Provided is an alternative fuel ship that reduces inboard operations associated with treatment of drainage contaminated with an alternative fuel. As shown, for example, in figure 2, an alternative fuel ship 1 comprises: a first recovery tank 13 that recovers drainage that is discharged from a fuel engine (alternative fuel engine 4 and generator 5) during the use of a natural fossil fuel; and a second recovery tank 14 that recovers drainage that is discharged from the fuel engine (alternative fuel engine 4 and generator 5) during the use of an alternative fuel.
B63J 4/00 - Aménagements des installations de traitement des eaux usées ou d'égout
B63B 11/04 - Caractéristiques de construction des soutes à combustible ou des réservoirs de ballast, p. ex. avec cloisons élastiques
B63B 25/08 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides
The present invention provides an alternative fuel ship in which the mixing of alternative fuel gas into living quarters can be suppressed. An alternative fuel ship 1 according to the present embodiment comprises a plurality of fresh air intake ports (in the present embodiment, a first fresh air intake port 14 and a second fresh air intake port 15) for taking in outside air from outside the ship to a prescribed place in living quarters 8. The first fresh air intake port 14 and the second fresh air intake port 15 are disposed at positions apart from each other. For example, the first fresh air intake port 14 is disposed on the port side, and the second fresh air intake port 15 is disposed on the starboard side.
Provided is a methanol-fueled ship that can reduce the weight of a hull while maintaining the volume of a fuel tank. A methanol-fueled ship 1 comprises: a pair of partition wall steel plates 2 disposed so as to form a prescribed gap with respect to hull partition walls (bulkheads 17); a pair of side wall steel plates 3 disposed so as to form a prescribed gap with respect to hull side walls 18; demarcating steel plates 4 that demarcate, to the front and rear, a part of a longitudinal structures (top side 12a, hopper 12b, double bottom 12c, etc.) of the hull; and a top part steel plate 5 disposed so as to form a prescribed gap with respect to an upper deck 11. The methanol-fueled ship 1 uses an internal space, which is formed by the partition wall steel plates 2, the side wall steel plates 3, and the longitudinal structures (here, the top side 12a, the hopper 12b, and the double bottom 12c) as a fuel tank 20.
B63B 11/04 - Caractéristiques de construction des soutes à combustible ou des réservoirs de ballast, p. ex. avec cloisons élastiques
B63B 25/08 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
4.
OIL SUPPLY DEVICE FOR MARINE CONTRA-ROTATING PROPELLER DEVICE, AND MARINE CONTRA-ROTATING PROPELLER DEVICE
Provided are: an oil supply device for a marine contra-rotating propeller device; and a marine contra-rotating propeller device whereby it is possible to supply lubricating oil to a contra-rotating bearing by using a simple structure, reduce manufacturing costs, and suppress scattering of the lubricating oil. A marine contra-rotating propeller device 1 comprises an inner propeller shaft 2. The inner propeller shaft 2 is provided with a hollow portion 23 formed in the axial direction from the front end to a position adjacent to a gap 11 formed by a front-side contra-rotating seal device 51 and a front-side contra-rotating bearing 41, and a plurality of oil supply ports 24 formed so as to communicate the gap 11 and the hollow portion 23. The lubricating oil is supplied to a bearing system including a contra-rotating bearing 4 through the hollow portion 23 and the plurality of oil supply ports 24.
F16H 57/04 - Caractéristiques relatives à la lubrification ou au refroidissement
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
B63H 23/34 - Arbres porte-hélicesArbres de roues à aubesFixation des hélices sur les arbres
F16N 7/38 - Installations à huile ou autre lubrifiant non spécifié, à réservoir ou autre source portés par la machine ou l'organe machine à lubrifier avec pompe séparéeInstallations centralisées de lubrification
F16N 11/08 - Installations à graisse, à réservoir ou autre source fixes, pour le graissage des machines ou organes machineGraisseurs avec entraînement mécanique autre que direct par ressort ou poids
A wear inspection device (20) is a device which is provided in a ship equipped with driving force transmitting portions (13a, 13b) for transmitting a rotational driving force to a propulsion propeller and journal bearings (5p to 5s) for rotatably supporting the driving force transmitting portions (13a, 13b), and which is used to perform inspections relating to wear of the journal bearings (5p to 5s). The wear inspection device (20) comprises a casing (4) and distance sensors (21p to 21s). The casing (4) surrounds the driving force transmitting portions (13a, 13b). The journal bearings (5p to 5s) are provided in the casing (4). The distance sensors (21p to 21s) are attached to the casing (4) and measure, in a non-contact manner, distances from a reference point in a radial direction of the driving force transmitting portions (13a, 13b) to outer circumferential surfaces of the driving force transmitting portions (13a, 13b).
G01B 7/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques
G01B 21/00 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative
Provided is a bulk carrier in which the space on the upper deck can be utilized for various purposes. A bulk carrier 1 comprises, as illustrated in Fig. 1, for example: a hold 2 that accommodates a bulk cargo; living quarters 3 installed on the upper deck 11; a deck crane 4 installed on the upper deck 11; and a funnel 5 that ejects exhaust gas. The bulk carrier 1 further includes a multi-purpose space 7 that is installed on the upper deck 11 between a hatch cover (fifth hatch cover 25a) of the hold 4 (fifth hold 25) and the living quarters 3, the multi-purpose space 7 being utilizable for multiple purposes.
B63B 25/04 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises solides
Floating offshore wind turbines; Floating structures for floating offshore wind turbines; Structural parts and components for floating offshore wind turbines; Wind turbines; Electricity generators and their parts.
Provided is an ammonia-fueled ship in which diffusion of leaked ammonia gas can be suppressed. An ammonia-fueled ship 1 includes an ammonia-fueled engine 4 that uses ammonia as fuel, a generator 5 that uses ammonia as fuel, and an engine room 9 in which the ammonia-fueled engine 4 and the generator 5 are installed. The engine room 9 has a plurality of areas partitioned on the basis of the risk of ammonia gas leakage. For example, the engine room 9 is partitioned into a first area 91 containing the generator 5 and a second area 92 containing the ammonia-fueled engine 4.
B63B 11/04 - Caractéristiques de construction des soutes à combustible ou des réservoirs de ballast, p. ex. avec cloisons élastiques
B63H 21/38 - Appareils ou procédés spécialement adaptés à la manipulation de liquides pour l'appareil moteur d'un navire ou pour l'un de ses éléments, p. ex. lubrifiants, réfrigérants, carburants ou analogues
F02B 43/10 - Moteurs ou ensembles fonctionnels caractérisés par l'utilisation d'autres gaz spécifiques, p. ex. l'acétylène, le gaz oxhydrique
F02M 25/00 - Appareils spécifiques conjugués aux moteurs pour ajouter des substances non combustibles ou de petites quantités de combustible secondaire, à l’air comburant, au combustible principal ou au mélange air-combustible
Provided are a stern add-on structure and a ship with which it is possible to mitigate thrust loss and save energy. This ship 1 comprises a stern add-on structure 2 disposed on a ship bottom 12 above a propeller 11, and the stern add-on structure 2 includes a first surface 21 positioned in front of the position of the propeller 11, and a second surface 22 positioned in rear of the position of the propeller 11. By providing the stern add-on structure 2, it is possible to: decrease a force F1 pulling the hull backward and to increase a force F2 pushing the hull forward; obtain propulsion force from the pressure difference generated on the first surface 21 and the second surface 22; and mitigate thrust loss and save energy.
B63H 5/16 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices caractérisées par un montage sous voûteAménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices avec des éléments fixes de guidage des filets d'eauMoyens pour empêcher l'encrassement de l'hélice, p. ex. protections, grillages ou écrans
B63B 1/32 - Autres moyens pour faire varier les caractéristiques hydrodynamiques inhérentes aux coques
This rocking suppression structure comprises a pair of collision cushioning portions (11, 11) located on both sides of a projection (12) that is provided on a top (3a) of a storage tank (3). Each of the collision cushioning portions (11) includes: a cushioning member (13) installed on the protrusion (12); and a stopper (14) that includes a plate-shaped member (20) facing the cushioning member (13), and a support member (23) having a mounting surface (23a) for the plate-shaped member (20). The plate-shaped member (20) is attached to the mounting surface (23a) by bolts (30), serving as fastening members, only at the portions on both sides in a direction horizontally perpendicular to the alignment direction of the pair of collision cushioning portions (11, 11).
