.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
[Object] To further reduce the concentrations of basic amine compounds remaining in decarbonated flue gas. [Means of Solution] A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and at least one water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The at least one water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with wash water 104A and 104B to reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A. The regenerator 3 releases the CO2 from the basic amine compound absorbent 103 containing CO2 absorbed therein. This CO2 recovery system further includes an absorbent-treating section 23 disposed downstream of the at least one water-washing section 22 through which the decarbonated flue gas 101A flows. The absorbent-treating section 23 allows the decarbonated flue gas 101A to come into contact with circulating acidic water 105 to further reduce the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
HOKKAIDO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
TOHOKU ELECTRIC POWER CO., INC. (Japon)
THE TOKYO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
HOKURIKU ELECTRIC POWER COMPANY (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
THE CHUGOKU ELECTRIC POWER CO., INC. (Japon)
SHIKOKU ELECTRIC POWER CO., INC. (Japon)
KYUSHU ELECTRIC POWER CO., INC. (Japon)
ELECTRIC POWER DEVELOPMENT CO., LTD. (Japon)
CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY (Japon)
CLEAN COAL POWER R&D CO., LTD. (Japon)
Inventeur(s)
Iida, Masami
Koyama, Yoshinori
Yokohama, Katsuhiko
Suganuma, Naoki
Taguchi, Mutsuaki
Abrégé
Disclosed is a slag monitoring device (100) for a coal gasifier, that is equipped with a slag hole camera (11) that observes a slag hole (3) out of which molten slag flows, a water surface camera (12) that observes the condition of the slag flowing out of the slag hole (3) as the slag falls upon the surface (5H) of cooling water (5), a falling sound sensor (13) that observes the sound of the slag falling upon the water surface (5H), and a processing device (20) that assesses the deposit locations of solidified slag on the basis of the area of the opening of the slag hole (3) observed by the slag hole camera (11) and the slag drop lines and drop locations observed by the water surface camera.
A CO2 recovering apparatus is disclosed. The CO2 recovering apparatus includes a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbent to reduce CO2 contained in the flue gas, and a regenerator that reduces CO2 contained in rich solvent having absorbed CO2 in the CO2 absorber to regenerate the rich solvent, so that the CO2 absorbent that is lean solvent having CO2 reduced in the regenerator is reused in the CO2 absorber. The CO2 recovering apparatus includes a controller that detects a temperature of gas guided into the CO2 absorber, and decreases or increases the circulation rate of the CO2 absorbent based on a change in a detected temperature, and also adjusts a volume of steam to be supplied in the regenerator based on the volume of the CO2 absorbent to be circulated.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
A CO2 recovering apparatus includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbent to reduce the CO2 contained in the flue gas; a regenerator that reduces CO2 contained in rich solvent that has absorbed CO2 in the CO2 absorber to regenerate the rich solvent, so that the CO2 absorbent that is lean solvent having CO2 reduced in the regenerator is reused in the CO2 absorber; and a controller that controls to detect the absorbent concentration in the CO2 absorbent, to increase the volume of CO2 absorbent to be circulated based on a decrease in the absorbent concentration, and to adjust the volume of steam to be supplied in the regenerator based on the volume of the CO2 absorbent to be circulated.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
According to one embodiment, an ultrasonic diagnosis apparatus includes a display unit to display an ultrasonic image, a comparison unit to compare the signal/echo intensity of a cardiac chamber portion of an ultrasonic image with the signal/echo intensity of a myocardial portion of the image, and an indication generating unit to generate a specific indication at a time point when the signal/echo intensity of the cardiac chamber portion changes from a higher value to a lower value than the signal/echo intensity of the myocardial portion or at another time point with reference to the time point.
A CO2 recovery device (10) comprises a CO2 absorption tower (13) for bringing an exhaust gas (11) containing CO2 into contact with a CO2 absorbing liquid (12) and removing the CO2 contained in the exhaust gas (11), a regenerating tower (15) for carrying out regeneration by removing the CO2 from the absorbing liquid (rich solution) (14) that has absorbed CO2 in the CO2 absorption tower (13), and a degassing unit (42), which is a CO2 recovery device that allows for the absorbing liquid (lean solution) that has been regenerated by removing the CO2 in the regenerating tower (15) to be reused in the CO2 absorption tower (13) and which is for removing the gas bubbles taken into the CO2 absorption tower to a rich solution feed tube (41) for feeding the rich solution (14) from the CO2 absorption tower (13) to the regenerating tower (15).
