Fisher-Rosemount Systems, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 852 pour Fisher-Rosemount Systems, Inc. et 3 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 819
        Marque 33
Juridiction
        États-Unis 681
        International 161
        Europe 6
        Canada 4
Propriétaire / Filiale
[Owner] Fisher-Rosemount Systems, Inc. 782
Emerson Process Management Power & Water Solutions, Inc. 60
Emerson Process Management LLLP 9
Enardo LLC 1
Date
Nouveautés (dernières 4 semaines) 3
2025 octobre (MACJ) 3
2025 septembre 2
2025 août 2
2025 juillet 2
Voir plus
Classe IPC
G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM] 247
G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques 125
G05B 23/02 - Test ou contrôle électrique 119
G05B 15/02 - Systèmes commandés par un calculateur électriques 67
H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison 62
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 27
42 - Services scientifiques, technologiques et industriels, recherche et conception 7
37 - Services de construction; extraction minière; installation et réparation 3
41 - Éducation, divertissements, activités sportives et culturelles 3
35 - Publicité; Affaires commerciales 2
Voir plus
Statut
En Instance 73
Enregistré / En vigueur 779
  1     2     3     ...     9        Prochaine page

1.

METHODS AND APPARATUS TO GENERATE DEVICES FOR AN INDUSTRIAL NETWORK

      
Numéro d'application 18638608
Statut En instance
Date de dépôt 2024-04-17
Date de la première publication 2025-10-23
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • St. Michael, Stephen Vega
  • Orozco Perez, Daniel Guadalupe
  • Webb, Kevin David

Abrégé

Systems, apparatus, articles of manufacture, and methods are disclosed to generate device for an industrial network. An example apparatus includes machine-readable instructions; and programmable circuitry to at least one of instantiate or execute the machine-readable instructions to: import a device model for an industrial device; import source code for an industrial device; update the source code based on the device model; and generate an executable output of the source code.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

2.

METHODS AND APPARATUS TO IMPLEMENT A DEVICE ON AN INDUSTRIAL NETWORK

      
Numéro d'application 18638609
Statut En instance
Date de dépôt 2024-04-17
Date de la première publication 2025-10-23
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • St. Michael, Stephen Vega
  • Orozco Perez, Daniel Guadalupe
  • Webb, Kevin David

Abrégé

Systems, apparatus, articles of manufacture, and methods are disclosed to implement a device on an industrial network. An example application includes at least one of memory or storage to store a first model descriptive of a first industrial device and a second model descriptive of a second industrial device; instructions; at least one processor to execute the instructions to cause a machine to: construct a configuration object for the first industrial device based on the first model; update a data structure that contains data associated with the second model with data associated with the first model based on the configuration object; and operate the apparatus as the first industrial device based on the data structure.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques

3.

METHODS AND APPARATUS TO GENERATE PROCESS DIAGRAMS IN PROCESS CONTROL SYSTEMS

      
Numéro d'application 19081920
Statut En instance
Date de dépôt 2025-03-17
Date de la première publication 2025-10-02
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Deshpande, Sujeet Nilkanth
  • Jadhao, Laxman Rangnath
  • Dixit, Yatin Sudhir

Abrégé

Methods and apparatus to generate process diagrams in process control systems are disclosed. An example apparatus comprises interface circuitry, first machine-readable instructions, and at least one processor circuit to be programmed by the first machine-readable instructions to access input data that indicates a relationship between components in a diagram, the diagram graphically representing at least a portion of a process control system, determine coordinate locations associated with the input data within the diagram, and generate second machine-readable instructions including information corresponding to the coordinate locations, the second machine-readable instructions to cause a change to the diagram based on the input data, the changed diagram indicating the relationship between the components.

Classes IPC  ?

  • G05B 19/4097 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par l'utilisation de données de conception pour commander des machines à commande numérique [CN], p. ex. conception et fabrication assistées par ordinateur CFAO

4.

METHODS AND APPARATUS TO PROVIDE VERSION CONTROL IN A PROCESS CONTROL SYSTEM GRAPHICAL USER INTERFACE DEVELOPMENT ENVIRONMENT

      
Numéro d'application 18592112
Statut En instance
Date de dépôt 2024-02-29
Date de la première publication 2025-09-04
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Naidoo, Julian Kevin
  • Noah, Drew Thomas
  • Dionisio, Mariana Costa
  • Fadul, Camilo Tercero

Abrégé

Systems, apparatus, articles of manufacture, and methods to provide version control in a process control system development environment are disclosed. Example instructions cause at least one processor to at least cause presentation of a first graphical user interface to enable editing of a second graphical user interface of a process control system, the second graphical user interface based on information stored in a database, access a user instruction to modify the second graphical user interface from a first version to a second version, access user commit information associated with the second version, export the second version of the second graphical user interface from the database to a local file repository, and synchronize the second version from the local file repository to a remote repository, the synchronization to include the user commit information.