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
11.
AMMONIA WATER STORAGE SYSTEM AND AMMONIA-FUELED SHIP
The present invention provides an ammonia water storage system and an ammonia-fueled ship that can reduce influence of ammonia leakage on the human body and the environment. An ammonia water storage system 1 according to the present embodiment comprises: an ammonia water storage tank 2 which stores ammonia gas or ammonia water generated on a ship in the form of ammonia water; a recovery line 3 that conveys the ammonia gas or the ammonia water to the ammonia water storage tank 2; a water supply line 4 that supplies seawater to the ammonia water storage tank 2; a discharge line 5 that discharges the ammonia water stored in the ammonia water storage tank 2 to the outside of the ship; a concentration meter 6 that measures the concentration of the ammonia water stored in the ammonia water storage tank 2; and a control device 7 that controls the supply of the seawater to the ammonia water storage tank 2 on the basis of a measured value of the concentration meter 6.
B63B 83/40 - Reconstruction ou remise à niveau de navires, p. ex. remise à niveau des systèmes de traitement de l’eau de ballast pour réduire les risques de pollution ou de contaminationReconstruction ou remise à niveau de navires, p. ex. remise à niveau des systèmes de traitement de l’eau de ballast pour améliorer la sécurité
B63B 13/00 - Conduits pour l'épuisement ou le ballastageÉquipement automatique pour l'assèchementDalots
B63B 17/06 - Évacuation des déchets, p. ex. pour escarbilles
B63H 21/38 - Appareils ou procédés spécialement adaptés à la manipulation de liquides pour l'appareil moteur d'un navire ou pour l'un de ses éléments, p. ex. lubrifiants, réfrigérants, carburants ou analogues
The objective of the present invention is to provide an ammonia-fueled ship that can reduce odor in areas of high human traffic. An ammonia-fueled ship 1 comprises an ammonia fuel tank 2 storing ammonia which is fuel, a re-liquefaction device 2 that re-liquefies vaporized gas generated from the ammonia fuel tank 2, an ammonia-fueled engine 4 that uses the ammonia as fuel, a fuel supply device 5 that supplies the ammonia from the ammonia fuel tank 2 to the ammonia-fueled engine 4, a bunker station 6 that supplies the ammonia to the ammonia fuel tank 2, an accommodation space 7 that provides working sections and living sections for crews, and an engine room 8 where the ammonia-fueled engine 4 is installed. An airlock space 13 is provided between a stairwell 72 and a corridor 74. Additionally, an airlock space 14 is provided between an elevator trunk 12 and an interior floor 81.
The present invention provides a weld structure body that has excellent brittle crack arresting performance. This weld structure body: has an end face of a joined member abutted to a surface of a member to be joined that has a plate thickness of at least 50 mm; and comprises a T joint at which the joined member and the member to be joined are joined. The welded metal of the T joint has a composition comprising at least 80% austenite phase, in area%. This weld structure body can prevent the spread, to the joined member, of brittle cracks generated from a thick member to be joined, before large-scale damage occurs, by simply adjusting welding material selection or welding conditions during the welding step and, thereby, improve the safety of a boat hull structure.
This liquefied carbon dioxide press-fitting system 10 comprises: a floating body 12 moored on the sea; temperature raising/pressure raising equipment 18 that is installed on the floating body 12 and is for raising the temperature and raising the pressure of liquefied carbon dioxide; a loading hose 14 for sending the liquefied carbon dioxide to the temperature raising/pressure raising equipment 18 of the floating body 12 from a liquefied carbon dioxide storage tank 20 inside a liquefied carbon dioxide transport vessel 100; and a flexible riser pipe 16 that is connected to the floating body 12 and is for sending the liquefied carbon dioxide, that has been raised in temperature and raised in pressure by the temperature raising/pressure raising equipment 18, to the seabed and press fitting the same into the seabed.
A bow-side sealing structure (10) of a stern tube (5) which is provided to a vessel and through which a propeller shaft (1) extends from an engine room inside a hull to the outside of the hull comprises: a sealing liner (11) mounted on the outer peripheral surface of the propeller shaft (1); a seal casing (25) coupled to the stern tube 5 and surrounding the sealing liner (11); and a sealing member (27) mounted to the seal casing (25) and surrounding the sealing liner (11) so as to block a gap between the seal casing (25) and the sealing liner (11). The sealing liner (11) has a plurality of liner divided portions separably connected to each other in the circumferential direction of rotating about the propeller shaft 1.
Provided are an icebreaker ship and a method for designing an icebreaker ship with which it is possible to inhibit a decrease in propulsion efficiency by means of a hull outer plate shape near the stern, without using additions. An icebreaker ship 1 according to a first embodiment can advance while cracking ice layers, and comprises a chine 4 formed so as to constitute a boundary line between a ship side portion 2 and a ship bottom portion 3. A start point P1 of the chine 4 can be set as desired within a range (a range including a first area A1 and a second area A2) that is 0-50% above a propeller diameter D, as referenced to a propeller center height L0.
A marine-use contra-rotating propeller device (100) is provided with an outer shaft (12), an inner shaft (14), and a drive device (30). The outer shaft has a front propeller (1) mounted onto a rear-end part thereof, and is rotatably supported on a stern tube bearing (16). The inner shaft has a rear propeller (2) mounted onto a rear-end part thereof, and is rotatably supported on contra-rotating bearings (5, 7). A stern-side stern tube bearing seal (40) is provided to the ocean side of the stern tube bearing (16), and seals the space therebetween. A stern-side contra-rotating seal (50) is provided to the ocean side of the stern-side contra-rotating bearing (7), and seals the space therebetween. A seal drain collection device (60) supplies seal air (A) to the stern-side stern tube seal or stern-side contra-rotating seal, and collects drainage (D1, D2) together with the seal air. The invention is furthermore provided with a rotational position sensor (70) for detecting the rotational position of the outer shaft or inner shaft, and a rotational control device (80) for causing the drive device to stop due to a detection signal of the rotational position sensor.
F16C 17/02 - Paliers à contact lisse pour mouvement de rotation exclusivement pour charges radiales uniquement
F16C 33/74 - Dispositifs d'étanchéité pour paliers à contact lisse
F16N 31/00 - Dispositifs pour recueillir ou retenir le lubrifiant dans les machines ou appareils ou pour l'en évacuer
F16J 15/16 - Joints d'étanchéité entre deux surfaces mobiles l'une par rapport à l'autre
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
B63H 23/06 - Transmission de l'énergie de l'appareil de propulsion aux éléments propulsifs à entraînement mécanique pour transmettre l'action d'un appareil de propulsion unique
A marine contra-rotating propeller apparatus (100) comprises: an outer shaft (12) to which a front propeller (1) is mounted; an inner shaft (14) to which a rear propeller (2) is mounted; a contra-rotating thrust bearing (40) through which a thrust force of the front propeller is transmitted to the inner shaft; and a contra-rotating gear device (20) which rotates the outer shaft and the inner shaft in mutually reverse directions. The contra-rotating gear device (20) has an inner-shaft thrust bearing (50) which supports the thrust force of the inner shaft and maintains the axial position of the inner shaft. A thrust clearance measuring device (60) has: an inner shaft position sensor (62) which measures a forward-traveling-time inner-shaft position (F1) and a backward-traveling-time inner-shaft position (R1) in the axial direction of the inner shaft during operation of a marine vessel; and a thrust clearance arithmetic device (66) which calculates a first thrust clearance (C1) of the inner-shaft thrust bearing.
B63B 79/10 - Surveillance des caractéristiques ou des paramètres de fonctionnement des navires en opération utilisant des capteurs, p. ex. des capteurs de pression, des jauges de contrainte ou des accéléromètres
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
A lubricant flow sensor (70) comprises: a horizontal conduit (72); a weir (74); and a level sensor (76). The horizontal conduit (72) is provided in a lubricant discharge line (28d) through which a lubricant (O) flows horizontally. The weir (74) has a lower low-flow opening (75a), and an upper high-flow opening (75b). The level sensor (76) has a float (76a) that floats near the liquid level in the horizontal conduit, and detects the liquid level (L) in the horizontal conduit. The lubricant flow sensor (70) further comprises a hollow protective tube (78).
