Disclosed are a ternary composite wave-absorbing agent and a preparation method therefor. The preparation method comprises the following steps: S1: wrapping a conductive polymer on the surface of oxidized graphene to obtain a binary composite body; and S2: compositing magnetic particles with the binary composite body and performing reduction on the binary composite body to obtain a ternary composite wave-absorbing agent. The conductive polymer is uniformly clad on the surface of graphene, which does not destroy the wrinkled structure of the oxidized graphene so as to offset the problem of electrical conductivity degradation due to a defect produced in a reduction process of the oxidized graphene, and enables the wave-absorbing agent and base materials to have good compatibility so as to improve the absorbing property of the wave-absorbing agent; furthermore, electromagnetic parameters of the composite material are controlled to adjust impedance matching, and interface loss produced by a multi-layer interface of the ternary composite material under an external electrical field also facilitates the improvement in the dielectric loss of the material, thereby significantly improving the wave-absorbing properties of the graphene-based wave-absorbing agent.
The present invention provides an electromagnetic wave absorbing material and a method for preparing the same. The electromagnetic wave absorbing material sequentially comprises, in an incident direction of electromagnetic waves, an electromagnetic wave matching layer, a low-frequency absorption layer, and a high-frequency absorption layer. The electromagnetic wave matching layer, the low-frequency absorption layer, and the high-frequency absorption layer are sequentially disposed in the incident direction of electromagnetic waves, such that the electromagnetic waves propagated in the air encounter the electromagnetic wave matching layer first. Since the electromagnetic wave matching layer has an impedance matching feature similar to that of the air, reflection of the electromagnetic waves can be effectively reduced, such that more electromagnetic waves can enter the interior of the electromagnetic wave absorbing material, low-frequency wave bands thereof can be gradually absorbed by the low-frequency absorption layer, and high-frequency wave bands thereof can then be absorbed by the high-frequency absorption layer. The invention thus achieves efficient absorption of broadband wave bands from low to high frequencies.
B32B 25/00 - Produits stratifiés composés essentiellement de caoutchouc naturel ou synthétique
B32B 25/02 - Produits stratifiés composés essentiellement de caoutchouc naturel ou synthétique avec des fibres ou particules enrobées dans le caoutchouc ou liées au caoutchouc
3.
LOW-FREQUENCY WAVE ABSORBING MATERIAL AND PREPARATION METHOD THEREFOR
A low-frequency wave absorbing material and a preparation method therefor. The low-frequency wave absorbing material comprises: a core that is carbonyl iron powder; and a shell layer, wherein the surface of the core is coated with the shell layer, and the shell layer is barium titanate. A molar ratio of barium titanate to carbonyl iron powder is 1:10-50; the low-frequency wave absorbing material and a shaping agent are mixed at the mass ratio of 6-8.5:1 and prepared to be a circular ring having the thickness of 1.5-3mm; the reflection loss at the 1.32GHz frequency of the circular ring having the measured thickness of 3mm reaches -30.5dB, and the reflection loss at the 0.82-4.25GHz frequency is less than -10dB. By compounding barium titanate and carbonyl iron, the present application effectively improves the impedance matching performance of an electromagnetic wave, and further improves low-frequency wave absorbing performance.
Disclosed in the present invention are a lightweight and highly elastic wave-absorbing material and a preparation method therefor. The lightweight and highly elastic wave-absorbing material comprises a base layer and a flexible wave-absorbing layer which are arranged in sequence. The flexible wave-absorbing layer comprises an aqueous resin, a wave-absorbing filler, an organic wetting dispersant and deionized water. By applying the technical solution of the present invention, using an aqueous resin and a flexible fabric, etc., an environmentally friendly wave-absorbing material having low surface density, high elasticity and no contamination is developed, the elasticity of the wave-absorbing material is greatly improved, and scope of application thereof is expanded. The wave-absorbing material of the present invention can be applied to radar stealth of equipment, can significantly improve the stealth performance of target equipment under high-frequency radar, and can be directly coated on the equipment surface. As the wave-absorbing material can be used for flexible substrates, it can also be made into stealth tarpaulins, car covers, tents, etc. for stealth and camouflage of ground targets.
