09 - Appareils et instruments scientifiques et électriques
Produits et services
Downloadable computer operating software; Downloadable computer software applications for use with cable, cable-less, or combined cable and cable-less seismic data acquisition equipment to perform seismic exploration, namely, software that controls and monitors seismic recording station equipment, orchestrates and synchronizes seismic source equipment, records seismic data from sensors and performs and displays quality control on seismic data and seismic operations
2.
Methods and Systems for Time-Efficient Seismic Prospecting
A seismic survey uses a central control and a seismic source. The seismic source has a vibrator that acoustically couples to the ground using a moveable pad. A method for performing a seismic survey includes sending a first message from the seismic source to the central control indicating a time at which the pad is being lowered; estimating a time at which the pad will be acoustically coupled to the ground based on the first message; and sending a message from the central control to the seismic source to begin a sweep, the sweep beginning no sooner than the estimated time. Another method includes: mapping a surface of a terrain to be traversed by the truck using at least one sensor carried by the truck; positioning a moveable pad based on the mapped surface to provide a physical gap between the surface and the moveable pad; and traversing the mapped terrain with the truck.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Wireless controllers to remotely monitor and control the function and status of other electrical, electronic, and mechanical devices or systems, namely, nodal acquisition systems for remotely monitoring all aspects of field recording and other field operations in the nature of wireless monitoring and quality control of field data in seismic data acquisition applications
4.
Motion aware nodal seismic unit and related methods
A nodal seismic unit for acquiring seismic information includes an enclosure, a GPS receiver disposed in the enclosure; a motion sensor disposed in the enclosure; a LPWAN radio transceiver disposed in the enclosure; and a control unit disposed in the enclosure. The control unit is configured to transmit an unplanned movement signal to a remote operator using the LPWAN radio transceiver if the control unit receives a signal from the motion sensor indicative of an acceleration greater than a preset level. Additionally, the control unit may be configured to change an operating state of the nodal seismic unit in response to detecting a predetermined pattern of motion using the motion sensor.
A nodal seismic unit for acquiring seismic information includes an enclosure, a GPS receiver disposed in the enclosure; a motion sensor disposed in the enclosure; a LPWAN radio transceiver disposed in the enclosure; and a control unit disposed in the enclosure. The control unit is configured to transmit an unplanned movement signal to a remote operator using the LPWAN radio transceiver if the control unit receives a signal from the motion sensor indicative of an acceleration greater than a preset level. Additionally, the control unit may be configured to change an operating state of the nodal seismic unit in response to detecting a predetermined pattern of motion using the motion sensor.
A nodal seismic unit for acquiring seismic information includes an enclosure, a GPS receiver disposed in the enclosure; a motion sensor disposed in the enclosure; a LPWAN radio transceiver disposed in the enclosure; and a control unit disposed in the enclosure. The control unit is configured to transmit an unplanned movement signal to a remote operator using the LPWAN radio transceiver if the control unit receives a signal from the motion sensor indicative of an acceleration greater than a preset level. Additionally, the control unit may be configured to change an operating state of the nodal seismic unit in response to detecting a predetermined pattern of motion using the motion sensor.
A seismic survey uses a central control and a seismic source. The seismic source has a vibrator that acoustically couples to the ground using a moveable pad. A method for performing a seismic survey includes sending a first message from the seismic source to the central control indicating a time at which the pad is being lowered; estimating a time at which the pad will be acoustically coupled to the ground based on the first message; and sending a message from the central control to the seismic source to begin a sweep, the sweep beginning no sooner than the estimated time. Another method includes: mapping a surface of a terrain to be traversed by the truck using at least one sensor carried by the truck; positioning a moveable pad based on the mapped surface to provide a physical gap between the surface and the moveable pad; and traversing the mapped terrain with the truck.
A seismic survey uses a central control and a seismic source. The seismic source has a vibrator that acoustically couples to the ground using a moveable pad. A method for performing a seismic survey includes sending a first message from the seismic source to the central control indicating a time at which the pad is being lowered; estimating a time at which the pad will be acoustically coupled to the ground based on the first message; and sending a message from the central control to the seismic source to begin a sweep, the sweep beginning no sooner than the estimated time. Another method includes: mapping a surface of a terrain to be traversed by the truck using at least one sensor carried by the truck; positioning a moveable pad based on the mapped surface to provide a physical gap between the surface and the moveable pad; and traversing the mapped terrain with the truck.