G01F 1/52 - Mesure du débit volumétrique ou du débit massique d'un fluide ou d'un matériau solide fluent, dans laquelle le fluide passe à travers un compteur par un écoulement continu en utilisant des effets mécaniques en mesurant la hauteur du niveau du fluide atteinte dans un réservoir par l'effet de la force ascendante de l’écoulement du fluide
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
G01F 23/62 - Indication ou mesure du niveau des liquides ou des matériaux solides fluents, p. ex. indication en fonction du volume ou indication au moyen d'un signal d'alarme par des flotteurs en utilisant comme éléments de transmission des éléments fixés rigidement aux flotteurs et se déplaçant de manière rectiligne avec ces derniers en utilisant des moyens d'indication actionnés magnétiquement
20.
EVALUATION METHOD AND EVALUATION DEVICE FOR SURFACE ROUGHENING OF METAL SURFACE
The present invention executes: a step S2 for acquiring image data of a surface of a testing sample which has been subjected to surface roughening; a step S7 for calculating an NDSI value of each pixel of the image data with respect to light of two wavelengths pre-selected on the basis of the image data; and steps S8-S12 for performing evaluation with respect to the surface roughening of the testing sample on the basis of the NDSI values.
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
Provided are a hull structure and ship in which an increase in weight can be inhibited and it is possible to reduce the number of hull structure members. This hull structure 2 is provided with: a plurality of center tanks 21 disposed along a hull center line CL; and a plurality of wing tanks 22 disposed on the opposite sides of the center tanks 21. Concerning the center tanks 21 and the wing tanks 22, transverse bulkheads 21a that separate the center tanks 21 in a ship longitudinal direction X and transverse bulkheads 22a that separate the wing tanks 22 in the ship longitudinal direction X are disposed at different positions in the ship longitudinal direction X, excluding the opposite end parts in the ship longitudinal direction of the hull structure 2.
B63B 25/08 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides
B63B 3/58 - CloisonsRenforts de cloison avec bordé plat
The present invention provides: a tank dome structure that can reduce a projection amount of a tank dome into another compartment; and a ship. A tank dome structure 2 according to this embodiment comprises a deck 3 which forms a portion of a tank hold compartment 13 where a tank 11 is stored and which is provided with an opening 31 through which a tank dome 12 is inserted, a flange 4 extending from the circumferential surface of the tank dome 12 so as to be disposed between the tank 11 and the deck 3, and an expansion joint 5 disposed so as to seal the gap between the deck 3 and the flange 4.
B63B 11/04 - Caractéristiques de construction des soutes à combustible ou des réservoirs de ballast, p. ex. avec cloisons élastiques
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
The present invention provides an operation automatic generation method and an operation automatic generation system for a welding robot, which makes it possible to reduce a prior work of the welding robot and automatically generate operations of the welding robot on site. An operation automatic generation method for a welding robot 1 according to this embodiment includes: a setting step for disposing a 3D measurement sensor 4 on a predetermined spot (Step 1); a measurement step for dividing a welding spot into a plurality of measurement areas and measuring the areas with the 3D measurement sensor 4 (Step 2); a point group processing step for generating an extraction plane from point group data capable of being recognized as a plane out of measured point group data and generating an assumption plane from an invalid area from which no point group data can be obtained and not capable of being recognized (Step 3); a measurement checking step for checking whether all measurements on the welding spots are terminated or not (Step 4); and a 3D model generation step for generating a 3D model of the welding spots from the extraction plane and the assumption plane (Step 5).
B23K 9/12 - Alimentation automatique en électrodes ou en pièces ou déplacement automatique des électrodes ou des pièces pour le soudage ou le découpage à l'arc en lignes continues ou par points
B25J 9/22 - Systèmes d'enregistrement ou de reproduction
G05B 19/4093 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par la programmation de pièce, p. ex. introduction d'une information géométrique dérivée d'un dessin technique, combinaison de cette information avec l'information d'usinage et de matériau pour obtenir une information de commande, appelée programme de pièce, pour la machine à commande numérique [CN]
24.
CONTAINER SHIP BOW STRUCTURE, CONTAINER SHIP, AND DESIGN METHOD FOR CONTAINER SHIP BOW STRUCTURE
Provided are a container ship bow structure, a container ship, and a container ship bow structure design method, whereby the size and weight of a windbreak structure can be reduced while reducing wind pressure resistance. The container ship 1 comprises: a bow section 2 which is the tip section of the hull; a cargo zone 3 into which a plurality of containers 31 can be loaded; and a windbreak 5 disposed substantially vertically upon an edge of an upper deck 4. In addition, the container ship 1 has wind direction set within the range of ±10° – ±60° relative to the direction of travel; the rate of reduction in wind pressure resistance when the container ship 1 is fully loaded and half loaded is calculated; and the height of the windbreak 5 is set with reference to the calculated rate of reduction. The height Hw of the windbreak 5 is set within a range of, e.g., 5–18 m or 0.18–0.65 times the average container loading height Hc.
B63B 15/00 - SuperstructuresAménagements ou adaptations relatifs aux mâts
B63B 71/10 - Conception des naviresPrévision de leurs performances par simulation par ordinateur, p. ex. par la méthode des éléments finis [MEF] ou la dynamique des fluides numérique [DFN]
25.
HYDROGEN UTILIZATION METHOD AND HYDROGEN UTILIZATION SYSTEM
A hydrogen utilization method and a hydrogen utilization system are provided which can increase the efficiency of hydrogen utilization and which can improve storage efficiency while lowering hurdles in storage equipment. This hydrogen utilization system 1, which utilizes hydrogen as an energy source, is provided with a hydrogenation device 2 which generates a solid hydrogen compound (for example, sodium borohydride) that is solid at normal temperature and pressure, a dehydrogenation device 3 which dehydrogenates the hydrogen compound to generate hydrogen, a first ship 4a which is configured to be capable of accommodating the hydrogen compound, and a second ship 4b which is configured to be capable of accommodating the dehydrogenated compound (for example, sodium metaborate) generated by the dehydrogenation.
F17C 11/00 - Utilisation de solvants ou d'absorbants des gaz dans les récipients
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
C01B 3/00 - HydrogèneMélanges gazeux contenant de l'hydrogèneSéparation de l'hydrogène à partir de mélanges en contenantPurification de l'hydrogène
C01B 6/21 - Préparation de borohydrures des métaux alcalins, des métaux alcalino-terreux, du magnésium ou du bérylliumLeurs complexes d'addition, p. ex. LiBH4.2N2H4, NaB2H7
26.
NAVIGATION METHOD FOR MARINE VESSEL, NAVIGATION SYSTEM, AND MARINE VESSEL
pvpv that is the predicted value of the actual wave moment Mw(r), and carries out navigation so that the moment generated in the marine vessel S during navigation does not exceed a designed tolerance value Ma.
B63B 27/00 - Aménagement des équipements de bord pour l'embarquement ou le débarquement des cargaisons ou des passagers
B63B 39/03 - Installations pour diminuer le tangage, le roulis ou autres mouvements similaires indésirables du navireAppareils pour indiquer l'assiette du navire réduisant les mouvements du navire par déplacement de masses par déplacement de liquides
B63B 39/12 - Installations pour diminuer le tangage, le roulis ou autres mouvements similaires indésirables du navireAppareils pour indiquer l'assiette du navire indiquant le tirant d'eau ou la pesée
G01C 21/20 - Instruments pour effectuer des calculs de navigation
B63B 79/10 - Surveillance des caractéristiques ou des paramètres de fonctionnement des navires en opération utilisant des capteurs, p. ex. des capteurs de pression, des jauges de contrainte ou des accéléromètres
B63B 79/20 - Surveillance des caractéristiques ou des paramètres de fonctionnement des navires en opération utilisant des modèles ou la simulation, p. ex. des modèles statistiques ou des modèles stochastiques
B63B 79/40 - Surveillance des caractéristiques ou des paramètres de fonctionnement des navires en opération pour le suivi des operations des navires, p. ex. le suivi de leur vitesse, de leur itinéraire ou de leur calendrier d’entretien
27.