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 5/16 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par le fait qu'une des couches est formée de particules, p. ex. de copeaux, de fibres hachées, de poudre
D06M 11/83 - Traitement des fibres, fils, filés, tissus ou des articles fibreux faits de ces matières, avec des substances inorganiques ou leurs complexesUn tel traitement combiné avec un traitement mécanique, p. ex. mercerisage avec des métauxTraitement des fibres, fils, filés, tissus ou des articles fibreux faits de ces matières, avec des substances inorganiques ou leurs complexesUn tel traitement combiné avec un traitement mécanique, p. ex. mercerisage avec des composés libérant des métaux, p. ex. des métaux-carbonylesRéduction de composés métalliques sur des textiles
5.
EPOXY RUBBER RADIATION-ABSORBING COATING AND PREPARATION METHOD THEREFOR
Provided in the present invention are an epoxy rubber radiation-absorbing material and a preparation method therefor. The epoxy rubber radiation-absorbing material comprises an epoxy resin that has undergone toughening modification, and an a ferrite radiation-absorbing agent that has undergone anti-oxidation modification. The epoxy rubber radiation-absorbing coating obtained by means of the preparation method provided in the present application features a wider low-frequency absorption band, more stable absorption performance, and a more pronounced thermal resistance effect.
A preparation method for a wave-absorbing material, comprising: pre-treating a carbon material; and subjecting the pre-treated carbon material to electroless plating to obtain a wave-absorbing material. The electroless plating comprises: preparing a plating solution, adding the pre-treated carbon material to the plating solution, stirring same until the reaction ends, and performing washing, filtration and drying. A wave-absorbing material is also provided.
C23C 18/34 - Revêtement avec l'un des métaux fer, cobalt ou nickelRevêtement avec des mélanges de phosphore ou de bore et de l'un de ces métaux en utilisant des agents réducteurs
Provided a wave-absorbing impregnation glue liquid, including: two-component epoxy resin, a solvent, a polyether siloxane, and a carbon powder; wherein a mass ratio of the two-component epoxy resin to the solvent is 1:3˜1:5, a mass ratio of the two-component epoxy resin to the carbon powder is 3:1˜6:1, and a mass fraction of the polyether siloxane in the wave-absorbing impregnation glue liquid is 0.05%˜0.2%. A wave-absorbing impregnation glue liquid, a wave-absorbing honeycomb and their preparation methods are further provided.
C09J 163/00 - Adhésifs à base de résines époxyAdhésifs à base de dérivés des résines époxy
B05D 1/18 - Procédés pour appliquer des liquides ou d'autres matériaux fluides aux surfaces par immersion
B05D 3/00 - Traitement préalable des surfaces sur lesquelles des liquides ou d'autres matériaux fluides doivent être appliquésTraitement ultérieur des revêtements appliqués, p. ex. traitement intermédiaire d'un revêtement déjà appliqué, pour préparer les applications ultérieures de liquides ou d'autres matériaux fluides
C09J 9/00 - Adhésifs caractérisés par leur nature physique ou par les effets produits, p. ex. bâtons de colle
C09J 11/04 - Additifs non macromoléculaires inorganiques
H05K 9/00 - Blindage d'appareils ou de composants contre les champs électriques ou magnétiques
C08J 7/00 - Traitement chimique ou revêtement d'objets façonnés faits de substances macromoléculaires
The present disclosure provides an epoxy resin wave-absorbing composite material and a preparation method thereof. The method includes: heating an epoxy resin to 50° C.˜70° C., and adding carbon black, to obtain a mixture of the epoxy resin and the carbon black; heating the mixture of the epoxy resin and the carbon black to 100° C.˜120° C., adding a curing agent, and stirring and dissolving them to obtain a mixture of the epoxy resin, the carbon black, and the curing agent; and adding surface-treated hollow glass microbeads into the mixture of the epoxy resin, the carbon black, and the curing agent, and curing them to obtain the epoxy resin wave-absorbing composite material.