A seismic survey uses a central control and a seismic source. The seismic source has a vibrator that acoustically couples to the ground using a moveable pad. A method for performing a seismic survey includes sending a first message from the seismic source to the central control indicating a time at which the pad is being lowered; estimating a time at which the pad will be acoustically coupled to the ground based on the first message; and sending a message from the central control to the seismic source to begin a sweep, the sweep beginning no sooner than the estimated time. Another method includes: mapping a surface of a terrain to be traversed by the truck using at least one sensor carried by the truck; positioning a moveable pad based on the mapped surface to provide a physical gap between the surface and the moveable pad; and traversing the mapped terrain with the truck.
A seismic source includes a base plate having a bottom surface contacting a surface of the ground. The coupler is connectable to the bottom surface of the base plate and projects downward from the base plate. The coupler contain soil under the base plate during operation. Another seismic source includes a base plate and at least one contact member. The base plate has an upper surface engaging the seismic source, a lower surface configured to contact a soil surface. The contact member projects from the lower surface and has a planar bottom surface with a surface area less than a surface area of the base plate lower surface.
An apparatus for performing a seismic survey includes a data unit disposed in a housing, a flexible tether connected to the housing at a first end and having a second end, the tether including at least signal carrying wire and a tension conveying member, and an antenna connected to the second end of the tether, the data unit in signal communication with the antenna via the at least one signal carrying wire.
G01V 1/18 - Éléments récepteurs, p. ex. sismomètre, géophone
G01V 1/16 - Éléments récepteurs de signaux sismiquesAménagements ou adaptations des éléments récepteurs
G01S 19/01 - Systèmes de positionnement par satellite à radiophares émettant des messages horodatés, p. ex. GPS [Système de positionnement global], GLONASS [Système global de navigation par satellite] ou GALILEO
G01V 1/22 - Transmission des signaux sismiques aux appareils d'enregistrement ou de traitement
12.
SEISMIC DATA ACQUISITION UNITS AND RELATED METHODS
An apparatus for performing a seismic survey includes a data unit disposed in a housing, a flexible tether connected to the housing at a first end and having a second end, the tether including at least signal carrying wire and a tension conveying member, and an antenna connected to the second end of the tether, the data unit in signal communication with the antenna via the at least one signal carrying wire.
A seismic source includes a base plate having a bottom surface contacting a surface of the ground. The coupler is connectable to the bottom surface of the base plate and projects downward from the base plate. The coupler contain soil under the base plate during operation. Another seismic source includes a base plate and at least one contact member. The base plate has an upper surface engaging the seismic source, a lower surface configured to contact a soil surface. The contact member projects from the lower surface and has a planar bottom surface with a surface area less than a surface area of the base plate lower surface.
A seismic source includes a base plate having a bottom surface contacting a surface of the ground. The coupler is connectable to the bottom surface of the base plate and projects downward from the base plate. The coupler contain soil under the base plate during operation. Another seismic source includes a base plate and at least one contact member. The base plate has an upper surface engaging the seismic source, a lower surface configured to contact a soil surface. The contact member projects from the lower surface and has a planar bottom surface with a surface area less than a surface area of the base plate lower surface.
A vehicle adapted for seismic survey operations includes a hybrid engine, which has an internal combustion mode and an electrical power mode. The engine operating mode is selected based on the activity in which the vehicle is engaging. During movement, the internal combustion mode may be used and during seismic sweeping, the electrical power mode may be used. In variants, the electrical power may be used during movement.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Computer software for use with cable, cable-less or combined cable and cable-less seismic data acquisition equipment to perform seismic exploration for oil and gas, namely, software that controls and monitors seismic recording station equipment, orchestrates and synchronizes seismic source equipment, records seismic data from sensors and performs and displays quality control on seismic data and seismic operations
18.
CABLE LOAD TRANSFER APPARATUS AND METHODS FOR SEISMIC DATA ACQUISITION
A connector for a cable having a core stress member surrounded by a secondary stress member may include a connector body, a wedge, a retainer, a molded body, and a collar. The connector body may have at least one flow channel formed on an inner surface of the distal end and at least one radial hole providing fluid communication to the at least one flow channel. The wedge is disposed in a pocket of the connector body and is attachable to the core stress member. The molded body surrounds the distal end, fills the at least one flow channel, and attaches to the secondary stress member. The collar may at least partially enclose the connector body.