METHOD FOR PLANNING STOWAGE OF SHIP, STOWAGE PLANNING SYSTEM, AND SHIP
Actual wave moment Mw(r) generated by a ship S due to marine phenomena on a shipping route is estimated on the basis of the marine phenomena predicted on the shipping route, and stowage is planned on the basis of the predicted value of the actual wave moment Mw(r). The difference between the predicted value of the actual wave moment Mw(r) and the design wave moment Mw(d) is calculated as a stowage margin ΔM, and it is determined whether to change the stowage on the basis of the stowage margin ΔM.
B63B 27/00 - Aménagement des équipements de bord pour l'embarquement ou le débarquement des cargaisons ou des passagers
G06Q 10/08 - Logistique, p. ex. entreposage, chargement ou distributionGestion d’inventaires ou de stocks
B63B 71/10 - Conception des naviresPrévision de leurs performances par simulation par ordinateur, p. ex. par la méthode des éléments finis [MEF] ou la dynamique des fluides numérique [DFN]
Provided are a floating structure and an offshore facility with which it is possible to reduce load on a cable that is thrown into the sea. A floating structure 11 includes: a lower hull 2 that constitutes a buoyant body when submerged in water; four columns 3 mounted upright on the lower hull 2; an upper hull 4 disposed on the four columns 3; and a protection pipe 5 supported at both ends by the lower hull 2 and the upper hull 4. The lower hull 2 is constituted by a central part 21, and four columnar bodies 22 extending radially from the central part 22. The protection pipe 5 is supported at both ends by the upper hull 4 and the central part 21 of the lower hull 2.
B63B 27/24 - Aménagement des équipements de bord pour l'embarquement ou le débarquement des cargaisons ou des passagers des systèmes de canalisations
B63B 77/10 - Transport ou installation de structures en mer sur site par flottaison, p. ex. en utilisant des barges semi-submersibles, en ballastant la structure ou transport de plateformes pétrolières-gazières spécialement adaptés aux installations de production d'énergie électrique, p. ex. aux éoliennes ou aux générateurs à turbine marémotrice
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
29.
METHOD FOR CALCULATING HEATING PLAN USED FOR BENDING METAL PLATE BY LINE HEATING
The present invention is a method for calculating a heating plan used for bending a metal plate by line heating. This calculation method is provided with: a step for repeating, while changing the position of a heating line, a first trial in which a structural analysis is carried out using a first heating condition with a heating line, which has been set in an analysis model, and the analysis result and a first target shape are compared; a step for selecting, as a first selected heating line, a heating line set in the first trial for which the analysis result was close to the first target shape, among the repeated first trials; a step for repeating, while changing the position of the heating line, a second trial in which a structural analysis is carried out using a second heating condition with a heating line, which has been set in the analysis model, and the first selected heating line, and the analysis result and a second target shape are compared; and a step for selecting, as a second selected heating line, a heating line set in the second trial for which the analysis result was close to the second target shape, among the repeated second trials.
Provided are a floating structure, a floating wind-powered electricity generating device, and a method for manufacturing floating structure with which a wind turbine can be replaced and installed even if the size of the wind turbine is increased. A floating wind-powered electricity generating device 1 according to an embodiment of the present invention is provided with: a first wind turbine 2 which is driven in rotation by being subjected to wind, thereby generating electricity; and a floating structure 4 having buoyancy allowing installation of a second wind turbine 3 that may be installed in the future and that has a larger output than the output of the first wind turbine 2 actually installed. In this floating wind-powered electricity generating device 1, the floating structure 4 is designed and manufactured by calculating the required buoyancy on the basis of the total weight of the second wind turbine 3 having an output greater than that of the first wind turbine 2 that is actually to be installed, such that it is not necessary to manufacture a new floating structure even if the size of the wind turbine is increased.
F03D 13/25 - Dispositions pour monter ou supporter des mécanismes moteurs à ventPylônes ou tours pour des mécanismes moteurs à vent spécialement adaptés à l’installation offshore
B63B 75/00 - Construction ou assemblage de structures flottantes en pleine mer, p. ex. plateformes semi-submersibles, plateformes SPAR ou plateformes d’éoliennes
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
31.
ENERGY RECOVERY DEVICE, METHOD FOR CONTROLLING SAME, AND SHIP PROVIDED WITH SAME
This energy recovery device is provided with a supercharger (20), a power turbine electricity generator (30), and a control device (50). The power turbine electricity generator (30) is provided in an electricity generating line (12), and generates electricity by means of the energy of exhaust gas discharged from an exhaust manifold (M1). An electricity generation control valve (V1) is provided in the electricity generating line (12) to control the flow rate of the exhaust gas supplied from the exhaust manifold (M1) to the power turbine electricity generator (30). An exhaust valve (V2) is provided in an exhaust line (14) to vent exhaust gas from the exhaust manifold (M1) to the outside. The control device (50) controls the electricity generation control valve (V1) and the exhaust valve (V2).
B60K 25/04 - Entraînements auxiliaires par pression statique ou dynamique ou bien par vide engendrés par le moteur
B63J 3/02 - Entraînement des auxiliaires par l'ensemble moteur de propulsion
F01N 5/04 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant l'énergie cinétique
F02D 21/08 - Commande des moteurs caractérisés par leur alimentation en oxygène non extrait de l'air ou autre gaz non combustible particulière aux moteurs pour lesquels d'autres gaz non combustibles sont ajoutés à l'air comburant l'autre gaz étant le gaz d'échappement du moteur
F02D 23/00 - Commande des moteurs caractérisés par le fait d'être suralimentés
F02M 26/05 - Boucles à haute pression, c.-à-d. dans lesquelles le gaz d’échappement recyclé est pris du système d’échappement en amont de la turbine et réintroduit dans le système d’admission en aval du compresseur
The objective of the present invention is to provide a bow shape and a ship with which it is possible for the flow of bubbles trapped in a bottom portion of the ship to be controlled without the addition of a special device. A ship 1 has a bow shape provided with protruding portions 4 which are disposed on both sides of a hull centerline CL of a bow portion 2, and which project forward from a ship bottom portion 3, wherein the protruding portions 4 are configured such that a forward projecting amount A is greatest at the ship bottom portion 3. The protruding portions 4 are formed forward of a collision bulkhead 6. Further, the forward projecting amount A of the protruding portions 4 is set with reference to a load waterline LWL.
This ship comprises a bow portion having: a bow upper portion which has a leading-end surface formed so as to incline rearward toward the bottom and which falls in the draft range during navigation in ice-covered waters; and a bow lower portion which has a leading-end surface formed so as to extend straight below from the lower end of the bow upper portion and which falls in the draft range during navigation in non-ice-covered waters.
B63B 43/06 - Amélioration de la sécurité des navires, p. ex. contrôle des avaries, non prévue ailleurs réduisant le risque de chavirer ou de sombrer par augmentation de la stabilité employant des réservoirs de ballastage
34.
OFFSHORE WORKING FACILITY AND CONSTRUCTION METHOD THEREOF
The present invention provides an offshore working facility enabling stable work even in a deep sea region and capable of improving work efficiency. The offshore working facility has three columns 10, a deck 20 liftably supported with respect to the columns 10, and a crane 30 mounted on the deck 20. The deck 20 is configured as a floating structure and has a main deck part 21 and a first extending part 22 formed so as to extend from the main deck part 21. The crane 30 is mounted on the first extending part 22. The offshore working facility is configured by adding the first extending part 22 and the crane 30 to a jack-up drilling rig removed of a drilling facility and a cantilever. The first extending part 22 is added to the main deck part 22 with use of a supporting structure of the cantilever.
