Various embodiments of a medical lead system are disclosed. The lead system includes a lead body that includes a lumen that extends along the lead body between an inlet adjacent to a proximal end of the lead body and an outlet adjacent to a distal end of the lead body; a fixation member; and a distal balloon connected to an exterior surface of the distal end of the lead body and fluidly connected to the outlet of the lumen. The medical lead system further includes a pressure sensor fluidly connected to the inlet of the lumen of the lead body and configured to sense a pressure within an interior volume of the distal balloon and communicate a signal indicative of the pressure to a clinician. The fixation member is further configured to extend distal to the distal balloon when the distal balloon is in an inflated configuration.
A medical device is configured to sense event signals from a cardiac electrical signal and determine maximum amplitudes of cardiac electrical signal segments associated with sensed event signals. The medical device is configured to determine at least one tachyarrhythmia metric based on at least a greatest one of the determined maximum amplitudes. The medical device may determine when the at least one tachyarrhythmia metric does not meet true tachyarrhythmia evidence and, in response, determine when the maximum amplitudes meet suspected noise criteria. The medical device may withhold a tachyarrhythmia detection and tachyarrhythmia therapy when suspected noise criteria are met.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/33 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG] spécialement adaptées à l’utilisation conjointe avec d’autres dispositifs
In some example, a battery assembly for an implantable medical device includes a first anode plate comprising a first anode current collector and a first active material on the first anode current collector; a second anode plate comprising a second anode current collector and a second active material on the second anode current collector; and a cathode plate between the first anode plate and the second anode plate, wherein the cathode plate comprises a cathode current collector, the cathode current collector having an exposed portion, wherein the first active material is recessed relative to the exposed portion of the cathode plate such that a first nearest perimeter of the first active material is further from the exposed portion of the cathode current collector compared to a second nearest perimeter of the second active material.
H01M 50/209 - Bâtis, modules ou blocs de multiples batteries ou de multiples cellules caractérisés par leur forme adaptés aux cellules prismatiques ou rectangulaires
A medical device is configured to sense a cardiac electrical signal and determine from the cardiac electrical signal at least one of a maximum peak amplitude of a positive slope of the cardiac electrical signal and a maximum peak time interval from a pacing pulse to the maximum peak amplitude. The device is configured to determine a capture type of the pacing pulse based on at least one or both of the maximum peak amplitude and the maximum peak time interval.
A system including: one or more electrodes configured to be disposed at one or more target treatment sites within a blood vessel of a patient; and processing circuitry configured to: determine a first characteristic of a cardiac cycle based on cardiac, cardiovascular and/or and systemic vascular signals; determine, based at least in part on the first characteristic, one or more first stimulation parameters for a first stimulation signal; determine a second characteristic of the cardiac cycle determine, based at least in part on the second characteristic, one or more second stimulation parameters for a second stimulation signal; and cause the one or more electrodes to deliver one or more of: the first stimulation signal to one or more nerves of the patient to cause a parasympathetic stimulation of the heart; or the second stimulation signals to the one or more nerves to cause a sympathetic stimulation of the heart.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/349 - Détection de paramètres spécifiques du cycle de l'électrocardiogramme
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A medical device includes a sensing circuit configured to sense at least one cardiac electrical signal, a therapy delivery circuit configured to deliver pacing pulses and a memory configured to store CSP capture criteria. The medical device includes a control circuit configured to perform an evoked response capture test including controlling the therapy delivery circuit to deliver a first test pacing pulse at an evoked response capture test output, detecting an evoked response following the first test pacing pulse from the at least one cardiac electrical signal and selecting a conduction system capture test output for performing a conduction system capture test after the evoked response capture test.
Medical apparatus, diagnostic and therapeutic instruments for musculoskeletal pain management, pain diagnosis and pain treatment; Medical devices, namely, surgical devices that facilitate the identification, separation or ablation of biologic tissues; Medical devices, namely, pulse generators for pain management, pain diagnosis and pain treatment; Medical apparatus and instruments, namely, bone access tools, medical electrodes, cannulae, probes for medical purposes, medical needles and introducers, and medical probe positioning tools.
Medical apparatus, diagnostic and therapeutic instruments for musculoskeletal pain management, pain diagnosis and pain treatment; Medical devices, namely, surgical devices that facilitate the identification, separation or ablation of biologic tissues; Medical devices, namely, pulse generators for pain management, pain diagnosis and pain treatment; Medical apparatus and instruments, namely, bone access tools, medical electrodes, cannulae, probes for medical purposes, medical needles and introducers, and medical probe positioning tools
Techniques are described for discriminating SVT and, in particular, rapidly conducting AF. The techniques include detecting an onset of a fast rate of ventricular events sensed from a cardiac electrical signal and detecting a pause in the fast rate of ventricular sensed events. A threshold number of ventricular event intervals required to detect a ventricular tachyarrhythmia is detected with each of the threshold number of ventricular event intervals being less than a tachyarrhythmia detection interval. Detection of the ventricular tachyarrhythmia and an electrical stimulation therapy for treating the ventricular tachyarrhythmia are withheld in response to at least the pause being detected.
A transcatheter device for delivering a stented prosthesis includes a sheath shaft comprising a proximal end and a distal end. The transcatheter delivery device can further include a capsule attached at a distal end of the sheath shaft. The capsule comprises an outer circumferential surface and at least one protrusion extending radially outwardly from the circumferential surface. The transcatheter delivery device further includes an inner shaft with a proximal and distal end as well as a distal tip attached to a distal end of the inner shaft. The distal tip is configured to close a distal end of the capsule while the stented prosthesis is mounted on the inner shaft within the interior of the capsule. Methods are also provided for deploying a stented prosthesis wherein leaflets are displaced and then the displaced leaflets are pinned in position by the deployed stented prosthesis.
METHODS AND IMPLANTABLE MEDICAL SYSTEMS THAT IMPLEMENT EXPOSURE MODES OF THERAPY THAT ALLOW FOR CONTINUED OPERATION DURING EXPOSURE TO A MAGNETIC DISTURBANCE
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
Systems and methods are provided for determining a suitability of a patient for a medical procedure. A feature extractor generates a plurality of numerical parameters from a received image. The plurality of numerical parameters includes a dimension of a structure within a heart of the patient and a projected area of a left ventricular outflow track. A predictive model determines if the patient is a candidate for the medical procedure from the plurality of numerical parameters.
G16H 30/40 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le traitement d’images médicales, p. ex. l’édition
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
G16H 50/50 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la simulation ou la modélisation des troubles médicaux
13.
SENSING BIOELECTRICAL SIGNALS FOR CONTROLLING SPINAL CORD STIMULATION
Devices, systems, and techniques are configured for sensing bioelectrical signals such as evoked synaptic action potentials (ESAPs). An example system may include stimulation circuitry and processing circuitry configured to control the stimulation circuitry to generate a stimulation pulse during a stimulation period, control the sensing circuitry to sense a signal comprising the ESAP elicited by the stimulation pulse via a second set of electrodes of the plurality of electrodes, wherein at least one electrode of the second set of electrodes is positioned within 12 millimeters (mm) of an edge of the cathode of the first set of electrodes. The processing circuitry may be configured to determine, based on the signal, a characteristic value representing at least a portion of the ESAP, and adjust, based on the characteristic value, a value of at least one stimulation parameter defining electrical stimulation therapy.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A funnel crimper includes a body having a tapered portion, an extended outflow portion, and a tissue compressor. The tissue compressor is configured to apply a radially inward force to tissue of a prosthetic valve of a transcatheter heart valve prosthesis disposed on an inner surface of a frame of the transcatheter heart valve prosthesis as the transcatheter heart valve prosthesis is advanced through a lumen of the funnel crimper. The tissue compressor may be a ring of relatively soft material extending into the lumen of the funnel crimper or pressurized fluid applied radially inward to the lumen of the funnel crimper.
