Processes for fusing opaque fused quartz to clear fused quartz to form ultraviolet light transmission windows comprise surrounding a clear fused quartz ingot with an opaque fused quartz sleeve or opaque fused quartz particles, then heating the clear and opaque fused quartz together in a furnace, past the transition temperature of the opaque fused quartz, in order to join the two types of quartz together around the perimeter of the clear fused quartz ingot, but without substantial mixing beyond the interface.
Processes for fusing opaque fused quartz to clear fused quartz to form ultraviolet light transmission windows comprise surrounding a clear fused quartz ingot with an opaque fused quartz sleeve or opaque fused quartz particles, then heating the clear and opaque fused quartz together in a furnace, past the transition temperature of the opaque fused quartz, in order to join the two types of quartz together around the perimeter of the clear fused quartz ingot, but without substantial mixing beyond the interface.
3. The starting perform and the opaque quartz glass component have respective direct spectral transmissions of approximately 0.1-1% and 0.2-3% in the wavelength range of λ=190 nm to λ=4990 nm at a wall thickness of 3 mm and a diffuse reflectance of at least 60% in a wavelength range of λ=190 nm to λ=2500 nm.
A method of forming an opaque quartz glass component is provided. The method includes (a) providing a starting preform made of quartz glass; (b) heating at least a portion of the starting preform to a predetermined temperature at which the quartz glass of the starting preform has a viscosity in a range of 10E2 to 10E12 poise; and (c) deforming at least a portion of the heated preform at the predetermined temperature to change a shape and/or dimension(s) of the heated perform in order to form the opaque quartz glass component. The starting preform and the heated preform have respective densities of at least 2.15 g/cm3 and at least 2.10 g/cm3. The starting perform and the opaque quartz glass component have respective direct spectral transmissions of approximately 0.1-1% and 0.2-3% in the wavelength range of λ=190 nm to λ=4990 nm at a wall thickness of 3 mm and a diffuse reflectance of at least 60% in a wavelength range of λ=190 nm to λ=2500 nm.
In a known composite material with a fused silica matrix there are regions of silicon-containing phase embedded. In order to provide a composite material which is suitable for producing components for use in high-temperature processes for heat treatment even when exacting requirements are imposed on impermeability to gas and on purity, it is proposed in accordance with the invention that the composite material be impervious to gas, have a closed porosity of less than 0.5% and a specific density of at least 2.19 g/cm3, and at a temperature of 1000°C have a spectral emissivity of at least 0.7 for wavelengths between 2 and 8 μm.
C03C 14/00 - Compositions de verre contenant un constituant non vitreux, p. ex. compositions contenant des fibres, filaments, trichites, paillettes ou similaires, dispersés dans une matrice de verre
C03B 19/02 - Autres méthodes de façonnage du verre par coulée
C03B 20/00 - Procédés spécialement adaptés à la fabrication d'articles en quartz ou en silice fondue
C03B 19/06 - Autres méthodes de façonnage du verre par frittage
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitementAppareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
A method of forming fused quartz glass is provided. The method includes the steps of: (a) providing a starting body (10) made of fused quartz glass; (b) positioning the fused quartz glass starting body(10) on a base plate (26); (c) inserting a first insert device (30) into an interior cavity of the starting body (10) to form an assembled structure; (d) heating the assembled structure to a predetermined temperature at which the fused quartz glass has a viscosity in a range of 105 to 1013 poise; and (e) deforming the fused quartz glass of the starting body (10) at the predetermined temperature or in the viscosity range of 105 to 1013 poise around the first insert device (30 to change a shape of the starting body (10). A method for making a large fused quartz glass vessel and a forming assembly for forming fused quartz glass are also provided, wherein a pressing plate (28) is provided to press on the body during heating.
13 poise around the first insert device to change a shape of the starting body. A method for making a large fused quartz glass vessel and a forming assembly for forming fused quartz glass are also provided.