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
Provided is a process for the production of glyceride compositions useful as fuel oil C substitutes which are usable in a thermal power station and so on as the fuel for power generation. A process for producing a glyceride composition useful as a fuel oil C substitute form both a raw material containing a free fatty acid and a trihydric alcohol, characterized by comprising the reaction step of subjecting a mixture of the raw material with the trihydric alcohol to noncatalytic esterification at 230 to 250°C.
C10L 1/02 - Combustibles carbonés liquides à base essentielle de composants formés uniquement de carbone, d'hydrogène et d'oxygène
C11C 3/02 - Graisses, huiles ou acides gras obtenus par transformation chimique des graisses, huiles ou acides gras, p. ex. ozonolyse par estérification des acides gras avec la glycérine
HOKKAIDO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
TOHOKU ELECTRIC POWER CO., INC. (Japon)
THE TOKYO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
HOKURIKU ELECTRIC POWER COMPANY (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
THE CHUGOKU ELECTRIC POWER CO., INC. (Japon)
SHIKOKU ELECTRIC POWER CO., INC. (Japon)
KYUSHU ELECTRIC POWER CO., INC. (Japon)
ELECTRIC POWER DEVELOPMENT CO., LTD. (Japon)
CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY (Japon)
CLEAN COAL POWER R&D CO., LTD. (Japon)
Inventeur(s)
Yokohama, Katsuhiko
Honda, Iwao
Suganuma, Naoki
Ando, Hirofumi
Yoshida, Naoshige
Horie, Yoshihiko
Terada, Hitoshi
Kawai, Toru
Kimura, Atsushi
Abrégé
Provided is a ground flare (10) capable of reducing low frequency vibration of a chimney (20) or ground flare tower below a threshold level thereby preventing resonance of surrounding structures. In a ground flare where flammable waste gas is burned by burners (11) disposed under the chimney (20) and the lower portion of the chimney (20) and the burners (11) are surrounded by a wind shield (40), low frequency noise level of the ground flare tower comprising the chimney (20) and the windshield (40) has been reduced by at least one of changing the natural frequency of the tower or increasing the number of the towers or implementing a device for absorbing low frequency vibration into the tower.
F23G 7/08 - Procédés ou appareils, p. ex. incinérateurs, spécialement adaptés à la combustion de déchets particuliers ou de combustibles pauvres, p. ex. des produits chimiques de gaz d'évacuation ou de gaz nocifs, p. ex. de gaz d'échappement utilisant des torchères, p. ex. dans des cheminées
Hokkaido Electric Power Company, Incorporated (Japon)
Tohoku Electric Power Co., Inc. (Japon)
THE TOKYO ELECTRIC POWER COMPANY, INCORPORATED (Japon)
CHUBU Electric Power Co.,Inc. (Japon)
HOKURIKU ELECTRIC POWER COMPANY (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
THE CHUGOKU ELECTRIC POWER CO., INC. (Japon)
SHIKOKU ELECTRIC POWER CO., INC. (Japon)
KYUSHU ELECTRIC POWER CO., INC. (Japon)
ELECTRIC POWER DEVELOPMENT CO., LTD. (Japon)
Central Research Institute of Electric Power Industry (Japon)
Inventeur(s)
Hamasaki, Shinya
Ohtsuka, Toshimi
Koyama, Yoshinori
Yokohama, Katsuhiko
Shibata, Yasunari
Kasai, Jun
Abrégé
By covering the inner circumferential surface of an outer cylinder with a vapor film, thermal conductivity is reduced and the phenomenon of sudden temperature increases in the cylinder wall of the outer cylinder can be prevented, thereby preventing heat damage to the outer cylinder. Additionally, burner burnout, caused by insufficient cooling resulting from irregularities in cooling efficiency at the burner tip, is also prevented. A tip, which is positioned inside a two-stage entrained-flow bed coal gasification furnace, has a double-walled cylindrical structure with an outer cylinder and an inner cylinder, and is configured so that cooling water to cool the tip is supplied via the inside of the inner cylinder and, after cooling the tip, is returned to the base end via the space formed between the outer cylinder and the inner cylinder, and is additionally configured so that the flow path surface area of the space formed between the outer cylinder and the inner cylinder is less than the flow path surface area formed inside the inner cylinder, thus configured so that a swirling flow along guides formed on the outer circumferential surface of the inner cylinder, and a roughly linear flow in the lengthwise direction of the outer cylinder and the inner cylinder, are imparted to the cooling water that is returning to the base end via the space formed between the outer cylinder and the inner cylinder.