Methods, apparatuses, and systems are disclosed for multi-station sensor strings. One example apparatus includes a sensor string. The sensor string includes a connector and a common data transmission channel configured to be in communication with a data acquisition unit through the connector. The sensor string also includes a first seismic sensor configured to provide sensed seismic data to the common data transmission channel, and a second seismic sensor also configured to provide sensed seismic data to the common data transmission channel.
Methods, systems, and devices for conducting a seismic survey. The system includes at least one seismic sensor configured to supply a signal responsive to reflections of acoustic energy from an earth surface; and at least one processor configured to: mitigate sensor offset from a sequence of samples representative of the signal by filtering the sequence of samples using a symmetrical-in-time finite impulse response (FIR) filter. The FIR filter may approximate a sinc-in-frequency filter. The at least one processor may be configured to process the sequence of samples using a plurality of filter stages that are rectangular in time. The length of one filter stage of the plurality of filter stages may be different than the length of another filter stage of the plurality of filter stages.
Methods, systems, and devices for conducting a seismic survey. The system includes a seismic sensor supplying a seismic signal; sampling circuitry configured to convert the signal to a sequence of samples, each sample represented by a bit string; a data communication device configured to transmit compressed seismic data; a recording computer configured to receive compressed seismic data; at least one processor with a computer memory accessible thereto, the at least one processor configured to: create a sample block by storing at least a portion of the sequence of samples in memory units in the computer memory, wherein each sample is stored in a corresponding memory unit; and compress data contained in the sample block by encoding all bits of a particular bit number from the memory units of the sample block in sequence to produce compressed seismic data.
Methods, systems, and devices for conducting a seismic survey. The system includes at least one seismic sensor configured to supply a signal responsive to reflections of acoustic energy from an earth surface; and at least one processor configured to: mitigate sensor offset from a sequence of samples representative of the signal by filtering the sequence of samples using a symmetrical-in-time finite impulse response (FIR) filter. The FIR filter may approximate a sinc-in-frequency filter. The at least one processor may be configured to process the sequence of samples using a plurality of filter stages that are rectangular in time. The length of one filter stage of the plurality of filter stages may be different than the length of another filter stage of the plurality of filter stages.
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/22 - Transmission des signaux sismiques aux appareils d'enregistrement ou de traitement
Methods, systems, and devices for conducting a seismic survey. The system includes a seismic sensor supplying a seismic signal; sampling circuitry configured to convert the signal to a sequence of samples, each sample represented by a bit string; a data communication device configured to transmit compressed seismic data; a recording computer configured to receive compressed seismic data; at least one processor with a computer memory accessible thereto, the at least one processor configured to: create a sample block by storing at least a portion of the sequence of samples in memory units in the computer memory, wherein each sample is stored in a corresponding memory unit; and compress data contained in the sample block by encoding all bits of a particular bit number from the memory units of the sample block in sequence to produce compressed seismic data.
A system for acquiring seismic information may include a seismic spread in signal communication with a central controller having a central recording system, a source encoder in signal communication with the seismic spread, and a source decoder in wireless signal communication with the source encoder. The source decoder and the encoder are each selectively responsive to a control signal and can be selectively configured to transmit the control signal.
Embodiments of a configurable acquisition unit are disclosed together with applications for configurable acquisition units. In one embodiment, an acquisition unit includes a seismic data collection module that with a first housing. The acquisition unit also includes a second module with a second housing. The first housing is releasably coupled to the second housing, and when the first housing is coupled to the second housing, an outer surface of the first housing abuts an outer surface of the second housing.
A method of controlling a seismic vehicle may include estimating at least one orientation parameter for the seismic vehicle and controlling at least one operating parameter in view of the estimated orientation parameter(s). In non-limiting arrangements, the control may relate to re-positioning the seismic vehicle, adjusting value of a hold-down force or target drive force, and/or updating a seismic data acquisition database.
A seismic source signal apparatus for generating a seismic source signal may include a seismic source component for coupling a reaction mass to the earth; a controllable valve operatively connected to the seismic source component; and a controller controlling the controllable valve with a primary control signal generated by using a model of a response of the controllable valve over a selected operating range. The model is used to reduce nonlinearity in flow versus displacement response of the controllable valve.