An electrosurgical leaflet laceration device is configured to transition from a delivery configuration to a deflected configuration. The electrosurgical leaflet laceration device includes a handle, a catheter shaft extending distally from the handle and including an electrosurgical wire lumen and a side opening, and an electrosurgical wire disposed within the electrosurgical wire lumen of the catheter shaft. The side opening of the catheter shaft is configured to expose a cutting segment of the electrosurgical wire with the electrosurgical leaflet laceration device in the deflected configuration. The cutting segment of the electrosurgical wire is configured to be energized cut tissue abutting or in contact with the cutting segment.
A61B 18/00 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci
A61M 25/01 - Introduction, guidage, avance, mise en place ou maintien en position des cathéters
16.
RECHARGE ALIGNMENT DETECTION FOR IMPLANTABLE DEVICE
Devices, systems, and techniques provide feedback to a patient to help the patient align a charging device to a medical device. In some examples, system may include a recharge coil configured to transfer energy to an implantable medical device (IMD) and detect metal loading and charging circuitry coupled to the recharge coil and configured to determine one or more electrical properties of the recharge coil during the transfer of energy. The system may also include processing circuitry configured to determine, based on the one or more electrical properties, a load on the recharge coil, compare the load on the recharge coil to one or more thresholds, and responsive to the load satisfying the threshold, perform an action associated with the transfer of energy to the IMD. An action may include displaying feedback regarding positioning of the charging device.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
H02J 50/10 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique utilisant un couplage inductif
H02J 50/80 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique mettant en œuvre l’échange de données, concernant l’alimentation ou la distribution d’énergie électrique, entre les dispositifs de transmission et les dispositifs de réception
H02J 50/90 - Circuits ou systèmes pour l'alimentation ou la distribution sans fil d'énergie électrique mettant en œuvre la détection ou l'optimisation de la position, p. ex. de l'alignement
An example device includes an elongated housing, a first and second electrode, and signal generation circuitry. The housing can be implanted within a single first chamber of the heart. The first electrode extends distally from the distal end of the elongated housing. A distal end of the first electrode can penetrate into wall tissue of a second chamber of the heart. The second electrode, extending from the distal end of the elongated housing, is configured to flexibly maintain contact with the wall tissue of the first chamber without penetration of the wall tissue of the first chamber by the second electrode. Signal generation circuitry can be within the elongated housing and coupled to the first and second electrode. The signal generation circuitry can deliver cardiac pacing to the second chamber via the first electrode and the first chamber via the second electrode.
A pacemaker has a housing and a therapy delivery circuit enclosed by the housing for generating pacing pulses for delivery to a patient's heart. An electrically insulative distal member is coupled directly to the housing and at least one non-tissue piercing cathode electrode is coupled directly to the insulative distal member. A tissue piercing electrode extends away from the housing.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
An occlusion device for the left atrial appendage includes a shape memory wire, the wire including a straightened configuration in which the wire is substantially straight for delivery to the left atrial appendage and a deployed configuration in which the wire is coiled or spiral and is configured to occlude a left atrial appendage.
A61B 17/12 - Instruments, dispositifs ou procédés chirurgicaux pour ligaturer ou comprimer par un autre moyen les parties tubulaires du corps, p. ex. les vaisseaux sanguins ou le cordon ombilical
A61B 17/00 - Instruments, dispositifs ou procédés chirurgicaux
A medical device is configured to determine a rate smoothing pacing interval based on at a ventricular cycle length ending with a ventricular pacing pulse and determine a post-sense ventricular pacing interval based on a ventricular cycle length ending with a sensed ventricular event signal. The medical device may be configured to start a ventricular pacing interval set to the post-sense ventricular pacing interval in response to the sensed ventricular event signal and generate a ventricular pacing pulse in response to the expiration of the post-sense ventricular pacing interval.
Implantable apparatus includes two or more alignable marker elements, and systems and methods for manufacturing such implantable apparatus, and methods to utilize such implantable apparatus. For example, the implantable apparatus may include a first alignable marker element and a second alignable marker element that may be used to ensure proper alignment with a target site.
A medical device includes an application specific instruction processor (ASIP) comprising: a programmable state machine; a memory configured to store instructions for execution with the programmable state machine that when executed cause the programmable state machine to perform an operation of the medical device to generate first data that is to be stored or process second data that is received; and file manager circuitry configured to manage access of the instructions and variables of the instructions by the programmable state machine; and a microcontroller unit (MCU) that is separate and distinct from an application specific integrated circuit (ASIC) that includes the ASIP, wherein the MCU comprises one or more central processing units configured to execute an application to process the first data or generate the second data that is processed by the ASIP.
In some variations, a method for providing automatic guidance for image collection for 3D reconstruction of a target anatomy includes receiving a three-dimensional (3D) model of a target anatomy, wherein the 3D model is generated from two-dimensional (2D) images of the target anatomy and/or catheter mapping data of the target anatomy, determining a region of missing data in the 3D model, generating a suggested imaging probe pose for imaging a portion of the target anatomy corresponding to the region of missing data, receiving one or more supplemental 2D images collected based on the suggested imaging probe pose, and updating the 3D model based on the supplemental 2D images.
Devices, systems, and techniques include providing an insert between a feedthrough pin and electrode to enable electrical and mechanical connection between the feedthrough pin and electrode. In one example, a system includes an electrode defining an inner wall that defines an opening configured to accept an electrical connection device, an electrical connection device comprising an inner cylindrical wall defining an inner channel, wherein the electrical connection device is configured to be pressed into the opening, wherein at least a portion of the electrical connection device is configured to contact a portion of the inner wall of the electrode, and a feedthrough pin configured to be at least partially inserted into the inner channel of the electrical connection device.
A system includes a medical device, the medical device includes: sensing circuitry configured to sense a cardiac signal of a patient; and processing circuitry configured to: compare one or more features of the cardiac signal to one or more corresponding feature thresholds; compare an amount of time the one or more features have met the one or more corresponding feature thresholds to a time threshold; determine a cardiac signal data segment from the cardiac signal based on the comparison of the amount of time the one or more features have met the one or more corresponding feature thresholds to the time threshold; and output the determined cardiac signal data segment.
A system includes: one or more memories configured to: store a plurality of cardiac signals of a patient; and processing circuitry configured to: receive a respective assigned tag associated with one or more of the cardiac signals, wherein the respective assigned tag is indicative of a patient status associated with a corresponding cardiac signal of the one or more cardiac signals; based on the respective assigned tag indicative of the patient status meeting one or more criterion, filter the one or more cardiac signals to generate a subset of cardiac signals; determine an overall glycemic state of the patient based on the subset of cardiac signals; and output an indication to a user indicative of the overall glycemic state of the patient.
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne
27.
SYSTEMS FOR DETERMINING PATIENT ELIGIBILITY FOR SELF-CARE WITH ORAL ANTICOAGULANTS
A system monitors patients to identify atrial fibrillation (AF) episodes and to determine patient eligibility for self-driven oral anticoagulant (OAC) administration based on AF episode detection accuracy. For example, the system monitors a physiological signal to determine whether the signal contains AF episodes. The system flags potential AF episodes over a first period. The system and/or a clinician analyzes the potential AF episodes and/or the flagged ECG signal data to determine a first eligibility value. If the first eligibility value meets a threshold, the system determines the patient is eligible for self-driven OAC administration. Otherwise, the system may adjust an AF detection configuration and identifies a second plurality of potential AF episodes over a second period and determines a second eligibility value. If the second eligibility value meets a threshold, the system determines the patient is eligible for self-driven OAC administration.