Classes IPC  ?

  • G06F 8/71 - Gestion de versions Gestion de configuration
  • G06F 8/38 - Création ou génération de code source pour la mise en œuvre d'interfaces utilisateur
  • G06F 16/178 - Techniques de synchronisation des fichiers dans les systèmes de fichiers

5.

METHODS AND APPARATUS TO PROVIDE VERSION CONTROL IN A PROCESS CONTROL SYSTEM GRAPHICAL USER INTERFACE DEVELOPMENT ENVIRONMENT

      
Numéro d'application US2025017396
Numéro de publication 2025/184212
Statut Délivré - en vigueur
Date de dépôt 2025-02-26
Date de publication 2025-09-04
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Naidoo, Julian Kevin
  • Noah, Drew Thomas
  • Dionisio, Mariana Costa
  • Fadul, Camilo Tercero

Abrégé

Systems, apparatus, articles of manufacture, and methods to provide version control in a process control system development environment are disclosed. Example instructions cause at least one processor to at least cause presentation of a first graphical user interface to enable editing of a second graphical user interface of a process control system, the second graphical user interface based on information stored in a database, access a user instruction to modify the second graphical user interface from a first version to a second version, access user commit information associated with the second version, export the second version of the second graphical user interface from the database to a local file repository, and synchronize the second version from the local file repository to a remote repository, the synchronization to include the user commit information.

Classes IPC  ?

  • G06F 8/71 - Gestion de versions Gestion de configuration
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 8/34 - Programmation graphique ou visuelle
  • G06F 11/3668 - Test de logiciel
  • G06F 8/00 - Dispositions pour ingénierie logicielle

6.

METHODS AND APPARATUS TO MONITOR ASSET HEALTH WITH CLOUD TEMPLATES

      
Numéro d'application US2025012141
Numéro de publication 2025/170743
Statut Délivré - en vigueur
Date de dépôt 2025-01-17
Date de publication 2025-08-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Denison, David R.
  • Nambiar, Manikandan
  • Tworzydlo, Michael Woytek

Abrégé

Systems, apparatus, articles of manufacture, and methods to monitor asset health with cloud templates are disclosed. An example apparatus comprises interface circuitry, machine-readable instructions, and at least one processor circuit to be programmed by the machine-readable instructions to access, via a cloud resource, sensor data associated with a process control device operating in a process control system, compare the sensor data to a threshold parameter associated with the process control device, obtain, from a cloud template deployed in the cloud resource, a health parameter of the process control device based on the comparison, and display the health parameter on a user interface of a computing device, the computing device accessing the cloud resource.

Classes IPC  ?

  • G05B 23/02 - Test ou contrôle électrique
  • F16K 37/00 - Moyens particuliers portés par ou sur les soupapes ou autres dispositifs d'obturation pour repérer ou enregistrer leur fonctionnement ou pour permettre de donner l'alarme
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G08B 21/18 - Alarmes de situation

7.

METHODS AND APPARATUS TO MONITOR ASSET HEALTH WITH CLOUD TEMPLATES

      
Numéro d'application 18436801
Statut En instance
Date de dépôt 2024-02-08
Date de la première publication 2025-08-14
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Denison, David R.
  • Nambiar, Manikandan
  • Tworzydlo, Michael Woytek

Abrégé

Systems, apparatus, articles of manufacture, and methods to monitor asset health with cloud templates are disclosed. An example apparatus comprises interface circuitry, machine-readable instructions, and at least one processor circuit to be programmed by the machine-readable instructions to access, via a cloud resource, sensor data associated with a process control device operating in a process control system, compare the sensor data to a threshold parameter associated with the process control device, obtain, from a cloud template deployed in the cloud resource, a health parameter of the process control device based on the comparison, and display the health parameter on a user interface of a computing device, the computing device accessing the cloud resource.

Classes IPC  ?

8.