Provided are a modified cyanate ester and a preparation method therefor, the preparation method comprising: heating cyanate ester and triethylamine until melted; adding octa-epoxy group cage-type silsesquioxane to the cyanate ester and triethylamine melting system; mixing uniformly, dispersing, and vacuum suctioning to obtain a mixture; casting the mixture in a mould, curing, de-moulding, and heating to obtain modified cyanate ester. The cyanate ester is modified using the octa-epoxy group cage-type silsesquioxane, implementing toughening modification of the cyanate ester whilst maintaining the excellent dielectric properties of the cyanate ester.
C08L 79/04 - Polycondensats possédant des hétérocycles contenant de l'azote dans la chaîne principalePolyhydrazidesPolyamide-acides ou précurseurs similaires de polyimides
Provided are a prepreg, a composite material prepared from the prepeg and preparation methods therefor and uses thereof. The preparation method for the prepreg comprises: weighing 40-60 parts of an epoxy resin, 2-8 parts of a compatibilizer, 12-18 parts of a flame retardant, and 20-40 parts of a phenolic hydroxyl modified polyphenyl ether, in parts by weight, and mixing same until uniform to obtain an epoxy resin mixture; weighing 50-80 parts of the epoxy resin mixture, and 10-40 parts of a curing agent, in parts by weight, uniformly dispersing same in a solvent, and evaporating the solvent so as to obtain a flame retardant epoxy resin; and preparing the prepreg from the flame retardant epoxy resin and a reinforcing fiber. A modified resin prepared by the present invention has an excellent impact resistance and an excellent flame resistance, and the prepreg and composite material prepared therefrom can be applied in fields such as non-metallic materials inside aircrafts, finish materials for ships and warships, and building materials.
The present invention provides a heat-storage polystyrene foam, a preparation method therefor, and application thereof. The method comprises: mixing deionized water, a styrene monomer, a phase change microcapsule, and a first additive to obtain a polystyrene particle containing the phase change microcapsule; adding deionized water and a second additive into the polystyrene particle containing the phase change microcapsule, and performing impregnation to obtain expanded polystyrene containing the phase change microcapsule; and pre-foaming, ripening, and foaming the expanded polystyrene containing the phase change microcapsule to obtain the polystyrene foam. By means of the polystyrene foam prepared with the method of the present invention, the wearing comfort of a helmet is improved, the heat-storage performance of the polystyrene foam is improved, and the addition of the phase change microcapsule also maintains the mechanical property of the polystyrene foam so that the polystyrene foam satisfies mechanical property requirements.
C09K 5/06 - Substances qui subissent un changement d'état physique lors de leur utilisation le changement d'état se faisant par passage de l'état liquide à l'état solide, ou vice versa
B01J 13/02 - Fabrication de microcapsules ou de microbilles
C08J 9/14 - Mise en œuvre de substances macromoléculaires pour produire des matériaux ou objets poreux ou alvéolairesLeur post-traitement utilisant des gaz de gonflage produits par un agent de gonflage introduit au préalable par un agent physique de gonflage organique
C08J 9/06 - Mise en œuvre de substances macromoléculaires pour produire des matériaux ou objets poreux ou alvéolairesLeur post-traitement utilisant des gaz de gonflage produits par un agent de gonflage introduit au préalable par un agent chimique de gonflage
12.
WAVE-ABSORBING AGENT AND PREPARATION METHOD THEREFOR
Provided are a method for preparing a wave-absorbing agent and a wave-absorbing agent obtained thereby. The method comprises: adding butyl titanate to ethanol, followed by addition of acetic acid so as to obtain a mixed liquid of butyl titanate and acetic acid; adding barium acetate to first deionized water, heating same to a temperature T so as to obtain a barium acetate aqueous solution; and adding the barium acetate aqueous solution to the mixed liquid of butyl titanate and acetic acid to form a sol, the pH value of which is adjusted, and adding a pretreated carbonyl iron powder, stirring, centrifuging, drying and calcining same so as to obtain the wave-absorbing agent. The wave-absorbing agent prepared by the method significantly enhances the low frequency absorbing performance, with the wave-absorbing performance in the range 2-5 GHz being better.