B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
E02B 17/00 - Iles artificielles montées sur pilotis ou supports similaires, p. ex. plates-formes sur pieds extensiblesProcédés de construction de celles-ci
Provided are a heat shielding structure and a heat shielding tank, which are capable of suppressing damage to a heat insulation panel and a support member thereof even when the heat insulation panel is applied to a side surface of a tank. A heat shielding tank 1 according to one embodiment of the present invention is a heat shielding tank having a heat shielding structure 2 applied to the entire surface thereof. The heat shielding structure 2 is disposed on a side surface 1s of the heat shielding tank 1 having a support member 11 disposed on a surface thereof, and is provided with: a heat insulation panel 3 having a fixing portion 31 at a center portion thereof, the portion 31 fixed to the support member 11; a first pad 4 disposed between the fixing portion 31 and the side surface 1s of the heat shielding tank 1; and a second pad 5 positioned lower than the first pad 4 and between the side surface of the heat shielding tank 1 and the heat insulation panel 3.
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
F17C 3/04 - Récipients non sous pression assurant une isolation thermique par des couches isolantes
36.
SHAFT SEALING DEVICE FOR MARINE CONTRA-ROTATING PROPELLER DEVICE
This shaft sealing device 50 is provided with a stern tube seal 52 on the stern side, a contra-rotating seal 54 on the stern side, a single air supply device 56, a stern tube drainage recovery device 58, and a contra-rotating drainage recovery device 60. The single air supply device 56 supplies sealing air A to the stern tube seal 52 on the stern side and to the contra-rotating seal 54 on the stern side via the stern tube seal 52. The stern tube drainage recovery device 58 independently recovers a front section drainage D1 discharged from the stern tube seal 52 on the stern side. The contra-rotating drainage recovery device 60 separates and recovers, from the front section drainage D1, a rear section drainage D2 discharged from the contra-rotating seal 54 on the stern side.
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
F16C 17/02 - Paliers à contact lisse pour mouvement de rotation exclusivement pour charges radiales uniquement
F16C 33/74 - Dispositifs d'étanchéité pour paliers à contact lisse
F16J 15/18 - Joints d'étanchéité entre deux surfaces mobiles l'une par rapport à l'autre par presse-étoupes pour garnitures élastiques ou plastiques
F16J 15/324 - Agencements pour graissage ou refroidissement du joint d’étanchéité lui-même
F16N 7/22 - Installations à huile ou autre lubrifiant non spécifié, à réservoir ou autre source portés par la machine ou l'organe machine à lubrifier le lubrifiant provenant du réservoir par moyens mécaniques l'huile étant élevée par un dispositif élévateur avec un ou plusieurs organes d'alimentation tournant autour de l'arbre à lubrifier ayant la forme d'anneaux
F16N 7/38 - Installations à huile ou autre lubrifiant non spécifié, à réservoir ou autre source portés par la machine ou l'organe machine à lubrifier avec pompe séparéeInstallations centralisées de lubrification
F16N 11/08 - Installations à graisse, à réservoir ou autre source fixes, pour le graissage des machines ou organes machineGraisseurs avec entraînement mécanique autre que direct par ressort ou poids
F16N 13/22 - Pompes de graissage avec dispositifs de distribution
F16N 31/00 - Dispositifs pour recueillir ou retenir le lubrifiant dans les machines ou appareils ou pour l'en évacuer
37.
CONTRA-ROTATING PROPELLER DEVICE AND SHIP USING SAME
The boss of a front propeller (2a) is fixed to a propeller shaft (5), and the boss of a rear propeller (2b) is supported by the propeller shaft (5) so as to be freely rotatable about the axis (Z-Z) of the propeller shaft (5). A reversal mechanism (10) has a contra-rotating gear device (20) and a reverse torque fixing device (40). The contra-rotating gear device (20) is accommodated in the boss of the rear propeller (2b) and reverses the rotation direction of the propeller shaft (5) to drive the rear propeller (2b). Furthermore, the contra-rotating gear device (20) is supported by the propeller shaft (5) so as to be rotatable about the axis (Z-Z). The reverse torque fixing device (40) supports a portion (carrier 30) of the contra-rotating gear device (20) and resists reverse torque about the axis (Z-Z).
B63H 5/10 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices comportant plus d'une hélice du type coaxial, p. ex. du type contre rotatif
38.
ORGANISM ADHESION SUPPRESSION METHOD AND ORGANISM ADHESION SUPPRESSION DEVICE
Provided is an organism adhesion suppression method in which the adhesion of organisms in water is suppressed, the organism adhesion suppression method comprising: a preparation step (S10) in which an organism adhesion suppression target member that is immersed in water and formed from a copper alloy serves as a cathode, and an anode member which constitutes the opposite pole of the organism adhesion suppression target member is immersed and disposed in the water; and an energization step (S12) in which a DC current is supplied between the organism adhesion suppression target member and the anode member.
B63B 59/04 - Moyens pour éviter la salissure de la coque
A01M 29/24 - Épouvantails ou dispositifs répulsifs, p. ex. pour oiseaux utilisant des effets électriques ou magnétiques, p. ex. des électrochocs, des champs magnétiques ou des micro-ondes
E02B 1/00 - Équipement, appareils ou procédés pour travaux hydrauliques généraux
Provided is a bow shape 1 for a vessel, the bow shape 1 having a protrusion 1a which protrudes in a bulge shape on both left and right sides aside from the bow end, at least beneath the load waterline.
Provided are a fin device and a ship such that slow zones are concentrated on the propeller surface, thereby improving propulsion efficiency and allowing energy conservation. A ship 1 according to one embodiment of the present invention comprises a fin device 2 which is disposed on the ship body provided with a planar side flat 11 that is formed in the ship length direction on the ship side. The ship 1 has two fins (a first fin 21 and a second fin 22) within a region α that is surrounded by a line L1, which connects the stern-side lowest point P1 of the side flat 11 to the intersection Q between the designed waterline DWL and the propeller line PL showing the position of a propeller 12, a bilge height line BHL showing a bilge height, and the propeller line PL.
B63H 5/16 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices caractérisées par un montage sous voûteAménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices avec des éléments fixes de guidage des filets d'eauMoyens pour empêcher l'encrassement de l'hélice, p. ex. protections, grillages ou écrans
B63B 1/32 - Autres moyens pour faire varier les caractéristiques hydrodynamiques inhérentes aux coques
B63B 39/06 - Installations pour diminuer le tangage, le roulis ou autres mouvements similaires indésirables du navireAppareils pour indiquer l'assiette du navire réduisant les mouvements du navire par l'effet d'ailerons agissant sur l'eau ambiante
This bow shape comprises a recess 1a having a pair of inclined shapes opening towards the front in the left-right direction, at least above the load waterline.
In this floating structure 1, configured such that the entirety thereof is supported on water, which comprises a plurality of columns 2 that are configured as columnar buoyant bodies extending in the vertical direction and a connecting body 3 that connects the plurality of columns 2 deployed in the horizontal direction, and which is configured so that an upper structure (wind turbine) 4 is connected to the top of at least one (main column 2a) of the columns 2, the configuration is such that the buoyancy generated by the main column 2a is greater than the other columns 2 (side columns 2b).
A doubler member has a td/Wd ratio, of plate thickness td to plate width Wd, of less than 2, and said doubler member is overlaid on and joined by fillet bonding to the surface of a member to be joined that has a plate thickness of greater than or equal to 50mm, and furthermore, a bonding member is bonded by welding to the surface of the fillet-welded doubler member, resulting in a welded structure. On the surface of overlap between the surface of the doubler member and the surface of the member to be joined, an unwelded portion is formed which, in the joint cross section, is 95% or more than the plate thickness td of the doubler member. Further, the fillet welding condition is adjusted, and the toughness of the weld metal is adjusted such that the fracture appearance transition temperature vTrs (°C) of the fillet weld metal varies according to the fillet weld leg length L and, in relation with the plate thickness tf of the member to be joined, satisfies vTrs ≦ -5L + 65 - 1.5(tf-75) ... (1b) if L ≧ 20mm, and satisfies vTrs ≦ -35 - 1.5(tf - 75) ... (1c) if L < 20mm. Hereby, the fillet weld metal part makes it possible to arrest propagation of brittle cracks occurring from the member to be bonded or the bonding member, and it is possible to provide a welded structure which has excellent brittle crack arrest characteristics and is suitable for use in a hull structure.