G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne
28.
SIGNAL CLASSIFICATION TO DETECT EVOKED COMPOUND ACTION POTENTIAL FEATURES
A system, device, and method trains a machine learning model based on training data, wherein the training data is fit to an evoked compound action potential (ECAP) response model to derive a threshold of an evoked response. The method also includes labeling points in the training data as not containing an the ECAP if a waveform was captured below the threshold of the evoked response and or as containing an the ECAP if the waveform was captured above the threshold of the evoked response. The method further includes determining weights by weighting points above the threshold of the evoked response based on a proximity to the threshold of the evoked response and process, by the machine learning model, a received waveform to assign a classification to one or more portions of the received waveform based on the determined weights.
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
G16H 40/60 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
This disclosure generally relates to systems, devices, and methods for initiating or inhibiting noise reversion pacing therapy based on a morphology analysis to determine whether monitored cardiac electrical activity is indicative of a ventricular tachycardia/ventricular fibrillation (VT/VF). Specifically, if the morphology analysis indicates that a VT/VF episode is occurring, then noise reversion pacing therapy is inhibited.
A61B 5/363 - Détection de la tachycardie ou de la bradycardie
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61N 1/365 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
Devices, systems, and techniques are disclosed for delivering electric field therapy to tissue of a subject. In one example, medical lead includes a housing that has a main portion and a distal portion, wherein the main portion comprises a fixation structure and defines a first cross-sectional dimension, and wherein the distal portion defines a tapered tip and extends distally from the main portion. The medical lead may also include one or more electrodes carried by the housing, and a proximal tether comprising at least one conductor electrically coupled to the one or more electrodes, wherein the proximal tether extends proximal from the housing and defines a second cross-sectional dimension smaller than the first cross-sectional dimension.
The illustrative systems, devices, and methods described herein may be configured to deliver and adjust atrioventricular (AV) node stimulation to regularize a patient's heart rate and slow down, or decrease, the patient's heart and to deliver pacing therapy (e.g., cardiac resynchronization therapy, left ventricle only pacing therapy, biventricular pacing therapy, left bundle branch pacing therapy, etc.) in cooperation with the AV node stimulation.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
Ventricle-from-atrium (VfA) devices, systems, and methods may be configured to detect a tachyarrhythmia. For in-stance, an atrial event rate may be compared to a ventricular rate to determine whether a patient's heart is undergoing a tachyarrhythmia. Further, it may be determined whether the tachyarrhythmia is a supraventricular tachycardia or ventricular tachycardia prior to delivering therapy to treat the tachyarrhythmia.
An implantable medical device (IMD) automatically determines at least a portion of the parameters and, in some instances all of the parameters, of an exposure operating mode based on stored information regarding sensed physiological events or therapy provided over a predetermined period of time. The IMD may configure itself to operate in accordance with the automatically determined parameters of the exposure operating mode in response to detecting a disruptive energy field. Alternatively, the IMD may provide the automatically determined parameters of the exposure operating mode to a physician as suggested or recommended parameters for the exposure operating mode. In other instances, the automatically determined parameters may be compared to parameters received manually via telemetry and, if differences exist or occur, a physician or patient may be notified and/or the manual parameters may be overridden by the automatically determined parameters.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
A system includes an implantable medical device configured to measure blood-glucose concentration based on cardiac activity. The system further includes processing circuitry configured to generate, based on the plurality of periods, a plurality of waveforms representative of the blood-glucose concentration. The processing circuitry is further configured to identify at least one clinically significant feature that is present in each waveform. The processing circuitry is further configured to modify one or more of the plurality of waveforms such that the at least one feature is temporally aligned across the plurality of waveforms.
An example method of manufacturing an implantable medical device includes disposing a biocompatible electrical insulator on an outer surface of a housing of the implantable medical device and to cover an outer surface of an electrode that is positioned on the outer surface of the housing, ablating a portion of the biocompatible electrical insulator, and removing the biocompatible electrical insulator to expose the outer surface of the electrode.
In a body area network (BAN), a patient is implanted with multiple implantable medical devices (IMDs), with various amounts of limited local memory. There may be more therapeutic benefit in storing data from some classes of IMDs than other, or memory storage resources of one IMD may be under-utilized while memory storage resources of another IMD are full. A first IMD may store data of the first IMD on local memory of a second IMD. In this manner, in the event the first IMD memory is full, rather than overwriting locally stored data, the first IMD may off-load additional data for local storage in the second IMD. For instance, the memory of the second IMD may be under-utilized or there may be more therapeutic benefit in storing the data of the first IMD that storing data of the second IMD.
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
G16H 20/40 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mécaniques, la radiothérapie ou des thérapies invasives, p. ex. la chirurgie, la thérapie laser, la dialyse ou l’acuponcture
G16H 40/40 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion d’équipement ou de dispositifs médicaux, p. ex. pour planifier la maintenance ou les mises à jour
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
37.
SYSTEM FOR DETERMINING THAT VENTRICULAR TACHYARRHYTHMIA IS PREDICTED
A medical device system includes an implantable medical device configured to sense cardiac electrogram data and processing circuitry. The processing circuitry is configured to identify a premature ventricular contraction event within the cardiac electrogram data. The processing circuitry is configured to determine, for at least one or more cardiac cycles associated with the premature ventricular contraction event, one or more periodic repolarization dynamics metrics based on the cardiac electrogram data. The processing circuitry is configured to determine, for at least the one or more cardiac cycles associated with the premature ventricular contraction event, one or more turbulence metrics based on the one or more periodic repolarization dynamics metrics. The processing circuitry is configured to determine whether to provide an indication of at least one of sudden cardiac arrest or ventricular tachyarrhythmia based on the one or more periodic repolarization dynamics metrics and the one or more turbulence metrics.
In general, devices, systems, and techniques are described for adjusting one or more parameters defining adaptive stimulation therapy. In one example, a system includes processing circuitry configured to receive sensed data indicative of bioelectric brain signals sensed during delivery of brain stimulation therapy to a patient, receive event data indicative of an event experienced by a patient during delivery of the brain stimulation therapy, identify a subset of the sensed data based on the event data, and determine, based on the subset of the sensed data and the event data, a range of values for at least one threshold defining subsequent brain stimulation therapy, the range of values determined to reduce an occurrence of the event during delivery of the subsequent brain stimulation therapy. A medical device may be controlled to deliver the subsequent brain stimulation therapy according to the at least one threshold within the range of values.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
39.
OPERATION OF A MEDICAL DEVICE SYSTEM TO IDENTIFY PARTICULAR CARDIAC DATA SAMPLES ASSOCIATED WITH A CARDIAC EVENT
An example system includes a memory configured to store a plurality of sets of cardiac data, each set of cardiac data of the plurality of sets of cardiac data is associated with a patient; and processing circuitry in communication with the memory, wherein the processing circuitry is configured to: cause a user interface to display a set of cardiac data of the plurality of sets of cardiac data, wherein the set of cardiac data includes a plurality of cardiac data samples, and wherein each cardiac data sample is associated with a cardiac event probability that the cardiac data sample is associated with a cardiac event; receive, from the user interface, a user selection of a cardiac event probability threshold corresponding to the cardiac event; and cause the user interface to indicate each cardiac data sample associated with a cardiac event probability that is greater than the cardiac event probability threshold.