The Tokyo Electric Power Company, Incorporated (Japon)
Chubu Electric Power Company, Incorporated (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Iizuka, Koichiro
Ide, Satoshi
Kanemura, Toshikatsu
Nakayama, Yoshihiro
Toshima, Masatake
Okada, Kazuto
Suto, Kunihiko
Kurashige, Kazutaka
Sakuraba, Ichiro
Hayashi, Daisuke
Ikeuchi, Masaki
Shato, Shinji
Moller, Lars Bay
Jensen, Finn
Al-Janabi, Ziad
Rasmussen, Svend
Madsboll, Hans
Svarregaard-Jensen, Christian
Abrégé
Provided are a compressor and a freezer of simple configurations which can easily dispose a lubricant without giving a damage to the natural environment. The compressor is used in a freezer having an evaporator and a condenser. A coolant gas evaporated in the evaporator is compressed by the compressor and supplied to the condenser. The compressor includes a motor, a case containing a compression chamber, a rotor having a rotation shaft which is driven to rotate by the drive force from the motor so as to compress the vapor as the coolant gas in the compression chamber, a bearing for supporting the rotation shaft of the rotor in the case, and a lubricant water supply unit which supplies water as the lubricant to the bearing.
Disclosed are a method and an apparatus for producing a mono-lower-alkyl monoalkanol amine. The apparatus comprises: a reaction column (12) into which a mixed starting material (11) comprising a mono-lower-alkyl amine (AA: a starting material I) and an alkylene oxide (AO: a starting material II) is supplied; an unreacted starting material distillation column (14) in which an unreacted starting material (15) is separated from a reaction product (13a) (comprising the unreacted starting material (15), a desired reaction product (monomer) (17) and a by-product (dimer) (18)); and a flash drum (16) into which a reaction product (13b) (comprising the desired reaction product (monomer) (17) and the by-product (dimer) (18)) is supplied and in which the desired reaction product (17) (i.e., a mono-lower-alkyl monoalkanol amine (monomer)) is isolated in a gaseous state.
C07C 213/04 - Préparation de composés contenant des groupes amino et hydroxy, amino et hydroxy éthérifiés ou amino et hydroxy estérifiés liés au même squelette carboné par réaction d'ammoniac ou d'amines avec des oxydes d'oléfines ou des halohydrines
C07C 215/08 - Composés contenant des groupes amino et hydroxy liés au même squelette carboné ayant des groupes hydroxy et des groupes amino liés à des atomes de carbone acycliques du même squelette carboné le squelette carboné étant saturé et acyclique avec un seul groupe hydroxy et un seul groupe amino liés au squelette carboné
86.
Ultrasound imaging apparatus and method for processing image with motion tracking and error correction
In time phases except a first time phase, a contour tracking part tracks the position of a region of interest based on image data acquired in each of the time phases. A re-tracking part receives correction of the position of the region of interest in a second time phase, and obtains the position of the corrected region of interest in and after the second time phase based on the image data acquired in and after the second time phase. From position information of the region of interest in and before the second time phase and position information of the corrected region of interest in and after the second time phase, a position calculator obtains position information of the region of interest in all the time phases. A computing part obtains motion information of a tissue within the region of interest based on the position information of the region of interest.
Provided is a fuel cell whereby an unmodified fuel gas is not supplied to a fuel electrode at the time of start-up without requiring a storage chamber for a hydrogen gas and the like. The fuel cell includes a fuel cell stack (10) where separators (2) and power generation cells (16) each of which has a solid electrolyte layer (11) on the upper and lower surfaces of which a fuel electrode layer (12) and an oxidant electrode layer (13) are respectively disposed are piled up alternately, a fuel gas supply line (40) into which a modifying device (45) is inserted to supply a modified gas to the stack (10), a steam supply line (60) into which a steam generator (41) is inserted to supply steam to the upstream side of the modifying device on the fuel gas supply line. Start-up modifying devices (46a) and (46b) are inserted into the downstream side of a connection section where the fuel gas supply line is connected to the steam supply line on the fuel gas supply line. Start-up steam generators (43a) and (43b) are inserted in the steam supply line. The start-up modifying devices and the start-up steam generators are so positioned as to face start-up heating means (6a) to (6d) which operate at the time of start-up.