B23K 31/00 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux
This welded structure is provided with a doubler member (10) disposed at the abutment of a web (1) and a flange (2). The web end surface is abutted against the doubler member surface, the web and the doubler member are joined by fillet welding; the flange surface and doubler member surface are placed overlapping each other and the doubler member is joined with fillet welding. At that time, the relation between the width, in the joint cross section, of the unwelded portion of the overlapping surface of the fillet welded joint, the ratio Y(%) of the doubler member plate width and the sum of the leg lengths of the left and right fillet welded portions, and the brittle crack arrest toughness (Kca)T(N/mm3/2) of the doubler member at the service temperature (°C) is adjusted to satisfy Y(%) ≧ {6900-Kca}/85. Thusly, it is possible to prevent and stop propagation of brittle cracks occurring from the flange by means of the doubler member.
B23K 31/00 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux
A self-aligning bearing support device 10 supports an intermediate bearing 7 which rotatably supports the intermediate portion of an intermediate shaft 6. The intermediate bearing 7 extends horizontally with the front and rear ends thereof being rotatably supported. The self-aligning bearing support device 10 has a total spring constant k with respect to the displacement x of the intermediate bearing 7 from the installation height. The total spring constant k is set so that the supporting force F of the intermediate bearing 7 falls within a preset load range RF in a preset height range RH. The self-aligning bearing support device 10 also has a displacement speed restriction device 30 which restricts the speed of displacement of the intermediate bearing 7 from the installation height. The displacement speed restriction device 30 has a displacement fixing device (remote control valve 39) which fixes the displacement x of the intermediate bearing 7.
An appendage 8 for reducing hub vortex is disposed, via a support body 7 extending from a hull 2, at the rear of a propeller (wing propeller) 4 which has no rudder disposed to the rearward thereof. The appendage 8 has a circular cross-section in a direction orthogonal to a center axis extending in the hull direction, and a rear section thereof is formed in a spindle shape, the diameter of which decreases toward the rear end thereof. The appendage 8 is configured to have a maximum diameter that is equal to 10-40% of the diameter of the propeller (wing propeller) 4, and a hull-direction length that is equal to 40-70% of the diameter of the propeller (wing propeller) 4.
A ship propulsion device, wherein an attachment 4 for reducing the hub vortex of a propeller 2 is installed at the elevation of the propeller 2 on the front edge of a rudder 3 disposed at the rear of the propeller 2. The distance L1 between the front edge of the rudder 3 and the blade center of the propeller 2 is 30-60% inclusive of the diameter D of the propeller 2. The distance L2 between the front end of the attachment 4 and the rear end of the propeller 2 is within the range of 50-300 mm.
In this horsepower estimation method for a multi-propeller ship provided with three or more propellers, a self-propulsion test is carried out in which a model ship is made to advance at a given speed while the rotation speed ratio for each propeller is varied, and regression analysis is used to estimate the relationship between a thrust ratio or torque ratio for each of the propellers and the self-propulsion factor at the given speed. The estimated relationship between the thrust ratio or torque ratio for each of the propellers and the self-propulsion factor is used to estimate the self-propulsion factor of an actual ship from the thrust ratio or torque ratio for each of the propellers based on the design of the actual ship, and on the basis of the estimated self-propulsion factor, the horsepowers of each propeller of the actual ship are estimated.
G01M 10/00 - Tests hydrodynamiquesAménagements dans ou sur les bassins de tests des navires ou les tunnels hydrauliques
B63B 9/02 - Méthodes de tracé, de construction, d'entretien, de conversion, de radoubage, de réparation ou de détermination des caractéristiques des navires, non prévues ailleurs utilisant des bassins de carène pour la conception
B63B 49/00 - Aménagements relatifs aux instruments nautiques ou d'aide à la navigation
This ship propulsion device is equipped with an energy-saving appendage 5 which is located forward of a propeller 1 and which has a curved surface having a radius R smaller than the radius r of the propeller 1. The pitch of the blades 3 of the propeller 1 has a pitch distribution having a local minimum point S where the pitch is smallest at a position radially inward of the radius R of the energy-saving appendage 5.
B63H 5/16 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices caractérisées par un montage sous voûteAménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices avec des éléments fixes de guidage des filets d'eauMoyens pour empêcher l'encrassement de l'hélice, p. ex. protections, grillages ou écrans
Provided is a ship in which fuel efficiency is improved while a reduction in the propulsion efficiency of a propeller is suppressed. Also provided is a ship cleaning method. The ship (100) equipped with ballast tanks (10) for storing ballast water is equipped with a propeller (1) and a water jetting means (2). The water jetting means (2) jets water toward the propeller (1) if the propeller (1) is at least partially exposed at the water surface. The ship (100) is also equipped with a control means (50) for controlling the water jetting means (2). The control means (50) controls the water jetting means (2) in such a manner that water is jetted toward the propeller (1) if the propeller (1) is at least partially exposed at the water surface.
B63B 13/00 - Conduits pour l'épuisement ou le ballastageÉquipement automatique pour l'assèchementDalots
B63B 39/12 - Installations pour diminuer le tangage, le roulis ou autres mouvements similaires indésirables du navireAppareils pour indiquer l'assiette du navire indiquant le tirant d'eau ou la pesée
B63H 5/07 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices
A lift generator (10) is positioned in front of a propeller (3) of a ship (1). The lift generator (10) includes a wall part (7) extending in the circumferential direction around an extension line (Ce) of the central axis (C) of the propeller (3). A flow path penetrating the wall part (7) in the direction of the extension line (Ce) is formed inside the wall part (7). In an airfoil, an outer side surface forming an outer circumferential surface (7a) of the wall part (7) is curved inward so as to form a recess. The airfoil satisfies |dt/dx|≤0.15 over the entire range from a set position, at which the airfoil has a maximum thickness, to the trailing edge, wherein dx represents the minute change amount of a position coordinate x in the blade chord direction of the airfoil, dt represents the minute change amount of a thickness t with respect to dx, and |dt/dx| represents the magnitude of dt/dx.
B63H 5/16 - Aménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices caractérisées par un montage sous voûteAménagements à bord des navires des éléments propulsifs agissant directement sur l'eau des hélices avec des éléments fixes de guidage des filets d'eauMoyens pour empêcher l'encrassement de l'hélice, p. ex. protections, grillages ou écrans
This rudder 100 for ships is equipped with an upper rudder 10A and a lower rudder 10B which are vertically arranged behind and on the axis of a propeller 8 disposed at a stern 2. The upper rudder 10A and the lower rudder 10B can be independently turned to port and starboard sides from the axis of the propeller 8. The upper rudder 10A has an airfoil shape suitable for a propeller vortex flow 9a flowing from the port side 7 to the starboard side 6. The lower rudder 10B has an airfoil shape suitable for a propeller vortex flow 9b flowing from the starboard side 6 to the port side 7. During deceleration or deceleration turning, one of the upper rudder 10A and the lower rudder 10B is turned to the port side 7, and the other rudder is turned to the starboard side 6.
This welded structure comprises a fillet welded joint which joins a joining member (1) and a joined member (2) having a plate-thickness of 50 mm or larger, in which an end face of the joining member (1) is in contact with a surface of the joined member (2). The weld leg length (3) and the welding width (13) of the fillet welded joint are each larger than 16 mm. A surface of the fillet welded joint at which the end face of the joining member (1) is in contact with the surface of the joined member (2) includes a non-welded part (4) at which the cross section of the fillet welded joint is not smaller than 95% of the plate-thickness (tw) of the joining member (1). Further, regarding a fillet welded metal (5) of the fillet welded joint, a predetermined relationship is satisfied between the Charpy impact test fracture transition temperature (vTrs (°C)) of the fillet welded metal (5) and the plate-thickness (tf) of the joined member (2), or among the temperature (vTrs (°C)), the thickness (tf), and a value (L) which is the lower between the weld leg length (3) and the welding width (13).
B23K 31/00 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux
a) of the support base sections (22) that support the support blocks (4) have surfaces parallel to a plane (S) including a segment (CC′) connecting two contact points (a first contact point (C) and a second contact point (C′)) with the tank (3) in each of the support blocks (4) and a straight line (Lf) passing a fixed point (F) of the tank (3) and parallel to the segment (CC′).