An example system includes a light source configured to emit light towards a tissue of a patient, a detector configured to detect the light emitted by the light source after the light passes through the tissue of the patient, and a controllable mask disposed between the detector and the tissue of the patient. The controllable mask is configured to block a first portion of the light passing through a first portion of the tissue and transmit a second portion of the light passing through a second portion of the tissue. The system also includes processing circuitry configured to determine a physiological characteristic of the patient based on the second portion of the light.
Example systems, devices, and techniques are described. An example system includes one or more memories configured to store, for each patient of a plurality of patients, a set of flagged cardiac data signal segments and a reference cardiac data signal segment. The system includes processing circuitry coupled to the one or more memories. The processing circuitry is configured to receive, from a user device, a user input indicating a user selection of a patient of the plurality of patients. The processing circuitry is configured to cause the user device to display the reference cardiac data signal segment corresponding to the patient and a first flagged cardiac data signal segment of the set of flagged cardiac data signal segments corresponding to the patient at a same time, wherein the displayed reference cardiac data signal segment and the displayed first flagged cardiac data signal segment do not overlap.
This disclosure generally relates to systems, devices, and methods configured to provide adjustment to tachyarrhythmia detection and noise reversion pacing therapy to, for example, avoid delivery of noise reversion pacing therapy during a tachyarrhythmia. For example, VT/VF detection parameters may be adjusted and ventricular capture may be determined upon determination of noise that initiates noise reversion pacing therapy. Further, for example, noise reversion pacing therapy may be adjusted or disabled in response to detection of a VT/VF episode and/or in response to confirmation of a VT/VF episode received from an external device.
Prosthetic heart valve delivery systems are disclosed that have a stop that inhibits the system from passing beyond the point of no return where further deployment of a collapsed prosthetic heart valve may render it unable to be recaptured. An elongate catheter may include an outer cover configured to cover and uncover a collapsed prosthetic heart valve. The collapsed prosthetic heart valve is biased to expand radially outward as the outer cover uncovers the collapsed prosthetic heart valve. The system may also include a screw shaft and an actuator rotatable about the screw shaft to cause axial translation of a carriage, and thus the connected outer cover. The stop inhibits further rotation of the actuator, and thus further axial translation of the outer cover, and thus further deployment of the collapsed prosthetic heart valve.
Transcatheter devices include a stented prosthesis with an expandable stent frame and a valve structure mounted to the expandable stent frame. The transcatheter devices further include an inner shaft extending through a lumen of the expandable stent frame. The transcatheter devices also include a first inflatable balloon, wherein a distal portion of the inner shaft extends within the first inflatable balloon. The transcatheter devices still further include a second inflatable balloon extending through the lumen of the expandable stent frame. The inner shaft further extends within the second inflatable balloon. The transcatheter devices further include a distal tip attached to a distal end of the distal portion of the inner shaft.
A61F 2/958 - Instruments spécialement adaptés pour insérer ou retirer les stents ou les endoprothèses déployables couvertes ballons gonflables pour insérer les stents ou les endoprothèses déployables couvertes
45.
TRANSCATHETER HEART VALVE PROSTHESIS DEPLOYMENT SYSTEM WITH ACTUATION STOP MECHANISM
Methods and system for delivering heart valves are disclosed in which a stop inhibits the system from passing beyond the point of no return where further deployment of a collapsed prosthetic heart valve may render it unable to be recaptured. An elongate catheter may include an outer cover configured to cover and uncover a collapsed prosthetic heart valve. The collapsed prosthetic heart valve is biased to expand radially outward as the outer cover uncovers the collapsed prosthetic heart valve. The system may also include a screw shaft and an actuator rotatable about the screw shaft to cause axial translation of a carriage, and thus the connected outer cover. The stop inhibits further rotation of the actuator, and thus further axial translation of the outer cover, and thus further deployment of the collapsed prosthetic heart valve.
A heart valve prosthesis is positioned within an index valve prosthesis. The heart valve prosthesis includes an annular frame extending along a valve axis between a first valve end and a second valve end. The annular frame includes a plurality of frame members and is adjustable between a radially-collapsed configuration and a radially-expanded configuration. The annular frame includes an engagement region extending circumferentially around the valve axis and includes at least one protrusion arm extending radially outwardly. At least one anchor is attached to the at least one protrusion arm and contacts at least one lacerated leaflet of the index valve prosthesis and moves the at least one lacerated leaflet to a position that does not obstruct a coronary artery. Methods of implanting a heart valve prosthesis are provided.
A61F 2/966 - Instruments spécialement adaptés pour insérer ou retirer les stents ou les endoprothèses déployables couvertes possédant une gaine extérieure avec un mouvement longitudinal relatif entre la gaine extérieure et la prothèse, p. ex. utilisant une tige poussoir
47.
METHODS AND SYSTEMS FOR GENERATING 3D MODELS OF ANATOMY
In some variations, a method for generating a 3D model of a target anatomy includes receiving 2D images of the target anatomy, wherein the 2D images are generated by an imaging probe, receiving tracking data representing the poses of the imaging probe while generating the 2D images, generating a 3D model based on the 2D images and the tracking data, determining a confidence level in a portion of the 3D model, and displaying the 3D model and a representation of the confidence level. In some variations, a method for generating a 3D model of a target anatomy includes detecting a discrepancy between (i) an expected relation between a tracked medical device and the target anatomy, and (ii) a detected relation between the tracked medical device and the target anatomy, and updating the 3D model based at least in part on the detected discrepancy.
Anatomical modeling systems, methods, and devices are disclosed herein. According to some variations, a method of the present technology includes receiving an incomplete three- dimensional (3D) model of an anatomy of interest of a subject. The method can further include inputting the incomplete 3D model into a pre-trained machine learning algorithm, wherein the machine learning algorithm encodes a latent space representation of the anatomy of interest from training data derived from a plurality of seconds. The method can also include generating, using the machine learning algorithm, an expanded 3D model of the anatomy of interest of the subject. Methods for training the machine learning algorithm are also disclosed.
A method according to at least one embodiment of the present disclosure includes receiving a first set of data including information about evoked Compound Action Potentials (eCAPs), the first set of data generated by an electrical lead; and training, using the first set of data, an auto-encoder neural network. The auto-encoder neural network may be used in a device with an implantable electrical lead. The auto-encoder neural network may receive information collected by the device, analyze growth curve waveforms, and determine, based on the growth curve waveform analysis, whether or not the implantable electrical lead has moved.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
An example implantable medical device includes a housing configured to house control circuitry that is configured to control functioning of the implantable medical device, an electrode positioned on an outer surface of the housing and connected to the control circuitry. The control circuitry is configured to monitor a physiological parameter of a patient via the electrode. The implantable medical device also includes an absorbable antibacterial layer disposed on the housing. The implantable medical device including the absorbable antibacterial layer is configured to be received within an implantation tool and delivered out of the implantation tool and into a patient.
A61B 5/29 - Électrodes bioélectriques à cet effet spécialement adaptées à des utilisations particulières pour l’électrocardiographie [ECG] invasives pour implantation permanente ou à long terme
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/263 - Électrodes bioélectriques à cet effet caractérisées par les matériaux des électrodes
A61B 5/287 - Supports pour électrodes multiples, p. ex. cathéters à électrode pour des études électrophysiologiques [EEP]
A61B 5/318 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG]
A61K 9/00 - Préparations médicinales caractérisées par un aspect particulier
A61K 31/496 - Pipérazines non condensées contenant d'autres hétérocycles, p. ex. rifampine, thiothixène ou sparfloxacine
An electrochemical cells and methods of making the same are disclosed. An electrochemical cell may include a cell housing and a cell core. The cell housing may define a tubular cell body extending along a longitudinal axis from a distal end to a proximal end. The cell core may be disposed in the cell housing. The cell core may include a winding core extending along the longitudinal axis, a cathode, an anode, a plurality of inner windings, and a plurality of outer windings. The plurality of inner windings may be coiled around the winding core and define an inner diameter. The plurality of outer windings may be coiled around the plurality of inner windings and define an outer diameter.
