Apparatus and method for mixing a tank containing a fluid with a gas, wherein the gas is fired with a periodic intensity and duration through the employment of a gas container containing an inverted siphon, with one end contained in the container and the other end extending into a fluid.
Apparatus and method for mixing a tank containing a fluid with a gas, wherein the gas is fired with a periodic intensity and duration through the employment of a gas container containing an inverted siphon, with one end contained in the container and the other end extending into a fluid.
B01F 23/00 - Mélange, p. ex. dispersion ou émulsion, selon les phases à mélanger
B01F 23/231 - Mélange de gaz avec des liquides en introduisant des gaz dans des milieux liquides, p. ex. pour produire des liquides aérés par barbotage
B01F 33/40 - Mélangeurs utilisant l'agitation de gaz ou de liquide, p. ex. avec des tubes d'alimentation en air
The subject of this invention is to use beneficial reactive support media or biofilms in the form of reactive support bases or stratums that provide structural (including dimensions) or biochemical benefits to the growth or function (including agglutination) of biofilms. The functional aspect includes the provision of reactivity to a polymeric, cellulosic or silicic framework. The functions are supplied to the structural media during manufacture, conditioning, regeneration or during colonization of biofilms. The structural support media may include biodegradable or refractory polymers/plastics, alginates or uronic acids or extracted bacterial EPS. These materials are reacted, retained or removed based on their physical characteristics.
C02F 103/20 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de l'élevage d'animaux
C02F 103/22 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant du traitement d'animaux, p. ex. de volaille ou de poissons, ou de parties de ceux-ci
5.
METHOD AND APPARATUS FOR MULTI-DESELECTION IN WASTEWATER TREATMENT
A method and system for deselecting biological solids in an influent containing water. The method and system include supplying an influent to an inlet of a reactor comprising at least one of a bioreactor, an internal deselector, a particle deselector, and one or more return lines; dispersing the influent in the bioreactor to form a solid-liquid mixture containing biological solids; retaining, retarding, or providing a differential of, by the internal deselector, biological solids from the solid-liquid mixture to form a deselected solid-liquid mixture and returnable biological solids; feeding said deselected solid-liquid mixture to the particle deselector; deselecting, by the particle deselector, remainder biological solids from the deselected solid-liquid mixture; and supplying, by the one or more return lines, the returnable biological solids to the bioreactor.
This disclosure relates to physical selection, deselection or outselection for smaller, less dense, sheared or compressed particles in sludge, wherein the first deselection step occurs at the reactor or at a clarification step, by separately deselecting for such particles and then a second deselection step occurs in an external selector. This double deselection promotes the more efficient removal of slow settling particles, while simultaneously allowing for maintenance of multiple solids residence times for fast and slow growing organisms. The deselection in a clarifier occurs typically at the periphery of the tank or at the surface of a blanket using a positive or negative pressure device. Structures such as slotted or perforated plates, pipes or manifolds can be used to assist in such deselection. Baffles can also be used for such deselection.
This disclosure relates to physical selection, deselection or outselection for smaller, less dense, sheared or compressed particles in sludge, wherein the first deselection step occurs at the reactor or at a clarification step, by separately deselecting for such particles and then a second deselection step occurs in an external selector. This double deselection promotes the more efficient removal of slow settling particles, while simultaneously allowing for maintenance of multiple solids residence times for fast and slow growing organisms. The deselection in a clarifier occurs typically at the periphery of the tank or at the surface of a blanket using a positive or negative pressure device. Structures such as slotted or perforated plates, pipes or manifolds can be used to assist in such deselection. Baffles can also be used for such deselection.
A methodology, system and apparatus are provided that include anoxic biofilms to perform partial denitrification and anammox (PdNA) reactions. The PdNA reactions can facilitate process intensification and carbon efficient biological nitrogen removal. The anoxic biofilms can be placed in a pre-anoxic zone or a downstream anoxic zone, where the biofilm and reactions are managed, including using storage compounds, to overcome mass transfer limitations in the biofilm. The methodology, system and apparatus can, when compared to state-of-the art technologies, improve the concentration gradient or reduce mass transfer limitations to facilitate PdNA reactions.