Provided is a flat-plate solid oxide fuel cell free of crack of the peripheral part of the solid electrolyte due to the action of stress. The flat-plate solid oxide fuel cell includes a fuel cell stack (10) where separators (2) and power generation cells (16) are alternately stacked. Each power generation cell (16) has a disc-shaped solid electrolyte (11), a fuel electrode layer (12) formed on one side of the disc-shaped solid electrolyte (11), and an oxidant electrode layer (13) formed on the other side. In the fuel cell stack (10), disc-shaped fuel electrode current collectors (14) are interleaved between the separators and the fuel electrode layers, while disc-shaped oxidant electrode current collectors (15) are interleaved between the separators and the oxidant electrode layers. Each solid electrolyte (11) is so disposed as to project outward from the peripheral part of the fuel electrode current collector (14) and the oxidant electrode current collector (15) over the whole peripheral part. The length of each projecting portion is greater than 3/100 of the radius and less than 20/100 thereof.
A fuel cell stack free of both lowering of the cell voltage and cracks of the solid electrolyte due to the action of the mechanical stress and a flat-plate solid oxide fuel cell using the same are disclosed. The fuel cell stack has a seal-less structure in which generating cells (16) are stacked in the direction of the plate thickness, with separators (2) interposed therebetween. Each generating cell (16) has a fuel electrode layer (12) formed on the (lower) surface of a solid electrolyte flat plate (11) and an oxidant electrode layer (13) on the (upper) surface thereof. Fuel electrode current collectors (14) are interposed between the fuel electrode layers and separators, and oxidant electrode current collectors (15) are interposed between the oxidant electrode layers and the separators. A ring member (17) thinner than the fuel electrode current collectors or a bulge low enough to be out of contact with the solid electrolyte formed at the fuel electrode current collector side of each separator is provided around the periphery of each fuel electrode current collector.
A CO2 recovery apparatus according to the present invention includes: an absorber (1003) that brings CO2--containing flue gas (1001A) into counter-current contact with CO2 absorbent (1002) to reduce CO2, and a regenerator (1005) that regenerates rich solution (1004) that has absorbed CO2, in which lean solution (1006) having CO2 reduced in the regenerator (1005) is reused in the absorber (1003). The absorber (1003) further includes a CO2 absorbing unit (1010) that recovers CO2 contained in the flue gas (1001A), and the C02 absorbent (1002) that has absorbed CO2 is extracted from a rich side of the CO2 absorbing unit (1010) to exterior, cooled, and then supplied to a position nearer to a lean side of the absorber (1003) with respect to the position at which the CO2 absorbent (1002) is extracted.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
An apparatus for CO2 recovery which comprises: an absorption column (1003) in which a CO2-containing discharge gas (1001A) and a CO2-absorbing liquid (1002) are countercurrently contacted with each other to remove the CO2; and a regeneration column (1005) in which a rich solution (1004) containing the CO2 absorbed therein is regenerated. In the apparatus, a lean solution (1006) from which CO2 has been removed in the regeneration column (1005) is reutilized in the absorption column (1003). The absorption column (1003) has a CO2 absorption part (1010) in which the CO2 contained in the discharge gas (1001A) is recovered. The CO2-absorbing liquid (1002) which has absorbed CO2 is discharged outside from the rich side of the CO2 absorption part (1010), cooled, and then supplied to that part of the absorption column (1003) which is located on the lean side of the position where the CO2-absorbing liquid (1002) has been discharged.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A motion parameter measuring unit two-dimensionally measures a motion parameter of a myocardial tissue by a tracking process on time-series ultrasonic image data acquired from a sample. A time phase setting unit adds a diastolic heartbeat time phase, which is set on the basis of a systole end specified by a time phase where a cardiac cavity area of the ultrasonic image data is the smallest and a diastole end specified by an R wave in an electrocardiographic waveform of the sample, relative to the systole end to time-series parameter image data generated by a parameter image data generating unit on the basis of the motion parameter. An image data extracting unit extracts parameter image data to which the diastolic heartbeat time phase closest to a desired diastolic heartbeat time phase set by an input unit is added and displays the extracted parameter image data.
