A system and method for driving an ICF target with a thermal wave comprising: a target assembly, located inside a hohlraum, comprising a drive region, shell region and central fuel region; wherein said hohlraum comprises one or more laser entrance apertures; wherein said one or more laser entrance apertures are sized according to the shape of said hohlraum and to prevent energy from escaping said hohlraum; a laser assembly to irradiate a laser pulse through said laser entrance apertures; inner walls of said hohlraum to reradiate said laser pulse as x-ray radiation; wherein said x-ray radiation penetrates the target assembly as a thermal wave before any significant hydrodynamic motion occurs within said target assembly during the time in which the laser assembly is active; wherein said drive region is evenly heated to a sufficient temperature to expand in an inward and outward direction; and wherein said shell region is launched into said fuel region to drive said ICF target.
Various essential elements are required to accurately point one or more lasers toward an aimpoint within an Inertial Confinement Fusion (ICF) system while tracking a non-stationary ICF target. An ICF target may be dropped or propelled into an ICF target chamber. With the help of a plurality of steering mirrors, one or more lasers must accurately reach the desired aimpoint within the ICF target chamber and through the laser entrance holes in the surrounding hohlraum, so that the laser energy is accurately and uniformly applied to cause a target implosion. As the non-stationary ICF target accelerates and rotates within the ICF target chamber, one or more high-resolution, high-speed images are captured. The accurate and precise control of the various elements within the system is performed by a fast processor.
In an inertial containment fusion (ICF) system which uses a KrF laser, it is beneficial to perform pulse compression of the laser output to produce a higher-power, higher-intensity laser pulse at the target. Such pulse compression involves counter-propagating laser pump and seed beams. A short-pulse seed beam is amplified as energy is extracted from a long-pulse pump beam. Because such energy extraction is invariably incomplete, a fraction of the pump energy will exit the compression cell in the same direction as the optics used to create the seed beam. The invention involves a gas consisting of a noble gas such as neon or argon which may be excited by an electron beam to enhance absorption. By proper choice of gas, cell length, electron-beam excitation, and time delay, the residual pump beam may be absorbed almost entirely with less than 0.01% transmitted laser energy through the invention.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
H01S 3/038 - Électrodes, p. ex. forme, configuration ou composition particulières
H01S 3/097 - Procédés ou appareils pour l'excitation, p. ex. pompage par décharge dans le gaz d'un laser à gaz
H01S 3/102 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande du milieu actif, p. ex. par commande des procédés ou des appareils pour l'excitation
H01S 3/22 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz
H01S 3/225 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz le gaz actif étant polyatomique, c.-à-d. contenant plusieurs atomes comprenant un excimer ou un exciplex
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
4.
Method of Enhancing Ignition Characteristics of ICF Targets Based on High-Z Shells
A system and method of enhancing implosion characteristics of an Inertial Confinement Fusion (ICF) target by tailoring the shell such that at the appropriate temperature, the shell allows the energy in the central region to escape. These ICF targets are more efficient than conventional targets in that they utilize the high-Z shell to contain radiation losses from the fusion fuel core. In some embodiments, the shell is designed such that at the appropriate temperature, the shell allows the core radiation to escape. As a result, there is less energy lost. Therefore, the temperature rise in the core is enhanced which aides in the ignition and burn efficiency of the fusion fuel. Further, the ICF targets as described have substantially reduced computational requirements for design and analysis making them more desirable than conventional ICF targets.
Inertial Confinement Fusion (ICF) reactor chambers can be designed to contain an ICF target being imploded and capture the resulting energy output from the reaction. The exact amount of energy required to facilitate this implosion depends on the specific target design in use. An ICF target design and implosion mechanism which is more robust against non-uniformities, simpler to analyze and simpler to utilize would be advantageous in achieving practical energy generation. Ideally, the ICF target will be configured to achieve a uniform temperature and density profile when imploding with a variety of parameters not limited to the following: a central region having an areal density (ρr) less than 1 g/cm2 at ignition and approximately 1% of the entire mass to be a material having a Z between 6 and 47 inclusive. Once the parameters of the ICF target are selected, one can easily smooth both the temperature and density profiles in the fusion fuel of non-equilibrium ignition targets without preventing runaway burn or affecting margin parameters such as fall-line greatly.
C12Q 1/6886 - Produits d’acides nucléiques utilisés dans l’analyse d’acides nucléiques, p. ex. amorces ou sondes pour les maladies provoquées par des altérations du matériel génétique pour le cancer
37 - Services de construction; extraction minière; installation et réparation
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Construction of inertial confinement fusion energy power plants Research and consulting in the field of inertial confinement fusion energy; design and development of inertial confinement fusion energy plants
7.