A preparation method for a helmet, comprising: compounding carbon fibers with ultra-high molecular weight polyethylene fibers in a mass ratio of 4-6:1-3 to prepare a composite material; preforming the composite material according to a helmet mold to prepare a shell; coating the shell with an adhesive; filling the adhesive in the helmet mold with a foam material to prepare a buffer layer; and adhering a fabric layer on the surface of the foam material, and opening the mold to obtain a helmet.
B32B 27/00 - Produits stratifiés composés essentiellement de résine synthétique
F41H 1/08 - Casques de protection en matière plastiqueBlindages de tête en matière plastique
B29C 43/14 - Moulage par pressage, c.-à-d. en appliquant une pression externe pour faire couler la matière à moulerAppareils à cet effet pour la fabrication d'objets de longueur définie, c.-à-d. d'objets séparés en plusieurs étapes
D06M 11/00 - Traitement des fibres, fils, filés, tissus ou des articles fibreux faits de ces matières, avec des substances inorganiques ou leurs complexesUn tel traitement combiné avec un traitement mécanique, p. ex. mercerisage
B32B 5/26 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches étant fibreuse ou filamenteuse un autre couche également étant fibreuse ou filamenteuse
14.
TEMPERATURE-REGULATING LINING AND MANUFACTURING METHOD AND USE THEREOF
C09K 5/06 - Substances qui subissent un changement d'état physique lors de leur utilisation le changement d'état se faisant par passage de l'état liquide à l'état solide, ou vice versa
15.
DEVICE AND METHOD FOR MEASURING ADHESION STRENGTH OF ICE
A device and method for measuring adhesion strength of ice, wherein the measuring device comprises: a refrigerating plate (1), a mold (3) located above the refrigerating plate (1), an acrylic lid (2) covering the mold (3), a guide rail (5) located on one side of the refrigerating plate (1) and a push-pull gauge (4) located on the guide rail (5) and connected to the mold (3). The device and method for measuring adhesion strength of ice may be used for characterizing the adhesion strength of ice on the surface of material device so as to unify the measurement standard and may also be used for normalizing the anti-deicing research for the material (such as a fan blade, electric transmission line and surface material at the bottom of a high-speed train).
A method for preparing a transparent super-hydrophobic coating, comprising: adding ethyl silicate into a solvent, then adding a fluorine-containing silane coupling agent, and stirring uniformly to obtain a first composition (S101); uniformly dispersing a catalyst in water and the solvent to obtain a second composition (S103); adding the second composition into the first composition, and stirring uniformly to obtain a sol mixture (S105); and applying the sol mixture to the surface of a matrix, and obtaining the transparent super-hydrophobic coating (S107). The coating can be used for the surfaces of glass and fabric.
C03C 17/30 - Traitement de surface du verre, p. ex. du verre dévitrifié, autre que sous forme de fibres ou de filaments, par revêtement par des matières organiques avec des composés contenant du silicium
17.
WAVE-ABSORBING COMPOSITE MATERIAL AND PREPARATION METHOD THEREFOR
Provided are a wave-absorbing composite material and a preparation method therefor. The wave-absorbing composite material comprises: polyester knitted fabric; a bottom layer formed on the polyester knitted fabric; the bottom layer includes a first resin material and a ferrite; an intermediate layer formed on the bottom layer; the intermediate layer includes a second resin material and silicon carbide; and a top layer formed on the intermediate layer; the top layer includes a third resin material and graphite. A multifunctional wave-absorbing composite material with good wave-absorbing properties and mechanical properties is thus prepared.