The Tokyo Electric Power Company, Incorporated (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Okada, Kazuto
Fujisawa, Ryo
Toshima, Masatake
Nakayama, Yoshihiro
Ide, Satoshi
Iizuka, Koichiro
Suto, Kunihiko
Kurashige, Kazutaka
Sakuraba, Ichiro
Hayashi, Daisuke
Shato, Shinji
Ikeuchi, Masaki
Andreasen, Blazniak Marcin
Madsboll, Hans
Svarregaard-Jensen, Christian
Abrégé
A compressor having extended service life. An evaporator has a housing having a suction opening capable of being connected to a suction section of a compressor and evaporates at least a part of droplet-like or mist-like working liquid in the housing by using sucking action of the compressor performed through the suction opening. In the housing is placed a filter for separating a first space for producing the droplet-like or mist-like working liquid and a second space communicating with the suction opening. The filter is placed inclined such that the nearer the upper part of the housing, the further from the suction opening, and the filter allows vapor evaporated from the drop-like or mist-like working liquid to permeate through the filter and captures the drop-like or mist-like working liquid.
B01D 46/10 - Séparateurs de particules utilisant des plaques, des feuilles ou des tampons filtrants à surface plane, p. ex. appareils de précipitation de poussières
F25B 19/00 - Machines, installations ou systèmes utilisant l'évaporation d'un frigorigène mais sans récupération de vapeur
F25B 43/00 - Dispositions pour la séparation ou la purification des gaz ou des liquidesDispositions pour la vaporisation des résidus de fluides frigorigènes, p. ex. par la chaleur
The Tokyo Electric Power Company, Incorporated (Japon)
CHUBU ELECTRIC POWER CO., INC. (Japon)
THE KANSAI ELECTRIC POWER CO., INC. (Japon)
KABUSHIKI KAISHA KOBE SEIKO SHO (Japon)
DANISH TECHNOLOGICAL INSTITUTE (Danemark)
JOHNSON CONTROLS DENMARK APS (Danemark)
Inventeur(s)
Fujisawa, Ryo
Okada, Kazuto
Toshima, Masatake
Nakayama, Yoshihiro
Iizuka, Koichiro
Ide, Satoshi
Suto, Kunihiko
Kurashige, Kazutaka
Sakuraba, Ichiro
Hayashi, Daisuke
Shato, Shinji
Ikeuchi, Masaki
Madsboll, Hans
Svarregaard-Jensen, Christian
Abrégé
A condenser having two deaeration chambers separated by cooling water, wherein both the deaeration chambers are prevented from communicating with each other even if the pressure difference between the deaeration chambers increases. The condenser has a housing and a flow section. The housing has in it a first deaeration chamber and a second deaeration chamber. The first deaeration chamber has a vapor inlet opening capable of being connected to a discharge section of the compressor and communicates with the vapor inlet opening. The second deaeration chamber is placed above the first deaeration chamber with a partition section in between. The flow section causes the cooling liquid to flow from the second deaeration chamber to the first deaeration chamber. The first and second deaeration chambers are separated by the cooling liquid in the flow section. The flow section has a pressure head chamber for receiving the cooling liquid of a specific volume absorbing a variation in the pressure difference between the first and second deaeration chambers.
F28B 3/04 - Condenseurs dans lesquels la vapeur d'eau ou autre vapeur vient en contact direct avec l'agent de refroidissement par injection du liquide de refroidissement dans la vapeur d'eau ou autre vapeur
F25B 1/00 - Machines, installations ou systèmes à compression à cycle irréversible
F25B 43/04 - Dispositions pour la séparation ou la purification des gaz ou des liquidesDispositions pour la vaporisation des résidus de fluides frigorigènes, p. ex. par la chaleur pour l'évacuation des gaz non condensables
F28F 3/04 - Éléments ou leurs ensembles avec moyens pour augmenter la surface de transfert de chaleur, p. ex. avec des ailettes, avec des évidements, avec des ondulations les moyens faisant partie intégrante de l'élément
It is possible to provide a fuel cell which can effectively perform heat recovery and temperature control in a fuel cell stack. The fuel cell stack (3) formed by layering a plenty of generation cell layers is contained in a vessel (2a) having an adiabatic layer (18) arranged at the outer side. A fuel cell (1) of internal reformation type causes a generation reaction by supplying a reaction gas into the fuel cell stack (3) during operation. A water evaporator (30) is arranged on a wall of the vessel (2a) so as to generate water vapor for reforming the fuel by using the exhausted heat of the fuel cell stack (3) as a heat source.