G01V 1/143 - Production d'énergie sismique en utilisant des moyens d'entraînement mécaniques
G01V 1/155 - Production d'énergie sismique en utilisant des moyens d'entraînement mécaniques utilisant des masses en mouvement alternatif
G01V 1/133 - Production d'énergie sismique en utilisant des fluides comme moyens d'entraînement hydrauliques, p. ex. en utilisant des fluides à haute pression
G01V 1/00 - SéismologieProspection ou détection sismique ou acoustique
28.
DEVICES AND SYSTEMS FOR CONTROLLING HARMONIC DISTORTION IN SEISMIC SOURCES
A seismic source signal apparatus for generating a seismic source signal may include a seismic source component for coupling a reaction mass to the earth; a controllable valve operatively connected to the seismic source component; and a controller controlling the controllable valve with a primary control signal generated by using a model of a response of the controllable valve over a selected operating range. The model is used to reduce nonlinearity in flow versus displacement response of the controllable valve.
A method of performing a seismic sweep includes forming a composite force profile; constructing a target seismic frequency sweep using the composite force profile; and operating a seismic source using the constructed target frequency seismic sweep.
A method of controlling seismic data acquisition includes synchronizing a sampling rate of at least one node configured to acquire seismic data with a GPS timing signal from a first GPS seismic device; and delaying sending a start signal to one or more seismic sources, the delay being with reference to a GPS timing signal from a second GPS device.
A method of performing a seismic sweep determining a user-defined force at a frequency using user defined inputs; determining a maximum force at the frequency using sweep parameters; and using the maximum force to drive a seismic source if the user-defined force is greater than the maximum force.
A method of controlling seismic data acquisition may include sending a first message to place a plurality of energy sources into an operating mode; sending a second message to place at least one of plurality of energy sources into a non-operating mode; and sending a third message from at least one energy source to a controller.
A connector for forming an electrical connection includes a connector body and an insulator disposed in the connector body. The insulator may include a plurality of female contact and a plurality of passages. Each passage allows access to one of the female contacts and is at least partially defined by a plurality of inwardly projecting rings. The connector also includes a plug having a plurality of male contact male contacts complementary to the female contacts. Each male contact male contact has a tower shaped to sealingly seat within an associated passage in the insulator.
H01R 13/52 - Boîtiers protégés contre la poussière, les projections, les éclaboussures, l'eau ou les flammes
H01R 43/00 - Appareils ou procédés spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation de connecteurs de lignes ou de collecteurs de courant ou pour relier les conducteurs électriques
A connector for forming an electrical connection includes a connector body having internal threads formed on an inner surface, a locking member mounted in the connector body and resiliently projecting into a valley of the internal threads, and a plug having external threads complementary to the internal threads. The apex of the external threads may include a recess for receiving the locking member.
H01R 13/629 - Moyens additionnels pour faciliter l'engagement ou la séparation des pièces de couplage, p. ex. moyens pour aligner ou guider, leviers, pression de gaz
H01R 43/16 - Appareils ou procédés spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation de connecteurs de lignes ou de collecteurs de courant ou pour relier les conducteurs électriques pour la fabrication des pièces de contact, p. ex. par découpage et pliage
The present disclosure relates methods and apparatus conducting a seismic survey while supplying power and data over multiple conductor pairs. In aspects, the disclosure also relates to maintaining power distribution during a failure of at least one conductor pair. The method includes superimposing data and power on each of a plurality of conductor pairs. The apparatus may include a power supply with power supplied by the plurality of conductor pairs carrying power and data.
G01V 1/22 - Transmission des signaux sismiques aux appareils d'enregistrement ou de traitement
E21B 47/18 - Moyens pour la transmission de signaux de mesure ou signaux de commande du puits vers la surface, ou de la surface vers le puits, p. ex. pour la diagraphie pendant le forage utilisant des ondes acoustiques à travers le fluide du puits
36.
HIGH-PRECISION TIME SYNCHRONIZATION FOR A CABLED NETWORK IN LINEAR TOPOLOGY
The present disclosure relates to methods and apparatuses for reducing propagation delay uncertainty while conducting a survey. The apparatus includes a plurality of nodes along a communication path configured to allow communication between nodes with only one clock domain boundary crossing. Each node may include a clock, a memory, and a processor. The plurality of nodes is arranged in a linear topology. The linear topology may have first and second nodes on the ends of the line. The method may include reducing propagation delay uncertainty using at least one time marker transmitted to each of the plurality of nodes without crossing a clock domain boundary of any other node.