B32B 5/30 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches comprenant des grains ou de la poudre
B32B 9/04 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant une telle substance comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
C09D 167/00 - Compositions de revêtement à base de polyesters obtenus par des réactions créant une liaison ester carboxylique dans la chaîne principaleCompositions de revêtement à base de dérivés de tels polymères
C09D 163/00 - Compositions de revêtement à base de résines époxyCompositions de revêtement à base de dérivés des résines époxy
A coating, a preparation method therefor, and an application thereof. The coating comprises: a silicone resin; aluminum powder; ethyl acetate; glass powder; a solvent; and an additive. The preparation method for the coating comprises: uniformly stirring the glass powder and the silicone resin, grinding the mixture to a first granularity to obtain a first solution; diluting the aluminum powder with the ethyl acetate, stirring uniformly, and infiltrating the same for a first period of time to obtain a second solution; uniformly mixing the first solution and the second solution to obtain a mixed solution; and adding the solvent and the additive to the mixed solution, and uniformly stirring them to obtain a coating. The coating has application in the aerospace industry, as well as in manufacture of tank and armored vehicles and warships.
The present invention provides a microwave absorbing agent and a preparation method therefor. The method comprises steps of: mixing ammonia water and ethanolamine, and adding an iron salt for reaction to obtain a mixed liquid; and adding expanded graphite to the mixed liquid, adjusting the pH, and stirring the mixture at a temperature T and washing and drying the same, to obtain a microwave absorbing agent formed of hollow ferroferric oxide coated with expanded graphite. The microwave absorbing agent prepared by the method of the present invention has the advantages of low density, wide microwave frequency bandwidth of absorption, and good microwave absorption performance, and can be applied in fields such as aerospace, electronic communications and medical equipment.
H01F 1/01 - Aimants ou corps magnétiques, caractérisés par les matériaux magnétiques appropriésEmploi de matériaux spécifiés pour leurs propriétés magnétiques en matériaux inorganiques
20.
ULTRAVIOLET CURABLE INK AND PREPARATION METHOD THEREFOR
A preparation method for an ultraviolet curable ink, comprising: weighing, in parts by weight, 50-60 parts of trifunctional aliphatic polyester urethane acrylate, 10-20 parts of reactive diluent, 1-2 parts of pigment, 1-2 parts of mixed filler, 1-3 parts of surfactant, 0.5-1 part of defoamer, 0.5-1 part of anti-abrasion agent, 100-200 parts of solvent, and 0.5-1 part of additive, mixing well, heating to 20-40°C, and stirring for 10-20 minutes, thereby obtaining a resin mixture (S101); and adding 2-5 parts of photopolymerization initiator into the resin mixture, mixing well, and cooling to room temperature, thereby obtaining an ultraviolet curable ink (S103).
The present invention provides a wave-absorbing patch and a preparation method therefor: combining butyl rubber and modified boron carbide according to a certain proportion; adding a proper amount of vulcanizing agent, softening agent, and accelerant; and mixing and vulcanizing to prepare the wave-absorbing patch. According to the present invention, by mixing boron carbide and butyl rubber, a wave-absorbing patch having good wave-absorbing performance and excellent mechanical property is prepared, the problem in the existing wave-absorbing sheet material of poor mechanical property is resolved; moreover, the wave-absorbing patch is light in weight, and the absorption peak is at a low-frequency position, thereby resolving the problem that a magnetic absorbent cannot resolve. Therefore, the wave-absorbing patch provided by the present invention fully meets the requirements of the stealth technology, i.e., "thin, light, wide, and strong", can be widely applied to high-temperature-resistant and anti-interference devices such as aerospace stealth, electronic integrated circuits, and electronic appliances, and can also be applied to anechoic chambers such as information leakage prevention, medical detection, and wave-absorbing detection.
C08L 23/22 - Copolymères de l'isobutylèneCaoutchouc butylHomopolymères ou copolymères d’autres iso-oléfines
C08L 23/28 - Compositions contenant des homopolymères ou des copolymères d'hydrocarbures aliphatiques non saturés ne possédant qu'une seule liaison double carbone-carboneCompositions contenant des dérivés de tels polymères modifiées par post-traitement chimique par réaction avec les halogènes ou des composés contenant des halogènes
A superhydrophobic coating layer having a self-cleaning capability, the preparation method comprising: adding fluorine-containing silicon polyacrylate, tetraethyl orthosilicate, methyltriethoxysilane, ethanol and ammonia water into a container to obtain a mixed liquid, and reacting the mixed liquid to obtain a hybrid emulsion (1); spraying the hybrid emulsion onto a surface (3) of a substrate by means of a spray gun (2); drying to obtain a superhydrophobic coating layer (4).