METHODS AND APPARATUS TO DISPLAY SHIFT CHANGE NOTES GENERATED VIA NATURAL LANGUAGE PROCESSING MODELS

      
Numéro d'application 18422845
Statut En instance
Date de dépôt 2024-01-25
Date de la première publication 2025-07-31
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s) Denison, David R.

Abrégé

Methods and apparatus to display shift change notes generated via natural language processing models are disclosed. An example apparatus comprises interface circuitry, machine-readable instructions, and at least one processor circuit to be programmed by the machine-readable instructions to access input data from a workstation in a process control system, the input data associated with a first user account, transmit the input data to a natural language processing (NLP) model, the NLP model to generate a representation of the input data based on stored data associated with the process control system, and display the representation of the input data on a user interface of the workstation after detecting an access of a second user account different from the first user account.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G06F 40/40 - Traitement ou traduction du langage naturel

9.

HIGHLY-VERSATILE FIELD DEVICES AND COMMUNICATION NETWORKS FOR USE IN CONTROL AND AUTOMATION SYSTEMS

      
Numéro d'application 19072331
Statut En instance
Date de dépôt 2025-03-06
Date de la première publication 2025-07-31
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.

Abrégé

A highly versatile process control or factory automation field device is configured with an interface and communication connection structure that enables the field device to operate as a data server that communicates with and supports multiple different applications or clients, either directly or indirectly, while simultaneously performing standard process and factory automation control functions. Moreover, various different process control and factory automation network architectures and, in particular, communication architectures, support the versatile field device to enable the versatile field device to simultaneously communicate with multiple different client devices or applications (each associated with a different system) via a common communication network infrastructure, using the same or different communication protocols.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 69/08 - Protocoles d’interopérabilitéConversion de protocole
  • H04L 69/14 - Protocoles multicanaux ou multi-liaisons

10.

METHODS AND APPARATUS TO DISPLAY SHIFT CHANGE NOTES GENERATED VIA NATURAL LANGUAGE PROCESSING MODELS

      
Numéro d'application US2025012140
Numéro de publication 2025/159994
Statut Délivré - en vigueur
Date de dépôt 2025-01-17
Date de publication 2025-07-31
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s) Denison, David R.

Abrégé

Methods and apparatus to display shift change notes generated via natural language processing models are disclosed. An example apparatus comprises interface circuitry, machine-readable instructions, and at least one processor circuit to be programmed by the machine-readable instructions to access input data from a workstation in a process control system, the input data associated with a first user account, transmit the input data to a natural language processing (NLP) model, the NLP model to generate a representation of the input data based on stored data associated with the process control system, and display the representation of the input data on a user interface of the workstation after detecting an access of a second user account different from the first user account.

Classes IPC  ?

  • G06Q 10/10 - BureautiqueGestion du temps
  • G06F 40/40 - Traitement ou traduction du langage naturel
  • G06F 40/20 - Analyse du langage naturel
  • G06F 40/166 - Édition, p. ex. insertion ou suppression
  • G06N 20/00 - Apprentissage automatique
  • G06N 3/02 - Réseaux neuronaux
  • G06N 5/00 - Agencements informatiques utilisant des modèles fondés sur la connaissance
  • G06Q 10/105 - Ressources humaines
  • G06N 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

11.

METHODS AND APPARATUS TO MONITOR DEVICE PARAMETERS

      
Numéro d'application 18990213
Statut En instance
Date de dépôt 2024-12-20
Date de la première publication 2025-07-10
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Xu, Ying
  • Kramer, James Philip
  • Dillon, Steven Robert
  • Middendorf, Fred Gene
  • Velena, Anna Lovella Querubin

Abrégé

Disclosed examples include interface circuitry, first instructions, and programmable circuitry to at least one of instantiate or execute the first instructions to access a file in a request from a client device, the file including at least a second instruction to retrieve device parameter data associated with at least one field device in a process control system, convert at least the second instruction of the file from a first format to a field device request in a second format, cause access of a first device parameter value of the device parameter data in the at least one field device based on the field device request, query a database to retrieve a second device parameter value of the device parameter data, and provide the first device parameter value and the second device parameter value to the client device.

Classes IPC  ?

12.