H01M 10/0587 - Structure ou fabrication d'accumulateurs ayant uniquement des éléments de structure enroulés, c.-à-d. des électrodes positives enroulées, des électrodes négatives enroulées et des séparateurs enroulés
H01M 50/107 - Boîtiers primairesFourreaux ou enveloppes caractérisés par leur forme ou leur structure physique ayant une section transversale courbe, p. ex. ronde ou elliptique
H01M 50/474 - Éléments d'espacement à l'intérieur des cellules autres que les séparateurs, les membranes ou les diaphragmesLeurs procédés de fabrication caractérisés par leur position dans les cellules
H01M 50/477 - Éléments d'espacement à l'intérieur des cellules autres que les séparateurs, les membranes ou les diaphragmesLeurs procédés de fabrication caractérisés par leur forme
52.
HIGH ENERGY DENSITY LITHIUM-ION ELECTROCHEMICAL CELL FOR IMPLANTABLE MEDICAL DEVICES
Rechargeable lithium-ion cells and implantable medical devices including the same are provided herein with improved energy density, upper recharge voltages, and long-term stability. Rechargeable lithium-ion cells provided include an LTO negative electrode having one or both of a high negative electrode area specific capacity and a high active material loading value and an LCO positive electrode having one or both of high LCO utilization and high density.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/136 - Électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
Systems and methods for electrochemical cells, or batteries, wherein the batteries include at least a first inner shell, a second outer shell, and a pin, wherein each of the first inner shell, second outer shell, and pin are thermally conductive. Under most operating temperatures the pin thermally couples the first shell to the second shell. The batteries include at least one thermally expansive component, which may be one of the shells that expands when the battery is exposed to elevated temperatures. As temperatures rise, the expansive component expands such that the pin no longer thermally couples the first and second shells, thereby disconnecting the path of heat flow from an external heat source to inside the electrochemical cell and thereby preventing cell damage. A spring may be included to ensure robust thermal coupling between the first and second shell during normal operating temperatures.
H01M 10/658 - Moyens de commande de la température associés de façon structurelle avec les éléments par isolation ou protection thermique
H01M 10/653 - Moyens de commande de la température associés de façon structurelle avec les éléments caractérisés par des matériaux électriquement isolants ou thermiquement conducteurs
H01M 50/213 - Bâtis, modules ou blocs de multiples batteries ou de multiples cellules caractérisés par leur forme adaptés aux cellules ayant une section transversale courbée, p. ex. ronde ou elliptique
A medical device system includes processing circuitry configured to receive an orientation sensor signal responsive to changes in a position of an implantable medical device relative to a reference vector. The processing circuitry may be configured to, for each of a plurality of time points, compute from the first orientation signal an angular position of the implantable medical device relative to the reference vector and determine a corresponding directional difference to the angular position from a preceding angular position. The medical device system may include a display unit configured to display a moving graphic image of the implantable medical device according to the computed angular positions and directional differences.
G16H 30/40 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le traitement d’images médicales, p. ex. l’édition
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
G16H 40/60 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
G16H 30/20 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le maniement d’images médicales, p. ex. DICOM, HL7 ou PACS
55.
RECHARGEABLE IMPLANTS AND METHODS FOR ESTIMATING MAXIMUM APPLIED TEMPERATURES DURING IMPLANT RECHARGE
A system according to at least one embodiment of the present disclosure includes: a processor; and a memory storing data thereon that, when processed by the processor, enable the processor to: receive temperature information associated with an implanted device configured to be charged by a recharger; estimate, based on the temperature information, position information associated with at least one of the recharger and the implanted device; estimate, based on the position information, a temperature applied to an anatomical element proximate the implanted device; and control, based on the estimated temperature, at least one operating parameter of the recharger.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
56.
CAPSULE GUIDE TUBE FOR LOADING SYSTEMS FOR LOADING A HEART VALVE PROSTHESIS INTO A DELIVERY DEVICE
A capsule guide tube for use with a loading system for loading a heart valve prosthesis into a delivery device includes an unlocked configuration and a locked configuration. The capsule guide tube includes a body and a locking member. The body is a one-piece tube configured to be disposed around a distal portion of the delivery device. The locking member is configured to releasably secure the body to a delivery device. The locking member includes a proximal end, a distal end, and a lock central passageway, wherein with the capsule guide tube in the locked configuration, the lock central passageway includes a distal portion having a first diameter configured to be disposed around a proximal portion of the body and a proximal portion having a second diameter and configured to be disposed around a portion of a delivery device, wherein the second diameter is smaller than the first diameter.
Techniques are disclosed for monitoring a risk of pulmonary hypertension (PH) in a patient. In one example, a medical system comprises: at least one implantable medical device (IMD) configured to sense an electrocardiogram (ECG) signal and an optical signal of a patient; and processing circuitry configured to: based on one or more features of the optical signal and one or more features of the ECG signal, determine a risk of PH for the patient; and generate a communication for presentation to a user based on the risk of PH.
Transcatheter devices comprise a shaft comprising a proximal portion and a distal portion. The transcatheter devices further comprise a handle device coupled to the proximal portion of the shaft. The handle device comprises a first actuator. The transcatheter devices further comprise a distal tip coupled to the distal portion of the shaft. The transcatheter devices further comprise a severing device comprising a proximal portion pivotally mounted to the distal tip. The severing device configured to be pivoted from a loaded state to a deployed state. Methods include moving a severing device from a loaded state to a deployed state. Methods further include severing at least one leaflet with the severing device in the deployed state and radially expanding the expandable stent frame.
A61B 18/00 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci
A61B 18/08 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci par chauffage à l'aide de sondes chauffées électriquement
59.
BLOOD PRESSURE PREDICTION FROM IMPLANTABLE PULSE SIGNAL
Techniques are disclosed for monitoring blood pressure values of a patient. In one example, a medical device system comprises: an optical sensor configured to sense a pulse signal; and processing circuitry configured to: determine a plurality of systolic pressure values and a corresponding plurality of diastolic pressure values based on an analysis of a predetermined length of the pulse signal, wherein the analysis comprises, for each of systolic pressure value of the plurality of systolic pressure values and each corresponding diastolic pressure value of the plurality of diastolic pressure values, applying a rolling window within the predetermined length of the pulse signal; determine an overall systolic pressure value based on the plurality of systolic pressure values and an overall diastolic pressure value based on the corresponding plurality of diastolic pressure values; and present the overall systolic pressure value and the overall diastolic pressure value to a user.
A prosthetic heart valve includes a frame, a valve component disposed within and coupled to the frame, a radiopaque marker, wherein the radiopaque marker is formed from a radiopaque polyurethane tape.
A rechargeable implantable device is provided. The rechargeable implantable device may include a housing having a first side and a second side and a cavity and a battery positioned in the cavity. The rechargeable implantable device also includes one or more recharge coils spaced from the battery and a divider spaced between the battery and the one or more recharge coils. The one or more recharge coils may be arranged such that a recharger can be positioned adjacent to at least one of the first side or the second side to recharge the rechargeable implantable device.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
Cardiac pacemakers; MRI-conditional shielding that enables patients to undergo an MRI with expanded radiation tolerance sold as an integral component of implantable cardiac devices in the nature of implantable cardiac pacemakers
63.