Confinement walls for inertial confinement fusion chambers
A compact, simpler, more economical ICF target chamber and reactor design that maintains a low internal pressure, sub-atmospheric, and very small neutron flux on any pressure bearing vessel or steam generating mechanism. The present invention reduces radiant target emission towards the nearest wall of the hohlraum wall and/or sleeve material so that the radiation from target burn exits the end of the hohlraum through a wall material sufficiently thick to contain the target drive radiation, but becomes transparent to the target emitted radiation. The compact converter contains the energy released by the ICF target and converts it into usable heat to create steam. It also converts the excess neutrons, from the ICF target, into tritium. This is then collected with the unburnt fuel tritium.
A method of manufacturing a semiconductor ICF target is described. On an n-type silicon wafer a plurality of hard mask layers are etched to a desired via pattern. Then isotropically etching hemispherical cavities, lithographically patterning the hard mask layers, conformally depositing ablator/drive material(s) and shell layer material(s), inserting hollow silicon dioxide fuel spheres in the hemisphere cavities, thermally bonding a mating wafer with matching hemisphere cavities and etching in ethylene diamine-pryrocatechol-water mixture to selectively remove n-type silicon and liberate the spherical targets.
A confinement chamber for Inertial Confinement Fusion (ICF) may include a closed hohlraum and ICF target wherein the ICF target may comprise a central spherical fuel region, inner shell, outer fuel region, outer shell, and propellant region. A multitude of cylindrical beam channels may penetrate the entire thickness of the hohlraum. At the end of each cylindrical beam channel, where they exit the hohlraum, is a hemispherical cavity. Centered in the curvature of each cavity, and coaxial with each beam channel is a gold foam radiator. By layering materials or grading the density of a material in the propellant region of the closed hohlraum ICF target, the pressure profile on the outer shell may be tailored.
A system and method for controllably varying the thickness of film deposition on a spherical or other non-flat substrate during high volume manufacturing is described. A gripping X-Y transfer stage rotates a substrate in-situ in a direction film deposition chamber. The transfer stage is driven at variable speeds to realize a desired distribution of film thickness variation around the surface of the substrate. Spatial variations in disposition thickness can be smoothly and continuously variable or abruptly changed.
A set of optical elements for optical extraction composed of packed expanding optical cross sections to efficiently extract from a large gain region. The elements are rectangular shaped concave small expansion lenses matched to rectangular convex collimating lenses. Absorbing sheets divide an overall large volume up into smaller volumes to minimize losses due to amplified spontaneous emission. This arrangement has various applications, particularly in inertial confinement technology, where it may be used to extract energy from KrF laser media energized by electron beams. For certain applications, this regime of the gain medium may have zones at the absorbing sheets where this is no gain.
H01S 3/034 - Dispositifs optiques placés à l'intérieur du tube ou en faisant partie, p. ex. fenêtres, miroirs
H01S 3/0959 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage par des particules de haute énergie par un faisceau d'électrons
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
G21B 1/23 - Systèmes optiques, p. ex. pour l'irradiation de cibles, pour le chauffage du plasma ou pour le diagnostic du plasma
H01S 3/225 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz le gaz actif étant polyatomique, c.-à-d. contenant plusieurs atomes comprenant un excimer ou un exciplex
13.
Method for direct compression of laser pulses with large temporal ratios
3 to about 10. In addition, this provides a large reduction of the volume of the gas containment region. In order to accomplish this, a technique for transversely segmenting by color and/or polarization of the optical extraction beams of the Direct Compressor has been invented. In particular, it emphasizes the simplicity and uniqueness of design of the Direct Compressor. The Direct Compressor is unique in terms of high fluence, high temporal compression ratios, and high stage gain, leading to a very large reduction in laser costs. It may separately have many other applications than ICF.
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
H01S 3/102 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande du milieu actif, p. ex. par commande des procédés ou des appareils pour l'excitation
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
H01S 3/22 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
H01S 3/0943 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à gaz
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
H01S 3/108 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande de dispositifs placés dans la cavité utilisant des dispositifs optiques non linéaires, p. ex. produisant une diffusion par effet Brillouin ou Raman
H01S 3/225 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz le gaz actif étant polyatomique, c.-à-d. contenant plusieurs atomes comprenant un excimer ou un exciplex
14.
Integration of direct compressor with primary laser source and fast compressor
A system and method for integrating a direct compressor with a primary laser source and fast compressor while also reducing the number of mechanical elements and gas interfaces. A nonlinear scattering aperture combiner does not need to be optically multiplexed in order to drive a direct compressor stage, but by producing a large temporal compression ratio it will then pump the fast compressor. In order to accomplish this, a technique for transversely segmenting by color and/or polarization of the optical extraction beams of the direct compressor is utilized.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
G21B 1/23 - Systèmes optiques, p. ex. pour l'irradiation de cibles, pour le chauffage du plasma ou pour le diagnostic du plasma
G02B 27/28 - Systèmes ou appareils optiques non prévus dans aucun des groupes , pour polariser
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
G21B 1/03 - Réacteurs de fusion thermonucléaire avec confinement inertiel du plasma
H01S 3/225 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet caractérisés par le matériau utilisé comme milieu actif à gaz le gaz actif étant polyatomique, c.-à-d. contenant plusieurs atomes comprenant un excimer ou un exciplex
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
Embodiments include an optical configuration of a laser for driving an inertial confinement target that may include a section configured to generate long pulse laser light (Primary Laser Source) and then to compress the long pulse with multiple compression stages to a desired pulse length, energy, and beam quality (Compression Section). These configurations can utilize compression stages that do not include any material optics operating near damage fluence, and that do not require material optics exposed to high fluences to couple compression stages to each other.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
H01S 3/102 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande du milieu actif, p. ex. par commande des procédés ou des appareils pour l'excitation
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
H01S 3/108 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande de dispositifs placés dans la cavité utilisant des dispositifs optiques non linéaires, p. ex. produisant une diffusion par effet Brillouin ou Raman
H01S 3/08 - Structure ou forme des résonateurs optiques ou de leurs composants
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
G21B 1/23 - Systèmes optiques, p. ex. pour l'irradiation de cibles, pour le chauffage du plasma ou pour le diagnostic du plasma
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
G21B 1/03 - Réacteurs de fusion thermonucléaire avec confinement inertiel du plasma
An apparatus and process for pumping laser media by an optical pump over a 10 nanosecond period and thereafter time compressing the energy into an extraction pulse and focusing onto a target with a final 1 nanosecond irradiation time are disclosed. The exciting pump pulses are directed into a lookthrough compression arrangement wherein they energize a stimulated scattering process in low pressure (about 1 atmosphere) gaseous media and impinge in an off axis backward geometry. The extraction pulse is formed and directed towards the target with the appropriate information (color, phase, desired irradiance pattern) impressed on it at relatively low energy by manipulation with conventional, solid material optical elements. Once formed, it traverses the gaseous media, is amplified, and proceeds through a vacuum transition section and onto the target. After the injection of the extraction pulse into the lookthrough compression arrangement, it is amplified in the gaseous media by conversion of the pump energy, coupled through the scattering process. The media and the pump and extraction pulses are tailored to give high energy gain to the input optical pulse, high output fluence, good beam quality (high fidelity amplification to the desired temporal and spatial shape), and time compression. Once injected into the entrance to the first section by the material elements, the extraction pulse proceeds through shutter areas that separate different media regions and encounter no further solid material optical elements as it travels to the target. The focus on the target is impressed before amplification and time compression from the pump pulses and results in a very high brightness irradiance of the target. The desired spatial pattern of irradiance on the target is likewise formed with material elements and then imaged onto the target. Fluences some 2-3 orders of magnitude above those available under the conventional art may be thus obtained with an output brightness better by some six orders of magnitude.
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
G21B 1/03 - Réacteurs de fusion thermonucléaire avec confinement inertiel du plasma
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
An Inertial Confinement Fusion (ICF) target may include a case comprising a plurality of beam channels; an outer shell disposed within the case; a propellant disposed between the case and the outer shell; an inner shell disposed within the outer shell; an outer fuel disposed between the outer shell and the inner shell; and an inner fuel disposed inside the inner shell.
A method of imploding an Inertial Confinement Fusion (ICF) target may include directing laser energy into a hohlraum, where a target is disposed within the hohlraum that includes an ablator layer, a shell disposed within the ablator layer, and a fuel region disposed within the shell. The method may also include ablating the ablator layer in response to the laser energy being directed into the hohlraum, and generating a single shockwave that is driven inward through the ablator layer. The method may further include impulsively accelerating the shell inward when hit by the single shockwave, and compressing the fuel region by the inward acceleration of the shell.
A method of using an ICF chamber may include causing a target in the ICF chamber to emit x-ray radiation; receiving the x-ray radiation through a plurality of holes in a wall of the ICF chamber; and absorbing the x-ray radiation in a gas contained in a plurality of tubes that are coupled to the plurality of holes.
Cylindrical inertial confinement fusion reaction chambers are disclosed according to some embodiments of the invention. These chambers can include neutron moderating/absorbing material, radiation absorbing material, and debris collection material. These chambers can also include various injection ports, nozzles, beam ports, sacrificial layers, absorbers, coolant systems, etc. These chambers can be used with directional and/or omni-directional targets.