An infrared stealth coating and a preparation method therefor. The infrared stealth coating comprises, in weight percent: 40.0 to 50.0% of an organosilicone resin, 1.0 to 40.0% of a filler, 10.0 to 20.0% of a pigment, 0.5 to 5.0% of a dispersant, 0.2 to 1.5% of a wetting agent, 0.5 to 5.0% of a thickener, 0.0 to 1.5% of a flatting agent, 0.5 to 3.0% of a film-forming aid, 0.0 to 0.5% of a defoaming agent, and the balance of deionized water.
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
24.
INFRARED COATING COMPATIBLE WITH RADAR STEALTH, AND METHOD FOR PREPARING SAME
A method for preparing an infrared coating compatible with radar stealth. The method comprises: mixing 66-72 parts of resin binder, 28-34 parts of aluminum powder, 8-24 parts of pigment/filler, and 10-20 parts of color paste uniformly to obtain a pre-dispersed slurry; adding a diluent and a rheological aid to the pre-dispersed slurry to adjust the viscosity of the pre-dispersed slurry to 13-18s; adding a curing agent to the pre-dispersed slurry, and uniformly dispersing same to obtain an infrared coating material compatible with radar stealth; spraying the infrared coating material compatible with radar stealth onto a wave absorbing material to obtain a coating; and drying the coating.
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
25.
EMISSIVITY TESTING METHOD BASED ON INFRARED THERMAL IMAGER
An emissivity testing method based on an infrared thermal imager, comprising: measuring physical parameters of an environment (S101); setting built-in parameters of an infrared thermal imager according to the physical parameters of the environment, and setting an infrared measurement distance (S102); measuring the temperature of an object surface (S103); and irradiating the object surface using the infrared thermal imager, and adjusting radiance parameters of the infrared thermal imager until the display temperature is identical to the temperature of the object surface, the radiance of the infrared thermal imager being the emissivity of the object surface (S104). In the method, according to the operating principle of an infrared thermal imager, and depending on the precision of the infrared thermal imager, the temperature of an object surface is accurately measured by means of the temperature measurement accuracy of a thermocouple and a thermistor, or the stability of the thermal conductivity and emissivity of an electrical tape and black lacquer, so as to measure the emissivity of the object accurately. The method can be implemented on-site and portably, without damaging the object, is a non-destructive testing method, and resolves the problems of special valuable instruments and special sample manufacturing required for measuring the emissivity of objects.
A method for preparing a temperature-resistant, infrared, low emissivity coating. The method comprises: mixing 50-90 parts of temperature-resistant resin, 20-40 parts of aluminum powder, 2-4 parts of diatomaceous earth, and high temperature-resistant ceramic powder uniformly to obtain a preliminary slurry, wherein the high temperature-resistant ceramic powder accounts for 3.5-5.5% of the total mass of the preliminary slurry in mass percentage; adding an appropriate amount of diluent to the preliminary slurry and stirring same uniformly to obtain a coating material; spraying the coating material onto an alloy substrate to obtain a coating, and then drying the coating naturally; and heating the coating and then cooling the coating to room temperature to obtain a temperature-resistant, infrared, low emissivity coating.
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
27.
WAVE-ABSORBING IMPREGNATION GLUE LIQUID AND WAVE-ABSORBING HONEYCOMB AND PREPARATION METHODS THEREOF
Disclosed is a wave-absorbing impregnation glue liquid, comprising: a two-component epoxy resin; a solvent; a polyether-based siloxane; and carbon powder, wherein the ratio by mass of the two-component epoxy resin to the solvent is 1 : 3 to 1 : 5, the ratio by mass of the two-component epoxy resin to the carbon powder is 3 : 1 to 6 : 1, and the fraction by mass of the polyether-based siloxane in the wave-absorbing impregnation glue liquid is 0.05% - 0.2%. Disclosed is a method for preparing the glue liquid, and also disclosed is a wave-absorbing honeycomb and a preparation method therefor.