REDUCED POWER MACHINE LEARNING SYSTEM FOR ARRHYTHMIA DETECTION
Techniques are disclosed for using feature delineation to reduce the impact of machine learning cardiac arrhythmia detection on power consumption of medical devices. In one example, a medical device performs feature-based delineation of cardiac electrogram data sensed from a patient to obtain cardiac features indicative of an episode of arrhythmia in the patient. The medical device determines whether the cardiac features satisfy threshold criteria for application of a machine learning model for verifying the feature-based delineation of the cardiac electrogram data. In response to determining that the cardiac features satisfy the threshold criteria, the medical device applies the machine learning model to the sensed cardiac electrogram data to verify that the episode of arrhythmia has occurred or determine a classification of the episode of arrhythmia.
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/11 - Mesure du mouvement du corps entier ou de parties de celui-ci, p. ex. tremblement de la tête ou des mains ou mobilité d'un membre
A61B 5/33 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG] spécialement adaptées à l’utilisation conjointe avec d’autres dispositifs
G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne
Systems and methods for virtual electrode placement for electrode localization are provided. In one example, a virtual placement system includes a memory for storing instructions and a processor for executing the instructions as operations. The operations include virtually placing a virtual layout of virtual electrodes on a body surface geometry of a patient. The virtual electrodes represent respective physical electrodes arranged on the patient. The operations also include localizing the physical electrodes in three- dimensional space based on the virtual layout of the virtual electrodes.
Systems and methods for programming a neuromodulation system are provided. One or more electrodes may be determined to enable at least one of a target stimulation therapy or a target alternative stimulation therapy. The device may be programmed with one or more parameters based on the target stimulation therapy or the target alternative stimulation therapy. A signal corresponding to the stimulation when a user performs an aggressor movement may be received and one or more parameters may be adjusted when the signal corresponding to the stimulation when the user performs the aggressor movement does not include an electrically evoked compound action potential (ECAP). Alternatively or additionally, one or more thresholds may be set when the signal corresponding to the stimulation when the user performs the aggressor movement includes the ECAP.
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
A heart valve prosthesis includes an inner stent, an outer stent at least partially surrounding the inner stent, and a prosthetic valve operatively coupled to the inner stent. The outer stent includes a plurality of struts and nodes defining open cells of the outer stent, and a plurality of cleats. The plurality of cleats includes first strut cleats extending radially outwardly and proximally from first struts of a first row of the plurality of struts with the heart valve prosthesis in a radially expanded configuration.
A medical device, and methods of manufacturing the same, including a fixation element having varied cross-sectional dimension. The device including a body portion and the fixation element coupled to a distal body end and extending therefrom. The fixation element is configured to affix the body portion to a wall of a heart. The fixation element defines a helical shape extending between a distal fixation end and a proximal fixation end along a direction of a helical axis. The fixation element defines a proximal fixation section proximate the proximal fixation end, a distal fixation section proximate the distal fixation end, and a middle fixation section located between the proximal and distal fixation sections. A cross-sectional dimension of the middle fixation section is smaller than a cross-sectional dimension of the proximal fixation section.
A method, system and device for implanting an electrode assembly of an implantable medical device in a patient's heart. Positioning one or more radiopaque markers in a coronary sinus of the patient's heart. Positioning, by using the one or more positioned radiopaque markers as a fluoroscopic visual reference, a distal tip of a delivery catheter within a right atrium of the patient's heart so that a distal opening of a lumen of the catheter is against a septal wall of the heart at a location between the ostium of the coronary sinus and the A-V nodal area of the right atrium, and so that the tip of the catheter is generally directed toward a left ventricle of the patient's heart. Advancing the electrode assembly through the lumen of the catheter and into the septal wall.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61B 5/287 - Supports pour électrodes multiples, p. ex. cathéters à électrode pour des études électrophysiologiques [EEP]
A61B 90/00 - Instruments, outillage ou accessoires spécialement adaptés à la chirurgie ou au diagnostic non couverts par l'un des groupes , p. ex. pour le traitement de la luxation ou pour la protection de bords de blessures
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A system for assisting in loading an implantable medical device onto a delivery system includes a body having a first end, a second end, and a conduit extending from the first end to the second end. The body has an inner diameter that allows a distal portion of the delivery system to slidably move through the conduit. The body has an outer diameter that allows the body to be inserted into a central lumen of the implantable medical device.
Systems, devices, and methods for promoting a patient's volume return to the heart and cardiac pre-load by inducing constriction of at least a portion of the splanchnic bed of the patient are described herein. Constriction of at least a portion of the splanchnic bed is induced via electrical stimulation to splanchnic nerve fibers of one or more splanchnic nerves. Electrical stimulation to splanchnic nerve fibers is delivered using at least one intravenous electrode disposed within a vein of the patient proximate to the splanchnic nerve fibers.
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/11 - Mesure du mouvement du corps entier ou de parties de celui-ci, p. ex. tremblement de la tête ou des mains ou mobilité d'un membre
71.
PROSTHETIC VALVE DEVICE RESISTANT TO BACKFOLDING AND BUCKLING
A prosthesis includes a tubular graft, a prosthetic valve component, an inflow stent, an outflow stent, and a plurality of body stents disposed between the inflow and outflow stents. Each stent is a sinusoidal patterned radially-expandable ring having a first set of crowns and a second set of crowns, with the first set of crowns disposed closer to an inflow end of the tubular graft than the second set of crowns. The prosthesis is configured to be resistant to backfolding and/or buckling during deployment thereof.
A medical device system includes a sensor circuit configured to sense an acceleration signal and a cardiac signal sensing circuit configured to sense at least one cardiac signal. The medical device system includes a control circuit configured to detect a spike from the acceleration signal that meets posture change motion criteria and detect a threshold increase in heart rate from the sensed cardiac signal. The medical device system includes a therapy delivery circuit configured to deliver autonomic nervous stimulation (ANS) for decreasing the heart rate in response to the control circuit detecting the spike and the threshold increase in heart rate.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/11 - Mesure du mouvement du corps entier ou de parties de celui-ci, p. ex. tremblement de la tête ou des mains ou mobilité d'un membre
A61B 5/349 - Détection de paramètres spécifiques du cycle de l'électrocardiogramme
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
Systems and techniques for managing communication and charging from an external instrument are described. In one example, an external instrument includes communication circuitry and processing circuitry. The processing circuitry can control the communication circuitry to connect to the external device via the first communication channel, wherein the communication circuitry is configured to receive encrypted passthrough data and a command from the external device through the first communication channel, and control the communication circuitry to transmit the encrypted passthrough data to the medical device via a second communication channel. The processing circuitry can control an operational state of the external instrument based on reception of the encrypted passthrough data or the command. In some example, the operational state may be an operational state of recharge circuitry.
An implantable medical device configured to deliver pacing therapy, the implantable medical device including a device body configured to position within a heart, where the device body comprises a proximal body portion and a distal body portion and defines a longitudinal axis extending through the proximal body portion and the distal body portion, the proximal body portion is configured to rotate around the longitudinal axis relative to distal body portion, and a leadlet mechanically coupled to the device body, where the leadlet mechanically supports an electrode configured to deliver pacing therapy, and where in response to the proximal body portion rotating relative to the distal body portion, the device body is configured to alter an extension length of the leadlet.