A methodology, system and apparatus are provided that include anoxic biofilms to perform partial denitrification and anammox (PdNA) reactions. The PdNA reactions can facilitate process intensification and carbon efficient biological nitrogen removal. The anoxic biofilms can be placed in a pre-anoxic zone or a downstream anoxic zone, where the biofilm and reactions are managed, including using storage compounds, to overcome mass transfer limitations in the biofilm. The methodology, system and apparatus can, when compared to state-of-the art technologies, improve the concentration gradient or reduce mass transfer limitations to facilitate PdNA reactions.
An apparatus and a method for removing constituents from an influent. The apparatus includes a biological processor that receives a water mixture as influent and outputs a liquor, a solid-liquid separator that receives the liquor and separates the liquor into a liquid and a solid; and a biofilm media that includes at least one media surface. The biofilm media may have a biofilm mass, biofilm volume, biofilm density, biofilm thickness, hydraulic retention time or solids residence time. The at least one media surface grows a biofilm that removes one or more constituents contained in the influent. The biofilm mass, biofilm volume, biofilm density, biofilm thickness, hydraulic retention time or solids residence time can be controlled by at least one of a physical process, a biological process or a chemical process.
This disclosure relates to nitrogen removal with carbon addition, including for wastewater treatment. The denitrification reaction may be terminated at an intermediate nitrite product which is supplied to the anammox reaction. Nitrogen may be removed by use of an electron donor source including, but not limited to, acetate or glycerol at a specific zone. The electron donor may be used to convert nitrate to nitrite through appropriate dosing, anoxic SRT and/or maintenance of a nitrate residual in isolation or in combination. The subsequent supply of nitrite and ammonia for anammox reactions is also proposed. The slower growing anammox may be selectively retained on media or using other physical approaches. The overall intent of the present disclosure is to minimize the use of electron donor by maximizing denitratation and anammox reactions. Test results for selective retention of anammox in biofilm, granular or suspended growth system or nitrate residual control are provided.
4) and oxidized nitrogen (NOx) concentrations approximately equal, and maximize total inorganic nitrogen (TIN) removal through nitrification, limited nitritation, nitritation, denitrification, denitritation or deammonification making use of the aforementioned strategies.
A method and a system for selecting and retaining solids with superior settling characteristics, the method comprising feeding wastewater to an input of a processor that carries out a treatment process on the wastewater, outputting processed wastewater at an output of the processor, feeding the processed wastewater to an input of a gravimetric selector that selects solids with superior settling characteristics, and outputting a recycle stream at a first output of the gravimetric selector back to the processor.
A method and a system as described herein, including a method and system of treating ammonium containing water in a deammonification MBBR process where partial nitritation and anaerobic ammonium oxidation may occur simultaneously in a biofilm, or in an integrated fixed film activated sludge process where partial nitritation takes place in a suspended growth fraction and anaerobic ammonium oxidation occurs in a biofilm. The method and system include controlling airflow to the reactor to achieve a target pH, a target alkalinity, a target specific conductivity, and/or a target ammonium concentration in the reactor or in the effluent.
A method and a system as described herein, including a method and system of treating ammonium containing water in a deammonification MBBR process where partial nitritation and anaerobic ammonium oxidation may occur simultaneously in a biofilm, or in an integrated fixed film activated sludge process where partial nitritation takes place in a suspended growth fraction and anaerobic ammonium oxidation occurs in a biofilm. The method and system include controlling airflow to the reactor to achieve a target pH, a target alkalinity, a target specific conductivity, and/or a target ammonium concentration in the reactor or in the effluent.
A method and an apparatus for biological wastewater treatment that includes a biological selector and a physical selector. The apparatus comprises an internal biological reactor where wastewater and recycled biomass are combined to provide a high substrate and high electron acceptor gradient for generating morphological biomass features that favor granule formation over floe and filament formation, and an external gravimetric or external screen selector operating on the biomass waste stream for collecting and retaining densified biomass aggregates including dense granule selection and for wasting lighter filaments and floes. In the method and apparatus, particles may be added to provide cores to promote the formation of aggregates encapsulating the seeded particles. The particles may be added as various materials, for example, in the bioreactor, to initiate or seed the formation of a granule, that could then be separated by or integrated with either the external gravimetric or external screen selector. Further, organisms may be selected for biological phosphorus removal, denitrifying methane oxidizers, biological sulfur or sulfide oxidation, methanogenesis.