C09J 183/12 - Copolymères séquencés ou greffés contenant des séquences de polysiloxanes contenant des séquences de polyéthers
B32B 3/12 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche discontinue, c.-à-d. soit continue et percée de trous, soit réellement constituée d'éléments individuels caractérisés par une couche d'alvéoles disposées régulièrement, soit formant corps unique dans un tout, soit structurées individuellement ou par assemblage de bandes indépendantes, p. ex. structures en nids d'abeilles
B32B 33/00 - Produits stratifiés caractérisés par des propriétés particulières ou des caractéristiques de surface particulières, p. ex. par des revêtements de surface particuliersProduits stratifiés conçus pour des buts particuliers non couverts par une seule autre classe
28.
EPOXY RESIN COMPOSITE AND PREPARATION METHOD AND USE THEREOF
The present invention provides a preparation method for an epoxy resin composite, comprising: bisphenol AF being completely dissolved in epichlorohydrin, and a catalyst then being added for a reaction so as to obtain a resin etherate; the resin etherate being reacted with an NaOH solution so as to obtain a bisphenol AF chloroether alcohol; an NaOH solution being added dropwise into the bisphenol AF chloroether alcohol, so as to obtain a fluorine-containing epoxy resin; the fluorine-containing epoxy resin being uniformly mixed with a curing agent, with a catalyst then being added, and mixing and curing to prepare the epoxy resin composite. The present invention also provides the epoxy resin composite prepared by the method, and the use thereof in electronic materials and wave-transmission materials. In the present invention, C-F is formed, instead of C-H, by means of the introduction of F into a resin structure, such that the polarity of the resin structure is reduced, thereby preparing an epoxy resin composite having a low dielectric constant and dielectric loss, and at the same time, also having a good heat stability, wherein same can be widely used in the fields of printed circuit boards, coatings and microelectronics.
C08G 59/68 - Macromolécules obtenues par polymérisation à partir de composés contenant plusieurs groupes époxyde par molécule en utilisant des agents de durcissement ou des catalyseurs qui réagissent avec les groupes époxyde caractérisées par les catalyseurs utilisés
C08G 59/06 - Polycondensats contenant plusieurs groupes époxyde par molécule de composés polyhydroxylés avec l'épihalohydrine ou ses précurseurs de polyphénols
C08L 63/00 - Compositions contenant des résines époxyCompositions contenant des dérivés des résines époxy
A preparation method of an anti-icing coating comprises: mixing a vinyl-terminated silicone oil, a hydrogen-terminated silicone oil, a methyl silicone oil, Karstedt's catalyst, and silica nanoparticles, and removing bubbles to obtain a mixture (S1); making the mixture into a coating (S2); curing the coating to obtain an anti-icing coating (S3).
A basalt fiber composite material and a preparation method therefor. The method comprises: mixing an epoxy resin and a cyanate resin by stirring according to a ratio, adding a toughening agent, then adding a solidification catalyst, and stirring the mixture to form an epoxy resin toughened modified cyanate resin; preparing the epoxy resin toughened modified cyanate resin and basalt fiber into a prepreg; and layering and solidifying the prepreg to obtain a basalt fiber composite material. The epoxy resin is diaminodiphenylmethanetetraglycidylamine, tetraepoxypropylmethylenediphenylamine, or epoxidized metaxylylenediamine. The cyanate resin is bisphenol A cyanate resin, bisphenol M cyanate resin, bisphenol E cyanate resin, or bisphenol F cyanate resin.
An epoxy resin wave-absorbing composite material and a preparation method therefor. The method comprises: heating an epoxy resin to 50-70°C and adding carbon black to obtain an epoxy resin/carbon black mixture; heating the epoxy resin/carbon black mixture to 100-120°C, adding a curing agent, and stirring the mixture to dissolve the curing agent to obtain an epoxy resin/carbon black/curing agent mixture; and adding surface-treated hollow glass beads into the epoxy resin/carbon black/curing agent mixture, and curing the mixture, to obtain an epoxy resin wave-absorbing composite material.