An example system includes an insertable cardiac monitoring device including sensing circuitry configured to sense continuous electrocardiogram (ECG) data based on electrical activity of a heart of the patient via a plurality of electrodes on a beat-by-beat basis. The system includes processing circuitry configured to determine one or more first parameters based on the continuous ECG data, the one or more first parameters including at least one of an absolute corrected QT (QTc) interval value or a magnitude of change in QTc interval values over time. The processing circuitry is configured to predict a risk of at least one of an arrhythmia event or a sudden cardiac arrest (SCA) event based on the one or more first parameters. The processing circuitry is configured to determine that the risk satisfies a threshold, and based on the risk satisfying the threshold, send an alert indicative of the risk.
A61B 5/363 - Détection de la tachycardie ou de la bradycardie
G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne
76.
IDENTIFYING A PARTICULAR HEALTH EVENT USING A SINGLE LEAD ELECTRICAL SIGNAL SENSED BY A MEDICAL DEVICE
An example system includes an implantable medical device configured to sense an electrocardiogram (ECG) signal of a patient via a single lead; and processing circuitry configured to: separate the ECG signal into a plurality of ECG segments corresponding to a plurality of heartbeat time periods; apply the plurality of ECG segments to a machine learning (ML) model; and determine whether one or more of the plurality of ECG segments indicate myocardial infarction, the model being trained on a plurality of training ECG segments corresponding to the plurality of heartbeat time periods.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/318 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG]
A61B 5/349 - Détection de paramètres spécifiques du cycle de l'électrocardiogramme
A61B 5/364 - Détection d'intervalle ECG anormal, p. ex. des extrasystoles ou des battements cardiaques ectopiques
A61B 5/366 - Détection de complexes QRS anormaux, p. ex. élargissement
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
An intravascular medical device (100) includes a neuromodulation catheter (102) configured to be navigated through vasculature of a patient and deliver denervation therapy to tissue at a target treatment site of a vessel. The intravascular medical device also includes an expandable member (112) configured to deliver a therapeutic agent disposed on an outer surface of the expandable member to an inner surface of the vessel when the expandable member is expanded.
This disclosure includes example medical device systems, and techniques for communicating between medical devices. An example medical device includes memory configured to store parameters for therapy delivery for a patient, communication circuitry, electrical signal generation circuitry, and processing circuitry. The processing circuitry is configured to control the electrical signal generation circuitry to deliver a first electrical signal to an anatomy of the patient. The processing circuitry is configured to, based on the electrical signal generation circuitry delivering the first electrical signal, control the communication circuitry to communicate with another medical device.
A shuttle apparatus configured to detachably engage a delivery system for an implantable medical device. The shuttle apparatus includes a distal portion having a generally semiconical introducer member with a proximal base and a distal apex, a proximal portion having a hollow, generally frustoconical plug member with a base adjacent to the base of the introducer member, and a collar member with a distal end on the introducer member and a proximal end on the plug member, wherein the proximal end of the collar member includes a cantilevered arm.
A medical system configured to impart a torque to a medical device within a patient. The medical system includes a driver including a driver body supporting a head section. The medical system includes a snare configured to engage the medical device. In examples, the head section defines a protrusion configured to insert into a device recess or a device slot of the implantable medical device to transfer the torque to the medical device. In examples, the a snare surface of the snare is configured to engage the medical device to transfer the torque to the medical device. In examples, the medical device includes an attachment member configured to engage or disengage tissue when the medical device rotates. The medical system may include a delivery catheter configured to deliver and/or retrieve the head section, intermediate member, and medical device.
Feedthrough assemblies for implantable medical devices and substrates therefore are provided herein including feedthrough bores extending through the substrates from a first major surface to a second major surface and including at least one fluid control beds on the first major surface. The fluid control beds are configured to modify interactions between the fluid control bed and a fluid, as compared with interactions between the fluid and other portions of the substrate.
Systems, devices, and techniques are described for determining stimulation parameters based on one or more stimulation thresholds (e.g., a perception threshold or a detection threshold). In one example, a medical device includes sensing circuitry configured to sense one or more ECAP signals, wherein the sensing circuitry is configured to sense each ECAP signal of the one or more ECAPs elicited by a respective control pulse of a plurality of control pulses, and the medical device includes processing circuitry configured to determine, based on the one or more ECAP signals, a stimulation level for the plurality of control pulses that achieves a stimulation threshold, determine, based on the stimulation level, a value of a stimulation parameter that at least partially defines a plurality of therapy pulses of electrical stimulation therapy, and control stimulation generation circuitry to deliver the electrical stimulation therapy according to the value of the stimulation parameter.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
An implantable medical system may provide atrioventricular synchronous pacing using the ventricular septal wall. The system may include a ventricular electrode coupled to an intracardiac housing or a first medical lead implantable in the ventricular septal wall of the patient's heart to deliver cardiac therapy to or sense electrical activity of the left ventricle of the patient's heart and a right atrial electrode coupled to a leadlet or second medical lead to deliver cardiac therapy to or sense electrical activity of the right atrium of the patient's heart. A right ventricular electrode may be coupled to the intracardiac housing or the first medical lead and implantable in the ventricular septal wall of the patient's heart to deliver cardiac therapy to or sense electrical activity of the right ventricle of the patient's heart.
A61N 1/368 - Stimulateurs cardiaques commandés par un paramètre physiologique, p. ex. par le potentiel cardiaque comprenant plus d'une électrode coopérant avec différentes régions du cœur
A61B 5/33 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG] spécialement adaptées à l’utilisation conjointe avec d’autres dispositifs
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/375 - Aménagements structurels, p. ex. boîtiers
A medical lead system includes a lead body, a plurality of electrical conductors, and a plurality of electrodes. The lead body may include a distal end and a proximal end defining a longitudinal axis of the lead body. The plurality of electrical conductors extending about the longitudinal axis of the lead body. The plurality of electrodes is positioned around an outer perimeter of the lead body. An inner surface of each of the plurality of electrodes defines an inner perimeter. Each respective electrode of the plurality of electrodes is electrically coupled to a respective electrical conductor of the plurality of electrical conductors. Each electrode of the plurality of electrodes includes at least one electrode locking feature extending into the lead body from the inner perimeter.
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
B29C 45/14 - Moulage par injection, c.-à-d. en forçant un volume déterminé de matière à mouler par une buse d'injection dans un moule ferméAppareils à cet effet en incorporant des parties ou des couches préformées, p. ex. moulage par injection autour d'inserts ou sur des objets à recouvrir
B29K 75/00 - Utilisation de polyurées ou de polyuréthanes comme matière de moulage
A medical device is configured to receive a cardiac signal and determine a morphology matching score from the cardiac signal and a capture detection morphology template that corresponds to a first type of cardiac pacing capture that includes capture of at least a first portion of the His-Purkinje system. The device is configured to detect a second type of cardiac pacing capture in response to the morphology matching score being less than the first match threshold. The second type of cardiac pacing capture is different than the first type of cardiac pacing capture and may include capture of the ventricular myocardium and/or a second portion of the His-Purkinje system different than the first portion.
A monitoring apparatus is provided for monitoring physiological information of a heart of a patient. The monitoring apparatus includes a heart valve prosthesis implanted into a first valve of the heart. At least one passive sensor is attached to the heart valve prosthesis and obtains physiological information adjacent to the first valve of the heart. A first wireless power component is electrically coupled to the at least one passive sensor. An electronic implant is implanted within the patient. The electronic implant includes a power source including a second wireless power component that wirelessly communicates with the first wireless power component. The wireless communication between the first wireless power component and the second wireless power component powers the at least one passive sensor. Methods of monitoring physiological information of a heart of a patient are provided.