A connector for forming an electrical connection includes a connector body having internal threads formed on an inner surface, a locking member mounted in the connector body and resiliently projecting into a valley of the internal threads, and a plug having external threads complementary to the internal threads. The apex of the external threads may include a recess for receiving the locking member.
The present disclosure relates methods and apparatus for conducting a seismic survey using a fiber optic network. The method may include synchronizing a plurality of seismic devices over a fiber optic network where at least one of the seismic devices is separated from a master clock by at least one other seismic device. The method may also include encoding the master clock signal, transmitting the encoded master clock signal, and recovering the master clock signal. The apparatus may include a fiber optic network with seismic devices. The seismic devices may be arranged in a linear or tree topology.
The present disclosure relates methods and apparatus conducting a seismic survey. The apparatus includes an analog interface and power supply both disposed in a housing. The analog interface is configured to receive analog seismic data from a seismic sensor. The apparatus includes one or more of: (i) an isolation transformer disposed between the power supply and the analog interface and (ii) a analog interface clock configured to synchronized with a power supply clock. The method may include reducing power transmission losses and/or the effect of power supply noise on the seismic signals.
A connector for forming an electrical connection includes a connector body and an insulator disposed in the connector body. The insulator may include a plurality of female contact and a plurality of passages. Each passage allows access to one of the female contacts and is at least partially defined by a plurality of inwardly projecting rings. The connector also includes a plug having a plurality of male contact male contacts complementary to the female contacts. Each male contact male contact has a tower shaped to sealingly seat within an associated passage in the insulator.
The present disclosure relates methods and apparatus for conducting a seismic survey using a fiber optic network. The method may include synchronizing a plurality of seismic devices over a fiber optic network where at least one of the seismic devices is separated from a master clock by at least one other seismic device. The method may also include encoding the master clock signal, transmitting the encoded master clock signal, and recovering the master clock signal. The apparatus may include a fiber optic network with seismic devices. The seismic devices may be arranged in a linear or tree topology.
The present disclosure relates methods and apparatus conducting a seismic survey while supplying power and data over multiple conductor pairs. In aspects, the disclosure also relates to maintaining power distribution during a failure of at least one conductor pair. The method includes superimposing data and power on each of a plurality of conductor pairs. The apparatus may include a power supply with power supplied by the plurality of conductor pairs carrying power and data.
The present disclosure relates to methods and apparatuses for reducing propagation delay uncertainty while conducting a survey. The apparatus includes a plurality of nodes along a communication path configured to allow communication between nodes with only one clock domain boundary crossing. Each node may include a clock, a memory, and a processor. The plurality of nodes is arranged in a linear topology. The linear topology may have first and second nodes on the ends of the line. The method may include reducing propagation delay uncertainty using at least one time marker transmitted to each of the plurality of nodes without crossing a clock domain boundary of any other node.
A connector for forming an electrical connection includes a connector body having internal threads formed on an inner surface, a locking member mounted in the connector body and resiliently projecting into a valley of the internal threads, and a plug having external threads complementary to the internal threads. The apex of the external threads may include a recess for receiving the locking member.
H01R 43/16 - Appareils ou procédés spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation de connecteurs de lignes ou de collecteurs de courant ou pour relier les conducteurs électriques pour la fabrication des pièces de contact, p. ex. par découpage et pliage
H01R 13/512 - SoclesBoîtiers composés de différentes pièces assemblées par une vis ou par des vis
H01R 13/623 - Boîtier ou bague comportant une rainure hélicoïdale
G01V 1/20 - Aménagements d'éléments récepteurs, p. ex. oscillogrammes géophoniques
The present disclosure relates methods and apparatus conducting a seismic survey. The apparatus includes an analog interface and power supply both disposed in a housing. The analog interface is configured to receive analog seismic data from a seismic sensor. The apparatus includes one or more of: (i) an isolation transformer disposed between the power supply and the analog interface and (ii) a analog interface clock configured to synchronized with a power supply clock. The method may include reducing power transmission losses and/or the effect of power supply noise on the seismic signals.
A connector for forming an electrical connection includes a connector body and an insulator disposed in the connector body. The insulator includes a plurality of female contacts and a plurality of passages. Each passage allows access to one of the female contacts and is at least partially defined by a plurality of inwardly projecting rings. The connector also includes a plug having a plurality of male contact male contacts complementary to the female contacts. Each male contact male contact has a tower shaped to sealingly seat within an associated passage in the insulator.