A soft recovery diode is provided with an n+ type semiconductor substrate (2); an n-- type base layer (3) formed on the n+ type semiconductor substrate (2); an n- type base layer (4) formed on the n-- type base layer (3); and a p+ type anode layer (5) formed on the n- type base layer (4). The n-- type base layer (3) has an n type impurity at a concentration lower than that in the n- type base layer (4). A pn junction is formed by the p+ type anode layer (5) and the n- type base layer (4). An anode electrode (6) is formed on the p+ type anode layer (5), and a cathode electrode (7) is formed on the lower side of the n+ type semiconductor substrate (2).
A power conversion device includes: a switching element (10) arranged on a DC current path between a positive electrode and a negative electrode of a DC voltage; a reactor (L1) arranged on the DC current path and turned ON/OFF by the switching element (10); a reactor recycling diode (D1) connected in parallel to the reactor (L1); a control unit for controlling ON/OFF of the switching element (10); and a DC shortcircuit error judgment unit which judges whether a DC shortcircuit between the positive electrode and the negative electrode of the DC voltage has occurred according to the inverse voltage applied to the reactor recycling diode (D1). If the DC shortcircuit error judgment unit judges that a DC shortcircuit error has occurred, the control unit turns OFF the switching element (10) of a power conversion unit (1).
H02M 7/48 - Transformation d'une puissance d'entrée en courant continu en une puissance de sortie en courant alternatif sans possibilité de réversibilité par convertisseurs statiques utilisant des tubes à décharge avec électrode de commande ou des dispositifs à semi-conducteurs avec électrode de commande
98.
PN DIODE, ELECTRIC CIRCUIT DEVICE AND POWER CONVERSION DEVICE
In a SiCpn diode, the lifetime is controlled by applying an electron beam of approximately 3×1013cm-2 or more. As a result of the life time control, as shown by a current-voltage characteristic (K10) in Fig. 1, the current started to flow from approximately 32V, and the on-voltage at 100A is 50V in the SiCpn diode. At such time, the SiCpn diode has a resistance of 0.5Ω when the diode is turned on. The conducting region of the SiCpn diode is 0.4cm2, and is reduced to 0.2Ωcm2 by increasing the on-resistance by the lifetime control. Therefore, for instance, in an electric circuit device used by connecting a diode and a resistor in series, the resistor can be eliminated.
H01L 21/822 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels pour produire des dispositifs, p.ex. des circuits intégrés, consistant chacun en une pluralité de composants le substrat étant un semi-conducteur, en utilisant une technologie au silicium
H01L 27/04 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant un corps semi-conducteur
H01L 29/744 - Dispositifs désamorçables par la gâchette
99.
ABSORBING LIQUID AND APPARATUS AND METHOD FOR REMOVING CO2 OR H2S WITH ABSORBING LIQUID
An absorbing liquid for absorbing the CO2 or H2S contained in a discharge gas discharged from, e.g., power generation facilities in a thermal power station or the like. It contains three or more amine compounds selected among linear or cyclic amine compounds each having a primary amino group and linear or cyclic amine compounds each having a secondary amino group. By the synergistic effect of the combination of these, the rate of absorbing CO2 or H2S is improved. The CO2 contained in a slight amount in a large amount of a gas discharged from a boiler can be efficiently absorbed.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
An absorbent according to the present invention absorbs CO2 or H2S contained in flue gas emitted from a power generating plant such as a thermal plant, and contains three or more amine compounds selected from linear or cyclic amine compounds having a primary amino group, and linear or cyclic amine compounds having a secondary amino group. By way of a synergetic effect of the mixture of these compounds, the absorption speed of CO2 or H2S absorption is improved. A small amount of CO2 contained in a large amount of boiler flue gas can be absorbed efficiently.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption