The present invention relates to a surface-treated copper foil, which has excellent adhesive strength with a resin substrate, shows low bending deformation after adhesion with a resin substrate, and is suitable as a high-frequency foil due to its low transmission loss, to a copper clad laminate comprising same, and to a printed wiring board. The present invention provides a surface-treated copper foil comprising a surface-treated layer formed on at least one surface of an original copper foil and an anti-oxidation layer formed on the surface-treated layer, wherein at least one surface of the surface-treated copper foil comprises fine copper particles having an average particle diameter of 100 nm or less and the surface-treated copper foil has a deformation value (Y) of 5 or smaller as expressed by the following equation: Deformation value (Y) = Tensile strength deformation value (Y1) + Elongation deformation value (Y2) (where, Y1 = (T1-T2)/(kgf/mm2); Y2 = (E2-E1)/%; T2 and E2 represent tensile strength and elongation, respectively, as measured after heat treatment at a pressure of 4.9 Mpa and a temperature of 220°C for 90 minutes; and T1 and E1 represent tensile strength and elongation, respectively, as measured at room temperature).
H05K 3/38 - Amélioration de l'adhérence entre le substrat isolant et le métal
H05K 1/09 - Emploi de matériaux pour réaliser le parcours métallique
B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
B32B 15/20 - Produits stratifiés composés essentiellement de métal comportant de l'aluminium ou du cuivre
2.
Electrolytic copper foil for secondary battery and method for producing the same
Provided are: a surface-treated copper foil including a surface-treated layer formed on at least one side of an untreated copper foil and an oxidation preventing layer formed on the surface-treated layer, wherein the surface-treated layer contains copper particles having an average particle diameter of about 10 nm to about 100 nm and has a 10-point average roughness, Rz, of about 0.2 μm to about 0.5 μm and a gloss (Gs 60°) of about 200 or more, and the oxidation preventing layer contains nickel (Ni) and phosphorus (P); a manufacturing method thereof; a copper foil laminate including the same; and a printed wiring board including the same.
B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
C25D 3/38 - Dépôt électrochimiqueBains utilisés à partir de solutions de cuivre
H05K 1/09 - Emploi de matériaux pour réaliser le parcours métallique
H05K 3/38 - Amélioration de l'adhérence entre le substrat isolant et le métal
B32B 15/20 - Produits stratifiés composés essentiellement de métal comportant de l'aluminium ou du cuivre
C25D 7/00 - Dépôt électrochimique caractérisé par l'objet à revêtir
Disclosed are: a surface-treated copper foil for a secondary battery negative electrode collector; a method for producing same; and a negative electrode for a secondary battery including same, wherein needle-shaped copper particles having an average major-axis length of about 0.6 μm to about 2.0 μm are spaced apart about 1 μm to about 5 μm from each other on at least one surface of the copper foil.
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
C25D 5/12 - Dépôt de plusieurs couches du même métal ou de métaux différents au moins une couche étant du nickel ou du chrome
C23C 28/00 - Revêtement pour obtenir au moins deux couches superposées, soit par des procédés non prévus dans un seul des groupes principaux , soit par des combinaisons de procédés prévus dans les sous-classes et
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
6.
METHOD FOR MEASURING ANGLE BETWEEN TWO BODY PARTS OF FOLDABLE DEVICE, AND DEVICE THEREFOR
Disclosed are a device and a method for measuring the angle of a foldable device. First and second magnetic sensor parts of the foldable device may detect magnitudes of applied external magnetic fields, respectively, and may generate first and second orientation information, respectively. First and second inertia sensor parts may detect inertia information regarding first and second rotational movements, respectively. A controller may calculate the angle between the first and second body parts in real time by using the first and second orientation information in a case in which a folding-axis angle between a folding axis and the magnetic north direction exceeds a magnetic-sensor blind-spot range. The controller may calculate the angle between the first and second body parts in real time by using the inertia information regarding first and second rotational movements in other cases. The first and second magnetic sensor parts may be implemented as magnetic flux gate sensor parts, and the first and second inertia sensor parts may be implemented as acceleration sensor parts or angular velocity sensor parts.
G09F 9/30 - Dispositifs d'affichage d'information variable, dans lesquels l'information est formée sur un support, par sélection ou combinaison d'éléments individuels dans lesquels le ou les caractères désirés sont formés par une combinaison d'éléments individuels
G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
7.
NICKEL FOIL FOR PRODUCTION OF THIN-FILM CAPACITOR, AND MANUFACTURING METHOD FOR SAME
The present invention comprises an electrolytic nickel foil having a surface roughness of Ra 0.05µm or less, Rz 0.2µm or less and Rt 0.5µm or less, and having, on at least one side thereof, a flat surface having a glossiness of at least 200GU, measured by measuring the 60° mirror surface reflection angle.
Disclosed is a device and method for measuring an angle of a foldable device. A first magnetic sensor unit installed on a first body part of the foldable device detects the magnitude of an external magnetic field applied thereto and generates first orientation information representing the direction in which the first body part is oriented. A second magnetic sensor unit foldably coupled to the first body part and installed on a second body part of the foldable device detects the magnitude of an external magnetic field applied thereto and generates second orientation information representing the direction in which the second body part is oriented. A control unit calculates the angle between the first body part and the second body part by using the first orientation information and the second orientation information. The first and second magnetic sensor units may each be implemented as a magnetic fluxgate sensor unit. The magnitude of the origin offset that each of the magnetic fluxgate sensor units has in an initial state can be obtained in advance and applied to the calculation of the angle.
G09F 9/30 - Dispositifs d'affichage d'information variable, dans lesquels l'information est formée sur un support, par sélection ou combinaison d'éléments individuels dans lesquels le ou les caractères désirés sont formés par une combinaison d'éléments individuels
G01B 7/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques électriques ou magnétiques pour tester l'alignement des axes
9.
FLUXGATE MAGNETOMETER AND MANUFACTURING METHOD THEREFOR
A fluxgate magnetometer and a manufacturing method therefor are disclosed. Lower coils, a lower structure, a magnetic bodies, an upper insulating film, and upper coils are sequentially stacked on a substrate insulating film on a substrate. The lower coils are embedded in respective grooves, which are in a plurality of rows for embedding the lower coils provided on the substrate insulating film. Each lower coil has an edge portion that is formed to be lower than the upper ends of the grooves for embedding the lower coils, such that a buffer groove is provided on the upper edge portion thereof. A flattening thin film may be formed by using an SOG composition or a fluid oxide material so as to fill the buffer groove, cover the substrate insulating film and the lower coils, and provide a flat surface, thereby absorbing stress due to differences in the thermal expansion rates of neighboring components. A lower insulating film may be further formed on the flattening thin film. The magnetic substance for a Z-axis fluxgate comprises: a linear pickup region; and a drive region which is branched from both ends of the pickup region to both sides and is formed in any one of an elliptical structure, a track structure formed of a combination of a straight section and a curved section, a rectangular structure, and a double U-shaped structure , and on which at least a drive coil is wound. The drive region may be formed in a two-stage structure such that the cross-sectional area thereof is larger than that of the pickup region.
G01R 33/00 - Dispositions ou appareils pour la mesure des grandeurs magnétiques
G01R 33/05 - Mesure de la direction ou de l'intensité de champs magnétiques ou de flux magnétiques en utilisant le principe du déclenchement périodique de flux dans un film mince
H01L 43/12 - Procédés ou appareils spécialement adaptés à la fabrication ou le traitement de ces dispositifs ou de leurs parties constitutives
10.
ANODE FOR SECONDARY BATTERY, MANUFACTURING METHOD THEREFOR, AND LITHIUM SECONDARY BATTERY MANUFACTURED USING SAME
The present invention relates to an anode for a secondary battery, a manufacturing method therefor, and a lithium secondary battery using the same, the anode comprising: an electrolytic copper foil current collector; an anode active material layer provided on one surface or both surfaces of the electrolytic copper foil current collector, and including lithium powder; and a protective layer provided on the anode active material layer, wherein the thickness of the electrolytic copper foil current collector is 2 μm to 20 μm, and the thickness of the anode active material layer and the protective layer provided on the electrolytic copper foil current collector is 100 μm or less.
The present invention relates to a complex sheet for shock absorption, comprising: a graphite layer; an adhesive layer disposed on the graphite layer; a heat conductive layer disposed on the adhesive layer; and a shock absorption layer directly disposed on the heat conductive layer, wherein the shock absorption layer includes a polymer foam body. The present invention can provide a complex sheet for shock absorption, which includes a shock absorption layer directly disposed on a heat conductive layer, and thus has improved heat radiation performance.
B32B 7/02 - Propriétés physiques, chimiques ou physicochimiques
B32B 9/00 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes
B32B 5/18 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par le fait qu'une des couches contient un matériau sous forme de mousse ou essentiellement poreux
B32B 7/12 - Liaison entre couches utilisant des adhésifs interposés ou des matériaux interposés ayant des propriétés adhésives
B32B 9/04 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant une telle substance comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
The present invention relates to a complex sheet for shock absorption, comprising: a first heat-conductive layer; and a shock absorption layer directly disposed on one surface or each of both surfaces of the first heat-conductive layer, wherein the shock absorption layer includes a polymer foam body. The present invention can provide a complex sheet for shock absorption, which includes a shock absorption layer directly disposed on a heat conductive layer, and thus has improved heat radiation performance.
B32B 7/02 - Propriétés physiques, chimiques ou physicochimiques
B32B 5/18 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par le fait qu'une des couches contient un matériau sous forme de mousse ou essentiellement poreux
B32B 7/12 - Liaison entre couches utilisant des adhésifs interposés ou des matériaux interposés ayant des propriétés adhésives
B32B 27/06 - Produits stratifiés composés essentiellement de résine synthétique comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique
The carrier-foil-attached ultra-thin copper foil according to one embodiment of the present invention comprises a carrier foil, a release layer, a first ultra-thin copper foil, a Cu-Al bonding strength improvement layer, an A1 layer, and a second ultra-thin copper foil, wherein the release layer may comprise a first metal (A3) having peeling properties, and a second metal (B3) and third metal (C3) facilitating the plating of the first metal (A3).
The carrier-foil-attached ultra-thin copper foil according to one embodiment of the present invention comprises a carrier foil, a release layer, a first ultra-thin copper foil, a Cu-diffusion prevention layer, an A1 layer, and a second ultra-thin copper foil, wherein the release layer may comprise a first metal (A2) having peeling properties, and a second metal (B2) and third metal (C2) facilitating the plating of the first metal (A2).
The carrier-foil-attached ultra-thin copper foil according to one embodiment of the present invention comprises a carrier foil, a release layer, a first ultra-thin copper foil, an A1 layer, and a second ultra-thin copper foil, wherein the release layer may comprise a first metal (A1) having peeling properties, and a second metal (B1) and third metal (C1) facilitating the plating of the first metal (A1).
The present invention relates to an electrolytic copper foil for a secondary battery, having excellent physical properties at a low temperature, and a method for producing the electrolytic copper foil and, more specifically, to an electrolytic copper foil for a secondary battery, which shows little change in the physical properties, such as tensile strength and elongation, of a copper foil even at a low temperature and thereby exhibits excellent cycle properties at the low temperature, and to a method for producing the electrolytic copper foil. According to an aspect of the present invention, an embodiment of the prevent invention includes an electrolytic copper foil for a secondary battery, which is produced from a plating solution, containing total organic carbon (TOC), cobalt, iron and zinc, by using a drum and coated with a cathode active material, wherein the ratio between the TOC, cobalt, iron and zinc contained in the electrolytic copper foil follows the following formula 1: [Formula 1] TOC / (cobalt + iron + zinc) = 1.0 - 1.2.
The present invention relates to an electrolytic copper foil for a secondary battery and a method for producing the electrolytic copper foil and, more specifically, to an electrolytic copper foil for a secondary battery, which shows little change in the physical properties of a copper foil before and after vacuum drying in the process of electrolytic copper foil production, thereby exhibiting an excellent cycle life in a battery test at a high-density cathode and preventing cracking, and to a method for producing the electrolytic copper foil. According to an aspect of the present invention, embodiments of the prevent invention include an electrolytic copper foil for a secondary battery, which is produced from a plating solution, containing total organic carbon (TOC), zinc and iron, by using a drum, wherein the ratio between the TOC, zinc and iron contained in the electrolytic copper foil follows the following formula 1: Formula 1: TOC / (zinc + iron) = 1.3 - 1.5.
The present invention relates to an electrolytic copper foil for a secondary battery and a method for producing the electrolytic copper foil and, more specifically, to an electrolytic copper foil for a secondary battery, which shows little change in the physical properties caused by a difference in crosshead speed when measuring the tensile strength and elongation of the electrolytic copper foil, thereby enabling excellent charging and discharging properties of a battery and preventing the exfoliation of an active material, and to a method for producing the electrolytic copper foil. According to an aspect of the present invention, an embodiment of the prevent invention includes an electrolytic copper foil for a secondary battery, which is produced from a plating solution, containing total organic carbon (TOC), cobalt and iron, by using a drum and coated with a cathode active material, wherein the ratio between the TOC, cobalt and iron contained in the electrolytic copper foil follows the following formula 1: [Formula 1] TOC / (cobalt + iron) = 1.3 - 1.5.
The present invention relates to an electrolytic copper foil for a secondary battery, having excellent flexural resistance, and a method for producing the electrolytic copper foil and, more specifically, to an electrolytic copper foil for a secondary battery, which has excellent flexural resistance even without the use of many additives in a copper electrolyte when producing a copper foil, and to a method for producing the electrolytic copper foil. The electrolytic copper foil for a secondary battery according to the present invention is an electrolytic copper foil for a secondary battery, which is produced from a plating solution, containing total organic carbon (TOC), cobalt and arsenic, by using a drum and is coated with a cathode active material, wherein the ratio between the TOC, cobalt and arsenic contained in the electrolytic copper foil follows the following formula 1: [Formula 1] TOC / (cobalt + arsenic) = 1.30 - 1.55.
The present invention relates to an electrolytic copper foil for a secondary battery and a method for producing the electrolytic copper foil and, more specifically, to an electrolytic copper foil for a secondary battery, in which the formation of a burr and curl of a cathode plate after the coating of the electrolytic copper foil with an active material is inhibited, thereby increasing the loading volume of a cathode and enhancing the capacity, and to a method for producing the electrolytic copper foil. According to an aspect of the present invention, embodiments of the prevent invention include an electrolytic copper foil for a secondary battery, which is produced from a plating solution, containing total organic carbon (TOC), by using a drum, wherein the electrolytic copper foil comprises one side coming into direct contact with the drum, and the other side which is the opposite side of the one side, wherein the average cross-sectional grain size of the one side is 80% or less of that of the other side.
The present invention relates to a surface-treated copper foil for a microcircuit board and a method for manufacturing the same and, more specifically, to a surface-treated copper foil for a microcircuit board and a method for manufacturing the same, wherein a surface of a copper foil is subjected to a micro-roughening treatment to achieve a surface-roughening treatment, which allows the copper foil to have excellent heat resistance and chemical resistance, so as to achieve a film having a high light transmissivity, an excellent etching property, and an improved visibility. According to the present invention, a copper foil can be surface-roughened to have excellent heat resistance and chemical resistance by performing micro-roughening treatment on a shiny surface of the copper foil. Further, according to the present invention, by performing micro-roughening treatment on a shiny surface of a copper foil, it is possible to obtain a surface-treated copper foil for a microcircuit board, which improves E/R of a circuit by circuit etching and allows resin to have excellent light transmissivity after etching.
C23C 28/00 - Revêtement pour obtenir au moins deux couches superposées, soit par des procédés non prévus dans un seul des groupes principaux , soit par des combinaisons de procédés prévus dans les sous-classes et
H05K 1/09 - Emploi de matériaux pour réaliser le parcours métallique
H05K 3/02 - Appareils ou procédés pour la fabrication de circuits imprimés dans lesquels le matériau conducteur est appliqué à la surface du support isolant et est ensuite enlevé de zones déterminées de la surface, non destinées à servir de conducteurs de courant ou d'éléments de blindage
22.
SURFACE-TREATED COPPER FOIL HAVING EXCELLENT ETCHING PROPERTY AFTER POST-PROCESSING THEREOF AND METHOD FOR MANUFACTURING SAME
The present invention relates to a surface-treated copper foil for a microcircuit and a method for manufacturing the same. Specifically, a method for surface-treating a copper foil for a microcircuit board according to the present invention comprises the steps of: providing an electrolytic copper foil; and performing roughening treatment in order to cause a nodule to grow on the electrolytic copper foil, wherein, in the roughening treatment step, the roughening treatment is performed in a plating bath including one of [0.5-3g/l of molybdenum (Mo) and 1-10g/l of sodium ions (Na)], one of [0.1-0.5g/l of tungsten ions (W) and 0.3-0.7 g/l of vanadium ions (V)], 10-20 g/l of copper ions (Cu), and 100-00g/L of sulfuric acid (H2SO4). The present invention can manufacture a surface-treated copper foil for a microcircuit board, which has a surface roughness Rz of 2.0 or less and a good etching property to prevent the foil from greatly sagging, that is, has a difference of 10μm or less between the width of an upper circuit board and the width of an lower circuit board near a resin layer.
C25D 3/56 - Dépôt électrochimiqueBains utilisés à partir de solutions d'alliages
C25D 3/38 - Dépôt électrochimiqueBains utilisés à partir de solutions de cuivre
C23G 1/10 - Nettoyage ou décapage de matériaux métalliques au moyen de solutions ou de sels fondus avec des solutions acides des autres métaux lourds
H05K 1/09 - Emploi de matériaux pour réaliser le parcours métallique
H05K 3/02 - Appareils ou procédés pour la fabrication de circuits imprimés dans lesquels le matériau conducteur est appliqué à la surface du support isolant et est ensuite enlevé de zones déterminées de la surface, non destinées à servir de conducteurs de courant ou d'éléments de blindage
23.
ELECTROLYTIC COPPER FOIL FOR GRAPHENE AND METHOD FOR PRODUCING FORMER
The present invention relates to electrolytic copper foil for graphene and a method for producing the former, more specifically to electrolytic copper foil for graphene capable of facilitating graphene formation due to prevention of surface deformation of the electrolytic copper foil during production of same, and to a method for producing the electrolytic copper foil for graphene. According to the present invention, by providing electrolytic copper foil, for graphene, having roughness Rz on surface S expressed by the formula 1 after an hour of treatment at 200°C during synthesis of graphene on the electrolytic copper foil, the surface deformation of the electrolytic copper foil at high temperatures can be minimized. Furthermore, according to the present invention, by providing electrolytic copper foil having a low resistance value of 300Ω/square or less after the synthesis of graphene thereon, graphene can be easily formed the electrolytic copper foil.
The present invention relates to electrolytic copper foil for graphene and a method for producing the former, more specifically to electrolytic copper foil, for graphene, facilitating graphene synthesis due to the addition of nickel during production of electrolytic copper foil for graphene, and to a method for producing the electrolytic copper foil for graphene. According to the present invention, by lowering the post-graphene synthesis electric conductivity by adding nickel, which acts as a seed, to the electrolytic copper foil during graphene synthesis, graphene is formed uniformly on the surface of the copper foil. Furthermore, according to the present invention, by providing electrolytic copper foil having a low resistance value of 300Ω/square or less after the synthesis of graphene thereon, graphene can be easily formed the electrolytic copper foil.
According to one embodiment of the present invention, provided are: a light-absorbing layer which is prepared on a substrate, includes copper, indium, gallium and selenium elements, and has surface roughness of 30-150 nm inclusive; and a preparation method for the light-absorbing layer, which electrodeposits copper, indium and gallium on a flexible substrate having a continuous phase, wherein the time for electrodepositing the copper on the substrate is 2-20 seconds inclusive, the time for electrodepositing the indium on the substrate is 3-20 seconds inclusive, and the time for electrodepositing the gallium on the substrate is 3-10 seconds inclusive.
H01L 31/0749 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] caractérisés par au moins une barrière de potentiel ou une barrière de surface les barrières de potentiel étant uniquement du type PN à hétérojonction incluant un composé AIBIIICVI, p.ex. cellules solaires à hétérojonctions CdS/CuInSe2 [CIS]
H01L 31/054 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] Éléments optiques directement associés ou intégrés à la cellule PV, p.ex. moyens réflecteurs ou concentrateurs de lumière
H01L 31/18 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives
H01L 31/042 - Modules PV ou matrices de cellules PV individuelles
26.
ELECTROLYTIC COPPER FOIL, AND COLLECTOR, NEGATIVE ELECTRODE, AND LITHIUM BATTERY COMPRISING SAME
Disclosed is an electrolytic copper foil having a resistivity of 1.68-1.72μΩㆍcm and an average crystallite diameter of 1.0-1.5㎛, which is obtained by subjecting a copper foil produced through electrolysis to heat treatment.
Provided is copper foil having excellent heat resistance and etching properties and exhibiting a high light-transmissivity. The provided copper foil comprises a surface-treated layer comprising a metal oxide on at least one surface thereof.
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
H05K 1/03 - Emploi de matériaux pour réaliser le substrat
29.
COPPER FOIL, AND ELECTRICAL COMPONENT AND BATTERY INCLUDING SAME
Provided is copper foil having low roughness and excellent adhesive strength. The provided copper foil is a copper foil having an uneven portion formed on at least one surface thereof and a fine particle layer formed on the surface thereof, wherein the number of upper fine particles located above a mean line according to the mean height of the surface is greater than the number of lower fine particles located below the mean line.
Disclosed is an electrodeposited copper in which the center line average roughness (Ra), maximal height (Rmax), and ten-point average height (Rz) of an extracted surface satisfy the following expression: 1.5 ≤ (Rmax - Rz)/Ra ≤6.5. The electrodeposited copper according to the present invention exhibits high elongation while maintaining low roughness and high strength and especially has high gloss, and thus can be used for a current collector for a lithium ion secondary battery and a semiconductor packaging substrate for tape automated bonding (TAB), which is used for a tape carrier package (TCP).
Disclosed herein are a conductive heat-dissipating sheet comprising a heat diffusion layer formed using metal materials; a heat conduction layer which is disposed on one surface or both surfaces of the heat diffusion layer and which is formed using inorganic materials including at least one material from the group consisting of metal oxides and alloys; and an adhesive layer disposed on one surface or both surfaces of the heat conduction layer; and an electrical part and an electronic device comprising the conductive heat-dissipating sheet.
An electrolytic copper foil of which the surface roughness of a precipitation surface, Rz, is less than 1.4 μm, the tensile strength after heat treatment is at least 40 kgf/mm2, and the elongation percentage is at least 4% is suggested. The electrolytic copper foil maintains low roughness and high strength while having a high elongation percentage, and may be used in a current collector of a lithium ion secondary battery having a medium to large size, and in a packing for tape automated bonding (TAB) used in a tape carrier package (TCP).
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
Disclosed is a light-emitting diode chip having superior light-emitting efficiency, and a method for manufacturing same. The method for manufacturing a light-emitting diode chip according to the present invention comprises the following steps: (a) forming a plurality of light-emitting diode elements on a crystalline wafer; (b) allowing the inside of a surface to be cut of the crystalline wafer, on which the plurality of light-emitting diode elements are formed, to be irradiated with a laser beam so as to form a refraction buffering layer; and (c) cutting the crystalline wafer to separate the plurality of light-emitting diode elements from each other.
H01L 33/44 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les revêtements, p.ex. couche de passivation ou revêtement antireflet
H01L 33/48 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les éléments du boîtier des corps semi-conducteurs
H01L 21/78 - Fabrication ou traitement de dispositifs consistant en une pluralité de composants à l'état solide ou de circuits intégrés formés dans ou sur un substrat commun avec une division ultérieure du substrat en plusieurs dispositifs individuels
34.
VERTICAL-TYPE LIGHT-EMITTING DIODE CELL ARRAY, AND METHOD FOR MANUFACTURING SAME
The present invention relates to an LED cell array and to a method for manufacturing same. A vertical-type LED cell array comprises: a support substrate having an insulating layer; a plurality of first conductive patterns spaced apart from each other on the insulating layer; a plurality of vertical-type light-emitting unit cells which are arranged on the first conductive patterns, respectively, and each of which has a P-type semiconductor layer, an active layer, and an N-type semiconductor layer; and a plurality of second conductive patterns for electrically interconnecting the plurality of first conductive patterns and the adjacent plurality of vertical-type light-emitting unit cells.
The present invention relates to not only further increasing the adhesion between an oxygen ion conducting solid electrolyte and an oxide electrode, but to also improving the sensitivity of a sensor. The present invention relates to a method for manufacturing a NOx gas sensor, and to a NOx gas sensor manufactured using same, wherein the method comprises the steps of: preparing an oxygen ion conductive green sheet; preparing a paste which consists of a solvent, first powders made of metal oxide, second powders made of polymer, and a binder; coating the green sheet with the paste; sintering the green sheet to allow the green sheet to form an oxygen ion conducting solid electrolyte; and sintering the paste to allow the paste to form a metal oxide electrode which contacts the solid electrolyte.
The present invention provides a nitrogen oxide gas sensor which can adjust sensing temperature without deteriorating the sensing accuracy when simultaneously measuring nitrogen monoxide and nitrogen dioxide. To this end, the invention provides a nitrogen oxide gas sensor comprising: a solid oxygen ion conducting electrolyte; a first film which adjoins said solid electrolyte, and is formed as a metal oxide; a second film which adjoins said solid electrolyte, and is formed as a metal oxide; a power source having a first node which is electrically connected with said first film and a second node which is electrically connected with said second film, and applying currents to said first film and the second film; a measurement unit which measures a potential difference between said first node and second node; a heater which is buried in said solid electrolyte, having a first part and a second part, and is formed as a resistor, wherein said first part and second part have widths that are separated as much as the area corresponding to at least one of said first and second films; and an insulator film which is interposed between said heater and said solid electrolyte, and having openings corresponding to the separated widths of the first part and the second part of said heater thereof.
Provided is a copper electrolysis solution for producing an electrolytic copper foil, according to an embodiment of the present invention, includes a Cl- ion, and collagen peptide, wherein the collagen peptide has a number average molecular weight of 4,000 to 10,000 and a concentration of 0.5 to 20 ppm, and the Cl-ion has a concentration of 0.5 to 1.5 ppm. The copper electrolysis solution may provide an electrolytic copper foil having a relatively simple manufacturing process, high thermal stability, low roughness, and high strength. The electrolytic copper foil may be used as a current collector for middle or large-sized lithium ion secondary batteries for use in hybrid electric vehicles and as a semiconductor packing substrate for tape automated bonding (TAB) used in a tape carrier package (TCP).
Disclosed herein is a complex, wherein micelles and/or liposomes dispersed in hyaluronic acids and/or hyaluronic acid derivatives, with a drug and/or functional material loaded in the micelles and/or the liposomes. The complex can release the drug and/or functional material in a controlled manner. Also, a multilayer using the complex, and a device coated with the multilayer are disclosed herein.
A61K 9/127 - Vecteurs à bicouches synthétiques, p. ex. liposomes ou liposomes comportant du cholestérol en tant qu’unique agent tensioactif non phosphatidylique
A61K 47/30 - Composés macromoléculaires organiques ou inorganiques, p. ex. polyphosphates inorganiques
A61K 9/24 - Pilules, pastilles ou comprimés du type à libération prolongée ou discontinue en doses unitaires constituées de couches ou feuilletées
A61F 2/82 - Dispositifs maintenant le passage ou évitant l’affaissement de structures tubulaires du corps, p. ex. stents
39.
METHOD OF PREPARING SINGLE CRYSTAL SUBSTRATE, SINGLE CRYSTAL SUBSTRATE PREPARED THEREBY, LIGHT-EMITTING DEVICE INCLUDING SAID SINGLE CRYSTAL SUBSTRATE AND METHOD OF PREPARING SAME
A method for preparing a single crystal substrate, a single crystal substrate prepared thereby, and a light-emitting device including a single crystal substrate and its preparation method are disclosed. The method for preparing a single crystal substrate comprises a step wherein a lower epitaxial layer is grown on a base substrate, a step wherein at least a part of an electric potential region in the lower epitaxial layer is optionally removed, a step wherein an electric potential prevention element is formed in the electric potential region that has been removed, and a step wherein an upper epitaxial layer is formed on the lower epitaxial layer on which the electric potential prevention element has been formed.
H01L 33/12 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure de relaxation des contraintes, p.ex. couche tampon