H01R 13/52 - Boîtiers protégés contre la poussière, les projections, les éclaboussures, l'eau ou les flammes
H01R 43/00 - Appareils ou procédés spécialement adaptés à la fabrication, l'assemblage, l'entretien ou la réparation de connecteurs de lignes ou de collecteurs de courant ou pour relier les conducteurs électriques
G01V 1/20 - Aménagements d'éléments récepteurs, p. ex. oscillogrammes géophoniques
A method of performing a seismic sweep includes forming a composite force profile; constructing a target seismic frequency sweep using the composite force profile; and operating a seismic source using the constructed target frequency seismic sweep.
A method of controlling communications relating to seismic data acquisition may include synchronizing the start of one or more seismic energy sources via a communication protocol. The protocol may be generated at a seismic recording system, source control software running on a processor, or generated from a seismic energy source encoder. The protocol may consist of an encoder message that includes start information and that is combined with a request for information contained at the seismic energy source. The requested information may be sent in a decoder message that is returned in synchronized manner.
A vibrator-coupled ground filter improves seismic data recorded during a seismic operation. This filter is based on a ground model that takes into consideration the vibrator system, the coupling system between the baseplate and captured ground, and the coupled ground system. Using acceleration data from the baseplate and the reaction mass, the ground model can be used to derive particular variables for the ground model to help characterize the system. Using the derived variables in a ground filter, the recorded seismic data can be corrected to remove errors in the trace data produced by typical assumptions.
G01V 1/28 - Traitement des données sismiques, p. ex. pour l’interprétation ou pour la détection d’événements
G01V 1/36 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie
G01V 1/047 - Dispositions pour accoupler le générateur au sol
G01V 1/37 - Exécution de corrections statiques ou dynamiques sur des enregistrements, p. ex. correction de l'étalementÉtablissement d'une corrélation entre signaux sismiquesÉlimination des effets produits par un excès d'énergie spécialement adaptés aux systèmes sismiques utilisant une agitation continue du sol
09 - Appareils et instruments scientifiques et électriques
Produits et services
Electronic recording apparatus for geophysical prospecting, namely, a recording system for recording the data output from seismic sensors consisting of computers, computer peripherals, software for operating the recording system, electrical cables, electrical equipment for acquiring and transmitting seismic data, and related power supplies
A seismic vibrator has a baseplate composed at least partially of a composite material. The baseplate has a body composed of the composite material and has top and bottom plates composed of a metallic material. The top plate supports isolators for isolating the vibrator's mass and frame from the baseplate. Internally, the composite body has a central structure to which couple stilts for supporting the mass and a piston for the vibrator's actuator. A lattice structure surrounds the central structure. This lattice structure has radial ribs extending from the central structure and has radial ribs interconnecting the radial ribs.
A vibrator-coupled ground filter improves seismic data recorded during a seismic operation. This filter is based on a ground model that takes into consideration the vibrator system, the coupling system between the baseplate and captured ground, and the coupled ground system. Using acceleration data from the baseplate and the reaction mass, the ground model can be used to derive particular variables for the ground model to help characterize the system. Using the derived variables in a ground filter, the recorded seismic data can be corrected to remove errors in the trace data produced by typical assumptions.
A method of acquiring seismic data. The method includes receiving seismic signals at one or more sensors; sampling the received seismic signals into a plurality of samples, compressing at least some of the samples in selected packets before arranging the compressed samples into packets; arranging the samples into a plurality of packets; computing packet efficiency for a packet of the plurality of packets; transmitting the plurality of packets by varying time intervals between transmissions of the packets.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Seismic exploration machines and apparatus; Seismic source control devices consisting of electronic devices that transmit and receive information to accurately generate seismic waves into the ground; electronic data recorders; Electronic cables; Accelerometers and electronic receivers for seismic exploration for oil and gas
09 - Appareils et instruments scientifiques et électriques
12 - Véhicules; appareils de locomotion par terre, par air ou par eau; parties de véhicules
Produits et services
Seismic exploration equipment, namely, land vibrators specially adapted for researching seismic activity featuring the delivery of energy waves into the ground Vibrator land vehicles specially adapted for researching seismic activity featuring the delivery of energy waves into the ground
A seismic source signal generator having feed-forward control uses pressure, current, and/or valve position sensors to detect system component parameters. Initial and operating parameters are processed during source operation to remove, partially or wholly, harmonic distortions from the seismic source signal.