B63B 25/08 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides
B63B 25/12 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées
F17C 1/00 - Récipients sous pression, p. ex. bouteilles de gaz, réservoirs de gaz, cartouches échangeables
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
a) of the inner tank (2), and the inner tank (2) and the outer tank (3) are configured to be capable of sliding in the horizontal direction relative to each other. The outer tank (3) includes an expansion and contraction mechanism portion (33) that is disposed along the lower outer circumference thereof.
B65D 81/18 - Réceptacles, éléments d'emballage ou paquets pour contenus présentant des problèmes particuliers de stockage ou de transport ou adaptés pour servir à d'autres fins que l'emballage après avoir été vidés de leur contenu fournissant une ambiance spécifique pour le contenu, p. ex. température supérieure ou inférieure à la température ambiante
F17C 3/02 - Récipients non sous pression assurant une isolation thermique
In a spar-type floating structure comprising a tall, thin floating body 2 and a ballast portion 3 provided to the floating body 2 so that the weight of the ballast portion 3 allows the floating body 2 to float in upright position, the floating body 2 includes a horizontally-extending first extended portion 21 arranged at the bottom, a horizontally-extending second extended portion 22 arranged in the middle, and a column portion connecting the first and second extended portions 21, 22 and extending up to the waterline, the first extended portion 21 forms the ballast portion 3, and the second extended portion 22 constitutes a buoyancy portion giving buoyancy to the floating body 2.
[Problem] To provide a ship for which the amount of ballast never becomes excessive even under light-load and severe weather conditions. [Solution] A cargo hold (2) is divided into cargo-exclusive spaces (21) to be used solely for carrying cargo and a ballast-exclusive space (22) to be filled only with ballast water. Additionally, the ballast-exclusive space (22) is constructed so as to satisfy a heavy ballast condition, which is sometimes required by ship class rules, under severe weather conditions.
Provided is a system that supports welding skill education, with which a welding environment can easily be simulated, and with which welding work can be taught, corrected, and guided even when a single student is engaged in self-study. The present invention is equipped with: a manipulation means (2) that simulates a welding torch; a display (3) that simulates a base material; a speaker (4) that outputs a welding sound simulating the welding work; a control device (5) that displays an image of a bead on the display (3) in response to the behavior of the manipulation means (2) when the manipulation means (2) is moved on the display (3), and that outputs a welding sound from the speaker (4) in accordance with the behavior of the manipulation means (2); a three-dimensional input/output device (6) that holds the manipulation means (2), and is capable of inputting/outputting position information (D) for the tip (T) of the manipulation means (2); and a storage device (7) that stores the position information (D). The control device (5) selects and outputs the bead image and the type of welding sound on the basis of the position information (D) output by the three-dimensional input/output device (6) when the manipulation means (2) is manipulated.
B23K 31/00 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux
G09B 9/00 - Simulateurs pour l'enseignement ou l'entraînement
59.
Working system for floating structure, floating structure, working ship, and working method for floating structure
A working system includes a floating type floating structure, and a working ship configured to perform at least installation or maintenance of the floating structure. The floating structure has a column section whose peripheral surface is located at a waterline when the floating structure is floating, a ballast section arranged below the column section and a flange section arranged at an intermediate portion of the column section. The working ship has a gripping section capable of engaging with the flange section, and a raising/lowering device configured to raise and lower the floating structure.
B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
F03D 1/00 - Mécanismes moteurs à vent avec axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
B63B 43/06 - Amélioration de la sécurité des navires, p. ex. contrôle des avaries, non prévue ailleurs réduisant le risque de chavirer ou de sombrer par augmentation de la stabilité employant des réservoirs de ballastage
60.
SAND DISCHARGE DEVICE AND SAND DISCHARGE METHOD FOR BALLAST TANK
A sand discharge device, which discharges mud and sand deposited in ballast tanks (2) comprising multiple tank compartments (5) in a ship (1) equipped with a port-side water injection/drainage pump (21) and a starboard-side water injection/drainage pump (11), which inject water into and drain water from the ballast tanks (2), wherein this sand discharge device is equipped with: nozzles (19) which are provided near the tank floor plate (8) of the tank compartments (5), and which spray water; a water feed pipeline (13) that feeds water to the nozzles (19); a water discharge pipeline (22) that discharges from the ballast tanks (2) muddy water in which mud and sand that has been washed away by the water sprayed from the nozzles (19) has been dispersed and suspended; and a water feed/discharge control means (100) which, when mud and sand is discharged from the port-side ballast tanks (2), opens/closes a valve in the water feed pipeline (13) and operates the starboard-side water injection/drainage pump (11) so as to feed water into the port-side water feed pipeline (13) from the starboard-side water injection/drainage pump (11), and opens/closes a valve in the water discharge pipeline (22) and operates the port-side water injection/drainage pump (21) so as to discharge muddy water from the port-side water discharge pipeline (22) by means of the port-side water injection/drainage pump (21). Thus, the mud and sand accumulated in the ballast tanks (2) can be discharged efficiently.
This air supply device for an air-lubricated ship is characterized in being provided with a supercharger (10) for supplying pressurized air to a main engine (6) of an air-lubricated ship, an extraction means for extracting part of the pressurized air, a boosting means (30a) for further boosting the pressurized air extracted by the extraction means, a booster route (41a) for supplying the boosted air boosted by the boosting means (30a), a bypass route (51) for bypassing the boosting means (30a), and a route selection means for selecting between the boosting route (41a) and the bypass route (51); the booster route (41a) and/or the bypass route (51) being selected using the route selection means, so that boosted air and/or pressurized air is supplied and discharged around the hull (1). Accordingly, even if the pressure of the pressurized air supplied to the main engine (6) by the supercharger (10) fluctuates due to main engine (6) output and, further, even if draft pressure fluctuates due to a loading state, discharge is possible by boosting pressurized air in accordance with these fluctuations, making high energy efficiency and an improved energy saving effect possible.
B63B 1/38 - Autres moyens pour faire varier les caractéristiques hydrodynamiques inhérentes aux coques par réduction du frottement utilisant des bulles d'air ou des coussins d'air
B63H 21/14 - Aménagements de l'appareil moteur de propulsion ou de certains de ses éléments pour utilisation à bord des navires le navire étant actionné par moteurs à combustion interne
B63J 3/02 - Entraînement des auxiliaires par l'ensemble moteur de propulsion
F02B 37/00 - Moteurs caractérisés par l'utilisation de pompes entraînées au moins temporairement par les gaz d'échappement
A welded structure provided with a fillet-welded joint obtained by bringing an end surface of a bonding member into contact with the surface of a bonded member having a plate thickness equal to or greater than 50 mm and bonding the bonding member and the bonded member by fillet welding, the weld leg length and/or the welding width of the fillet-welded joint being equal to or less than 16 mm. The welded structure has, on the plane at which the end surface of the bonding member and the surface of the bonded member are brought into contact with each other, a non-welded section at which the joint cross-section is no less than 95% of the plate thickness t of the bonding member. The fillet welding is adjusted so that the fillet welding metal is such that the relationship between the fracture appearance transition temperature vTrs(°C) of the fillet welding metal and the plate thickness tf of the bonded member satisfies the expression vTrs≤-1.5tf+70, and/or the relationship between the absorption energy vE-20(J) at a test temperature of -20°C and the plate thickness tf of the bonded member satisfies vE-20(J)≥2.75tf(mm)-105; whereby propagation of brittle cracking generated from the bonded member having a plate thickness equal to or greater than 50 mm and having a butt-welded joint section is arrested at the fillet-welded metal section.
B23K 31/00 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux
A tank support structure comprises: sloped surfaces (21) formed on the side surfaces of a housing section (2); support foundations (22) disposed on the sloped surfaces (21); and support blocks (4) disposed on the support foundations (22) and on the bottom surface (31) of a tank (3), the bottom surface (31) including the portions of the tank (3) which face the sloped surfaces (21). The support block bottom surface (41) of a support block (4), the support block bottom surface (41) being disposed on a support foundation (22), and the support surface (22a) of the support foundation (22), the support surface (22a) supporting the support block (4), have surfaces parallel to a plane (S) including a line (CC') and a straight line (Lf), the line (CC') connecting two contact points (first contact point (C) and second contact point (C') ) of the support block (4) at which the support block (4) is in contact with the tank (3), the straight line (Lf) passing through the fixed point (F) of the tank (3) and being parallel to the line (CC').