A reactor and control method for maximizing nitrogen removal and minimizing aeration requirements through control of transient anoxia and aerobic SRT, repression of NOB, and control of dynamic DO concentrations or aeration interval by keeping the reactor NH4 and NOx concentrations approximately equal. Controls are provided for maximizing the potential for TIN removal through nitrification, limited nitritation, nitritation, denitrification, limited denitritation, denitritation making use of 1) real time measurement of ammonia, nitrite, nitrate, 2) operational DO and the proper use of DO setpoints, and 3) proper implementation of transient anoxia within a wide range of reactor configurations and operating conditions.
x concentrations approximately equal. Controls are provided for maximizing the potential for TIN removal through nitrification, limited nitritation, nitritation, denitrification, limited denitritation, denitritation making use of 1) real time measurement of ammonia, nitrite, nitrate, 2) operational DO and the proper use of DO setpoints, and 3) proper implementation of transient anoxia within a wide range of reactor configurations and operating conditions.
A method and a system for selecting and retaining solids with superior settling characteristics, the method comprising feeding wastewater to an input of a processor that carries out a treatment process on the wastewater, outputting processed wastewater at an output of the processor, feeding the processed wastewater to an input of a gravimetric selector that selects solids with superior settling characteristics, and outputting a recycle stream at a first output of the gravimetric selector back to the processor.
x concentrations approximately equal has been proposed. Controls described in this invention maximizes the potential for TIN removal through nitrification, limited nitritation, nitritation, denitrification, limited denitritation, denitritation making use of 1) real time measurement of ammonia, nitrite, nitrate, 2) operational DO and the proper use of DO setpoints, and 3) proper implementation of transient anoxia within a wide range of reactor configurations and operating conditions.
One or more reactor and one or more control methods are used for nitrogen removal in wastewater treatment to achieve measured control of maintaining high ammonia oxidizing bacteria (AOB) oxidation rates while achieving nitrite oxidizing bacteria (NOB) outselection, using various control strategies, including: I) ammonia and the use of ammonia setpoints; 2) operational DO and the use of DO setpoints; 3) bioaugmentation of anammox and lighter flocculant AOB fraction; and 4) implementation of transient anoxia in several reactor configurations and conditions for removal of oxidized nitrogen using anammox or heterotrophic organisms. Controls described maximize nitrogen removal with minimal aeration, through control of transient anoxia and aerobic SRT, out-selection of NOB, and control of DO concentrations or aeration interval by keeping the reactor ammonia (NH4) and oxi
A reactor and control method thereof for nitrogen removal in wastewater treatment achieves a measured control of maintaining high ammonia oxidizing bacteria (AOB) oxidation rates while achieving nitrite oxidizing bacteria (NOB) repression, using various control strategies, including: 1) ammonia and the use of ammonia setpoints, 2) operational DO and the proper use of DO setpoints, 3) bioaugmentation of a lighter flocculant AOB fraction, and 4) proper implementation of transient anoxia within a wide range of reactor configurations and operating conditions.
4) and oxidized nitrogen (NOx) concentrations approximately equal, and maximize total inorganic nitrogen (TIN) removal through nitrification, limited nitritation, nitritation, denitrification, denitritation or deammonification making use of the aforementioned strategies.
A protective assembly for an operating nut of an actuator for a valve in an underground pipe system is comprised of a guide assembly and a mounting assembly. A riser pipe is used to access the operating nut from above ground. The protective assembly maintains alignment of the riser pipe at installation and as the ground shifts over time. The guide assembly is formed of a guide structure and a mounting collar that juts outwardly from the guide structure forming a flange. The mounting assembly has a first portion for attaching the mounting assembly to the flange, and a second portion for attaching the mounting assembly to the actuator.