An exemplary system for managing the deployment of a seismic data acquisition system uses a module configured to execute a plurality of task in the field by receiving one or more seismic devices. The module may include a power source that provides electrical power to the seismic devices. The module may also include a processor programmed to retrieve data stored in the seismic devices, perform diagnostics, facilitate inventory and logistics control, configure seismic devices and update data or pre-programmed instructions in the seismic device.
G01V 1/34 - Représentation des enregistrements sismiques
G06F 17/40 - Acquisition et consignation de données
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
A method and system for acquiring seismic data from a seismic survey plan is provided. A survey area is selected in which the seismic data will be acquired. A coordinate for at least one point of interest within the survey area is determined and input into a portable navigation device. A navigation solution is determined between a GPS-determined location of the portable navigation device and the determined coordinate and thereupon presented in a human cognizable media. A seismic device may be positioned at the determined coordinate to insonify a subterranean formation with seismic energy or for detecting reflected seismic energy. Data may be periodically entered into and retrieved from the portable navigation device by an in-field operator. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
An apparatus for in-field configuration of a seismic device such as a seismic sensor may include a memory module having data for configuring the seismic device, a location sensor determining a location parameter for the seismic sensor, an alignment member aligning the location sensor with the seismic sensor, and a communication device transmitting the determined location parameter to a selected external device.
G06F 3/00 - Dispositions d'entrée pour le transfert de données destinées à être traitées sous une forme maniable par le calculateurDispositions de sortie pour le transfert de données de l'unité de traitement à l'unité de sortie, p. ex. dispositions d'interface
G01V 1/00 - SéismologieProspection ou détection sismique ou acoustique
61.
SEISMIC VIBRATOR CONTROLLED BY DIRECTLY DETECTING BASE PLATE MOTION
A seismic vibrator has a base plate with at least four isolators isolating a frame from the base plate. Each of these isolators is offset from the plate's footprint on shelves to free up area on the plate's top surface. An accelerometer disposed directly on the base plate detects the acceleration imparted to the plate. To reduce flexing and bending, the plate has an increased stiffness and approximately the same mass of a plate for a comparably rated vibrator. The accelerometer disposes at a particular location of the plate that experiences transition between longitudinal flexing along the plate's length. This transition location better represents the actual acceleration of the plate during vibration and avoids overly increased and decreased acceleration readings that would be ob-tained from other locations on the plate.
G01V 1/133 - Production d'énergie sismique en utilisant des fluides comme moyens d'entraînement hydrauliques, p. ex. en utilisant des fluides à haute pression
G01V 1/143 - Production d'énergie sismique en utilisant des moyens d'entraînement mécaniques
62.
Seismic vibrator controlled by directly detecting base plate motion
A seismic vibrator has a base plate with at least four isolators isolating a frame from the base plate. Each of these isolators is offset from the plate's footprint on shelves to free up area on the plate's top surface. An accelerometer disposed directly on the base plate detects the acceleration imparted to the plate. To reduce flexing and bending, the plate has an increased stiffness and approximately the same mass of a plate for a comparably rated vibrator. The accelerometer disposes at a particular location of the plate that experiences transition between longitudinal flexing along the plate's length. This transition location better represents the actual acceleration of the plate during vibration and avoids overly increased and decreased acceleration readings that would be obtained from other locations on the plate.
09 - Appareils et instruments scientifiques et électriques
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Seismic exploration machines and apparatus, electronic transmitters detectors, recorders, hydrophones, optical fibre sensors and cables, accelerometers and receivers for seismic exploration of oil and gas. Geo-scientific seismic data gathering services and reservoir monitoring, geo-scientific and seismic data analysis and consultation services, namely, seismic data acquisition and seismic data processing, all in the field of oil and gas exploration.
64.
Apparatus and method for generating a seismic source signal
A seismic source signal generator includes a mass, a primary accumulator and a secondary accumulator, the secondary accumulator having an internal volume smaller than an internal volume of the primary accumulator. A method for generating a signal using a seismic vibrator includes operating the seismic vibrator using hydraulic fluid, damping hydraulic pressure deviations in the hydraulic fluid using a first accumulator in hydraulic communication with the hydraulic fluid, and damping pressure deviations in the hydraulic fluid using a second accumulator in hydraulic communication with the hydraulic fluid, the second accumulator having an internal volume smaller than an internal volume of the first accumulator.