44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.
Produits et services
medical services, namely, remote transmission review of a patient's cardiac device and reviewing, analyzing and interpreting the cardiac data and creating physician reports for device diagnostic, patient diagnostic, and therapeutic purposes
88.
TRANSCATHETER DELIVERY DEVICE HAVING FLEXIBLE CAPSULE
Aspects of the disclosure include transcatheter delivery devices for delivery and deployment of a cardiac prosthesis, such as a prosthetic heart valve. Various embodiments include a one or two part capsule for maintaining the prosthesis during delivery. Embodiments include a flexible capsule that can deflect, either automatically or in response to contact with the anatomy, to reduce a delivery depth within a ventricle necessary to fully unsheathe the prosthesis, which increases the patient population and valve locations suitable for prosthesis delivery with the delivery device.
Systems and methods for monitoring an implantable pulse generator are provided. The system may comprise an implantable pulse generator configured to generate a current and an electrode configured to apply the current to an anatomical element. Patient feedback may be monitoring using at least one device and an activation signal may be generated based on the patient feedback. The activation signal may be transmitted to the implantable pulse generator to cause the implantable pulse generator to generate the current, thereby causing the electrode to apply the current to the anatomical element.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
90.
SYSTEMS, METHODS, AND DEVICES FOR MITIGATING INDUCED STIMULATION
A system may adjust the transfer of inductive energy based on determined induced stimulation. For example, a processing circuitry may be configured to determine a parameter that correlates with an induced stimulation at one or more leads of an implantable medical device during a transfer of inductive energy from an external device to the implantable medical device. The processing circuitry may also adjust, based on the parameter, the transfer of the inductive energy from the external device such that the parameter that correlates with the induced stimulation does not exceed a predetermined threshold.
This disclosure describes techniques for tracking respiration and respirophasic pacing using bioimpedance measurements. In one example, a device includes: therapy delivery circuitry configured to deliver cardiac pacing pulses to a heart of a patient via a plurality of electrodes; sensing circuitry configured to sense a bioimpedance signal of a patient; and processing circuitry configured to: identify a beginning of a current inspiration phase of the patient based on the bioimpedance signal; and control the therapy delivery circuitry to adjust a rate of the cardiac pacing during the current inspiration phase based on the identification of the beginning of the current inspiration phase.
Techniques are described for facilitating review of medical device transmissions. As an example, a system configured for analyzing implantable medical device (IMD) transmissions, the system comprising: an IMD configured to: sense a physiological signal of a patient; and store physiological data as indicative of an episode based on the physiological signal; and processing circuitry configured to: perform a first review of the physiological data by at least comparing the physiological data to one or more previous transmissions; based on the comparison, determine whether to perform a second review of the physiological data to determine whether the physiological data is indicative of the episode; and based on a determination of the second review that the physiological data is indicative of the episode, send a transmission comprising the physiological data to a user.
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
G16H 10/65 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients stockées sur des supports d’enregistrement portables, p. ex. des cartes à puce, des étiquettes d’identification radio-fréquence [RFID] ou des CD
G16H 15/00 - TIC spécialement adaptées aux rapports médicaux, p. ex. leur création ou leur transmission
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
93.
RESPIROPHASIC PACING BASED ON TRACKING RESPIRATION WITH ELECTROGRAMS
A therapy delivery device configured to deliver cardiac pacing pulses to a heart of a patient via a plurality of electrodes can sense an electrogram (EGM) signal of a patient; identify a prior inspiration phase based on the EGM signal; determine a heart rate of the patient based on the EGM signal; predict a beginning of a subsequent inspiration phase based on the prior inspiration phase; and adjust a rate of the cardiac pacing during the subsequent inspiration phase based on the heart rate and the prior inspiration phase.
A transcatheter valve prosthesis includes a balloon expandable stent and a prosthetic valve. An inflow portion of the stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts. Endmost inflow side openings and endmost inflow crowns are formed at the inflow end of the stent and the inflow end of the stent has a total of twelve endmost inflow crowns. An outflow portion of the stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts. Endmost outflow crowns are formed at the outflow end of the stent and the outflow end of the stent has a total of six endmost outflow crowns. The prosthetic valve is disposed within and secured to the stent.
A bioprosthetic device includes a frame and a bioprosthetic tissue including collagen and a plurality of holes. The bioprosthetic tissue is attached to the frame. The bioprosthetic device includes a plurality of sutures extending through the plurality of holes. In aspects, a periphery of the plurality of holes has a greater collagen cross-linking density or elastic modulus than a bulk of the bioprosthetic tissue. The bioprosthetic device can be a prosthetic heart valve assembly. Alternatively, a collagen-containing scaffold can have predetermined location with has a greater collagen cross-linking density or elastic modulus than a bulk of the collagen-containing scaffold. Methods include applying a cross-linking agent to a predetermined location. Methods further include cross-linking collagen at the predetermined location by impinging the predetermined location\ with a light beam, but a majority of a surface area of the bioprosthetic tissue does not have collagen cross-linked by the impinging.
Various fixation techniques for implantable medical device (IMDs) are described. In one example, an assembly comprises an IMD; and a set of active fixation tines attached to the IMD. The active fixation tines in the set are deployable from a spring-loaded position in which distal ends of the active fixation tines point away from the IMD to a hooked position in which the active fixation tines bend back towards the IMD. The active fixation tines are configured to secure the IMD to a patient tissue when deployed while the distal ends of the active fixation tines are positioned adjacent to the patient tissue.
An example system includes a delivery catheter including an elongated body extending from a proximal end to a distal end along a catheter longitudinal axis, the elongated body defining a catheter lumen extending from the proximal end to the distal end. The system also includes a receptacle defining an inner volume configured to house an implantable medical device (IMD), the receptacle located at the distal end of the delivery catheter. The system also includes a telemetry extender that includes a distal coil including a plurality of turns of a first conductor, a proximal coil including a plurality of turns of a second conductor, and a third conductor electrically coupling the distal coil and the proximal coil. The third conductor is configured to extend at least from the proximal end to the distal end of the delivery catheter.
Systems and methods for generating pump instructions are provided. The system may include processors to determine an initial flow rate of a medication, determine a target flow rate of the medication, and generate pump instructions based on the initial flow rate and the target flow rate for a controller to control a pump to administer the medication from the initial flow rate to the target flow rate over time.
G16H 20/17 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients administrés par perfusion ou injection
G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
99.
MEDICAL DEVICE SYSTEM AND METHOD FOR DETERMINING A DIRECTION OF A COMMUNICATION VECTOR
A medical device system may include processing circuitry configured to receive an orientation signal sensed by an orientation sensor of an implantable medical device. The processing circuitry may be configured to determine from the orientation signal an alignment metric correlated to an angle between an actual direction of a communication vector of the implantable medical device and a desired direction of the communication vector. The processing circuitry may generate an output based on the alignment metric. The medical device system may include a user interface configured to receive the output and generate a user feedback signal based on the output.
G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
A61N 1/372 - Aménagements en relation avec l'implantation des stimulateurs
Transcatheter heart valve prostheses include a valve support, a prosthetic valve mounted within the valve support, and an anchoring frame at least partially surrounding the valve support. The anchoring frame and the valve support are attached to each other at respective inflow ends thereof. The anchoring frame includes a fixation portion configured to securely fix the anchoring frame, to tissue at a native heart valve, an integration region configured to integrate the anchoring frame with the valve support, and a lateral portion extending between the fixation portion and the integration region. A brim is coupled to and extends radially outwardly from the anchoring frame at a transition between the lateral portion and the fixation portion.