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
B65D 88/12 - Grands réceptacles rigides spécialement conçus pour le transport
F17C 13/08 - Dispositions de montage des récipients
64.
FALL PREVENTION DEVICE AND TANK FOR FLOATING BODY STRUCTURE
The present invention comprises the following: a rail member (2) that is installed along a passageway (P) adjacent to a wall surface (W) and is fixed to the wall surface (W); and a guide member (3) which is slidably disposed on the rail member (2) and to which a life-line (L) latches. The rail member (2) also serves as a handrail for movement. The rail member (2) has a by-pass part (21) that in a case where a plurality of guide members (3L, 3R) face each other causes one guide member (3R) to be bypassed. The by-pass part (21) is configured by, for example, a by-pass channel branching off from one part of the rail member (2) and connecting to another part of the rail member (2), or a dead end that branches off from a part of the rail member (2). With this configuration, equipment costs can be reduced and worker safety can be improved.
A62B 35/00 - Ceintures ou harnais de sécuritéÉquipements similaires pour limiter le déplacement du corps humain, notamment en cas de changement brusque de mouvement
E04G 21/32 - Mesures de sécurité ou de protection pour les personnes pendant la construction des bâtiments
A liquefied gas tank comprises: an inner tank (2) which stores liquefied gas and is disposed so as to be capable of self-standing on a floor surface (F); and an outer tank (3) which is disposed to cover the inner tank (2) and is supported by an upper surface portion (2a) of the inner tank (2), and the outer tank (3) is configured so as to be slidable on the upper surface portion (2a) of the inner tank (2) in response to horizontal expansion and contraction of the inner tank (2) and moveable in response to vertical expansion and contraction of the inner tank (2). A ceiling portion (3a) of the outer tank (3) disposed on the upper surface portion (2a) of the inner tank (2) is not fixed to the upper surface portion (2a) of the inner tank (2), and the inner tank (2) and the outer tank (3) are configured so as to be relatively slidable in the horizontal direction. Further, the outer tank (3) has an expansion and contraction mechanism portion (33) disposed along a lower outer circumference.
A laser measurement system is provided with: a fixation jig (2) for a measurement instrument, having one end section (2a) affixed to a first flange (11) and an intermediate section (2b) also affixed to the first flange (11); a target jig (3) for laser measurement, affixed to a second flange (12); a laser measurement instrument (4) affixed to the other end section (2c) of the affixation jig (2) for a measurement instrument; and a calculation means (5) for calculating the positions of the first flange (11) and the second flange (12). The target jig (3) for laser measurement has: a base (31) disposed on the second flange (12); a spherical body (32) having a surface (32a) capable of reflecting a laser beam and affixed to the base (31) in such a manner that a part of the surface of the spherical body (32) protrudes; and an affixation means (33) for affixing the base (31) to the second flange (12).
A boil-off gas processing device which re-liquefies a boil-off gas (22) generated within a liquefied gas tank (2) that stores a liquefied gas (21), and returns the re-liquefied gas to the liquefied gas tank (2), and which has a boil-off gas discharge line (3) that discharges the boil-off gas (22) from the liquefied gas tank (2) to the outside, and a boil-off gas reliquefaction line (4) a portion of which is immersed in the liquified gas (21) inside the liquefied gas tank (2). The boil-off gas reliquefaction line (4) has a pressure maintenance means (42) that maintains the pressure required for reliquefaction of the boil-off gas (22), and the reliquefaction line (4) has a length (L) capable of absorbing the amount of heat required for reliquefaction of the boil-off gas (22).
A spar type floating structure has an elongated floating section (2) and a ballast section (3) which is disposed at the floating section (2), and the spar type floating structure is configured so that the floating section (2) is caused to float while being held in an upright position by the weight of the ballast section (3). The floating section (2) has: a first expanded section (21) disposed at the lower part of the floating section (2) and expanded in the horizontal direction; a second expanded section (22) provided at the intermediate section of the floating section (2) and expanded in the horizontal direction; and a column section (23) for connecting the first expanded section (21) and the second expanded section (22) and extended to the water line. The first expanded section (21) forms the ballast section (3), and the second expanded section (22) forms a floating body which applies a buoyant force to the floating section (2).
B63B 35/00 - Embarcations ou structures flottantes similaires spécialement adaptées à des finalités spécifiques et non prévues ailleurs
B63B 39/06 - Installations pour diminuer le tangage, le roulis ou autres mouvements similaires indésirables du navireAppareils pour indiquer l'assiette du navire réduisant les mouvements du navire par l'effet d'ailerons agissant sur l'eau ambiante
B63B 43/04 - Amélioration de la sécurité des navires, p. ex. contrôle des avaries, non prévue ailleurs réduisant le risque de chavirer ou de sombrer par augmentation de la stabilité
69.
SUPPORT STRUCTURE FOR CARGO TANK, FLOATING STRUCTURE, AND SUPPORT METHOD FOR CARGO TANK
This support structure for a cargo tank (2) has: a plurality of first support parts (3) distributed across the base (2a) of the cargo tank (2); a second support part (4) that is formed in a continuous manner along the long direction (X) of a floating structure (1) and is disposed at the base (2a) of the cargo tank (2); and a latch part (5) that is formed along the long direction (X) of the second support part (4), on the base (11a) side of a containing unit (11), and can latch to the second support part (4). The support structure is designed such that the vertical load (Fz) imposed by the cargo tank (2) can be supported by at least the first support parts (3) and the horizontal load (first horizontal load (Fy)) imposed by the cargo tank (2) can be supported by at least the second support part (4) and the latch part (5).
B63B 25/16 - Installations de chargement, p. ex. pour le rangement ou l'arrimageNavires spécialisés à cet effet pour chargement de marchandises fluides fermées isolées de la chaleur
F17C 13/08 - Dispositions de montage des récipients
70.
WORKING SYSTEM FOR FLOATING STRUCTURE, FLOATING STRUCTURE, WORKING SHIP, AND WORKING METHOD FOR FLOATING STRUCTURE
Provided are: a working system for a floating structure, enabling the work of installation, maintenance, etc. of the floating structure to be performed in a stable state; a floating structure; a working ship; and a working method for a floating structure. A working system (1) for a floating structure is provided with a floating type floating structure (2), and also with a working ship (3) for performing at least the installation or maintenance of the floating structure (2). The floating structure (2) has: a column section (4), the peripheral surface of which is located at the water line when the floating structure (2) floats; a ballast section (5) disposed below the column section (4); and a flange section (6) disposed at the intermediate part of the column section (4). The working ship (3) has a gripping section (7) which can be engaged with the flange section (6), and also has a lifting/lowering means (8) for lifting and lowering the floating structure (2). The floating structure (2) is affixed to the working ship (3) by lifting and lowering the floating structure (2) and the working ship (3) while the gripping section (7) of the working ship (3) is engaged with the flange section (6) of the floating structure (2) which is in a floating state.
B63B 35/44 - Constructions, magasins, plates-formes de forage ou ateliers flottants, p. ex. portant des appareils séparateurs huile-eau
B63B 43/06 - Amélioration de la sécurité des navires, p. ex. contrôle des avaries, non prévue ailleurs réduisant le risque de chavirer ou de sombrer par augmentation de la stabilité employant des réservoirs de ballastage
F03D 9/00 - Adaptations des mécanismes moteurs à vent pour une utilisation particulièreCombinaisons des mécanismes moteurs à vent avec les appareils qu’ils entrainentMécanismes moteurs à vent spécialement adaptés à l’installation dans des endroits particuliers
To provide the auxiliary float of a floating structure which can prolong the lifetime of the floating structure by reducing external force acting on the brace and can be used even at very deep water by increasing buoyancy, and to provide a remodeling method of the floating structure.
The auxiliary float (11) comprises two floats (12) coupled, respectively, to lower portions of two lower hulls (1) constituting a floating structure, two main coupling members (13) for coupling the floats (12) to each other, and four sub-coupling members (14) for coupling the main coupling member (13) and the float (12). The auxiliary float (11) is produced in advance and the floating structure is mounted on the auxiliary float (11), and then the lower hull (1) and the float (12) are connected, thus remodeling the floating structure.