09 - Appareils et instruments scientifiques et électriques
Produits et services
SEISMIC EXPLORATION MACHINES AND APPARATUS, ELECTRONIC TRANSMITTERS DETECTORS, RECORDERS, [ HYDROPHONES, ] OPTICAL [ FIBRE SENSORS AND ] CABLES, ACCELEROMETERS AND RECEIVERS FOR SEISMIC EXPLORATION FOR OIL AND GAS
66.
Apparatus and method for reducing noise in seismic data
A method of acquiring seismic data. The method includes receiving seismic signals at one or more sensors; sampling the received seismic signals into a plurality of samples, each sample having a same bit length; arranging the samples into a plurality of packets; compressing the plurality of packets by varying a time interval between transmissions of at least some of the packets; and transmitting the compressed packets.
H04J 3/16 - Systèmes multiplex à division de temps dans lesquels le temps attribué à chacun des canaux au cours d'un cycle de transmission est variable, p. ex. pour tenir compte de la complexité variable des signaux, pour adapter le nombre de canaux transmis
67.
In-field control module for managing wireless seismic data acquisition systems and related methods
An exemplary system for managing the deployment of a seismic data acquisition system uses a module configured to execute a plurality of task in the field by receiving one or more seismic devices. The module may include a power source that provides electrical power to the seismic devices. The module may also include a processor programmed to retrieve data stored in the seismic devices, perform diagnostics, facilitate inventory and logistics control, configure seismic devices and update data or pre-programmed instructions in the seismic device.
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
G06F 17/40 - Acquisition et consignation de données
68.
Configuration tool and methods for seismic data acquisition
An apparatus for in-field configuration of a seismic device such as a seismic sensor may include a memory module having data for configuring the seismic device, a location sensor determining a location parameter for the seismic sensor, and a communication device transmitting the determined location parameter to a selected external device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
G06F 3/00 - Dispositions d'entrée pour le transfert de données destinées à être traitées sous une forme maniable par le calculateurDispositions de sortie pour le transfert de données de l'unité de traitement à l'unité de sortie, p. ex. dispositions d'interface
G01V 1/00 - SéismologieProspection ou détection sismique ou acoustique
69.
Apparatus and methods for transmitting unsolicited messages during seismic data acquisition
An apparatus and method for seismic data acquisition is provided, which, in one aspect, define a plurality of attributes relating to acquisition of seismic data by the apparatus, determine a value of each attribute when the apparatus is deployed for acquiring seismic data, generate a message for each attribute whose determined value meets a selected criterion, and transmit wirelessly each generated message to a remote unit without solicitation of such a message by the remote unit. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
A method of transmitting data between a remote unit and a plurality of field service units placed over a region of interest, each field service unit acquiring seismic data from at least one seismic receiver in a plurality of seismic receivers placed in the region of interest is provided that, in one aspect, may include: specifying a data transmission time period having a fixed continuous time length for transmission of data between the remote unit and each field service unit; dividing the data transmission time period into a plurality of time slots, each time slot having a fixed time length; and transmitting data from the remote unit to each field service unit during at least one of the time slots and from each field service unit to the remote unit during at least one another time slot. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
A seismic data acquisition system includes a controller, a plurality of sensor stations and a plurality of seismic sources. Each sensor station includes a sensor coupled to the earth for sensing seismic energy in the earth. The sensor provides a signal indicative of the sensed seismic energy and a recorder device co-located with the sensor unit that receives and stores the signals. A communication device is co-located with the sensor station and provides direct two-way wireless communication with the central controller. In one embodiment, in-field personnel determine elevation values, or Z values, for the sensor stations and seismic source by accessing a digital elevation model or a look-up table based on the digital elevation model. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
A seismic source signal generator having feed-forward control having pressure, current and/or valve position sensors that detect system component parameters. Initial and operating parameters are processed during source operation to remove, partially or wholly, harmonic distortions from the seismic source signal.
A seismic source signal generator includes a mass, a primary accumulator and a secondary accumulator, the secondary accumulator having an internal volume smaller than an internal volume of the primary accumulator. A method for generating a signal using a seismic vibrator includes operating the seismic vibrator using hydraulic fluid, damping hydraulic pressure deviations in the hydraulic fluid using a first accumulator in hydraulic communication with the hydraulic fluid, and damping pressure deviations in the hydraulic fluid using a second accumulator in hydraulic communication with the hydraulic fluid, the second accumulator having an internal volume smaller than an internal volume of the first accumulator.