METHODS AND APPARATUS TO MONITOR DEVICE PARAMETERS

      
Numéro d'application US2024061357
Numéro de publication 2025/147406
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de publication 2025-07-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Xu, Ying
  • Kramer, James Philip
  • Dillon, Steven Robert
  • Middendorf, Fred Gene
  • Velena, Anna Lovella Querubin

Abrégé

Disclosed examples include interface circuitry, first instructions, and programmable circuitry to at least one of instantiate or execute the first instructions to access a file in a request from a client device, the file including at least a second instruction to retrieve device parameter data associated with at least one field device in a process control system, convert at least the second instruction of the file from a first format to a field device request in a second format, cause access of a first device parameter value of the device parameter data in the at least one field device based on the field device request, query a database to retrieve a second device parameter value of the device parameter data, and provide the first device parameter value and the second device parameter value to the client device.

Classes IPC  ?

  • G05B 19/04 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • H04L 67/00 - Dispositions ou protocoles de réseau pour la prise en charge de services ou d'applications réseau
  • G05B 23/00 - Test ou contrôle des systèmes de commande ou de leurs éléments
  • G06Q 50/00 - Technologies de l’information et de la communication [TIC] spécialement adaptées à la mise en œuvre des procédés d’affaires d’un secteur particulier d’activité économique, p. ex. aux services d’utilité publique ou au tourisme

13.

METHODS AND APPARATUS TO TRANSFORM PROCESS CONTROL DATA FOR USE IN A DISTRIBUTED CONTROL SYSTEM

      
Numéro d'application 18611061
Statut En instance
Date de dépôt 2024-03-20
Date de la première publication 2025-05-22
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Long, Cody Aaron
  • Crews, James Aaron
  • Kada, Shivkumar Rambabu

Abrégé

Systems, apparatus, articles of manufacture, and methods are disclosed to transform process control data for use in a distributed control system. An example apparatus includes first instructions to access an output condition associated with a process control system, determine second instructions to control the system based on the output condition, the second instructions executable by a programmable logic controller (PLC), identify a pattern based on the second instructions and the output condition, compare the pattern to stored patterns in a first database, the stored patterns associated with at least one other process control system, determine a control narrative when the pattern matches at least one of the stored patterns, the control narrative corresponding to the at least one of the stored patterns, and transmit the control narrative to a second database associated with a distributed control system (DCS), the control narrative to modify a configuration of the DCS.

Classes IPC  ?

  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes

14.

METHODS AND APPARATUS TO TRANSFORM PROCESS CONTROL DATA FOR USE IN A DISTRIBUTED CONTROL SYSTEM

      
Numéro d'application US2024054729
Numéro de publication 2025/106318
Statut Délivré - en vigueur
Date de dépôt 2024-11-06
Date de publication 2025-05-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Long, Cody Aaron
  • Crews, James Aaron
  • Kada, Shivkumar Rambabu

Abrégé

Systems, apparatus, articles of manufacture, and methods are disclosed to transform process control data for use in a distributed control system. An example apparatus includes first instructions to access an output condition associated with a process control system, determine second instructions to control the system based on the output condition, the second instructions executable by a programmable logic controller (PLC), identify a pattern based on the second instructions and the output condition, compare the pattern to stored patterns in a first database, the stored patterns associated with at least one other process control system, determine a control narrative when the pattern matches at least one of the stored patterns, the control narrative corresponding to the at least one of the stored patterns, and transmit the control narrative to a second database associated with a distributed control system (DCS), the control narrative to modify a configuration of the DCS.

Classes IPC  ?

  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G05B 15/00 - Systèmes commandés par un calculateur
  • G05B 19/04 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique
  • G06N 20/00 - Apprentissage automatique
  • G06N 3/02 - Réseaux neuronaux
  • G08B 21/18 - Alarmes de situation
  • G01M 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe

15.

INDUSTRIAL PROCESS CONTROL SYSTEM AS A DATA CENTER OF AN INDUSTRIAL PROCESS PLANT

      
Numéro d'application 18990654
Statut En instance
Date de dépôt 2024-12-20
Date de la première publication 2025-04-17
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Amaro, Jr., Anthony
  • Hartmann, Peter
  • Schleiss, Trevor Duncan
  • Natarajan, Seshatre

Abrégé

A distributed control system (DCS) of an industrial process plant includes a data center storing a plant information model that includes a description of physical components, the control framework, and the control network of the plant using a modeling language. A set of exposed APIs provides DCS applications access to the model, and to an optional generic framework of the data center which stores basic structures and functions from which the DCS may automatically generate other structures and functions to populate the model and to automatically create various applications and routines utilized during run-time operations of the DCS and plant. Upon initialization, the DCS may automatically sense the I/O types of its interface ports, detect communicatively connected physical components within the plant, and automatically populate the plant information model accordingly. The DCS may optionally automatically generate related control routines and/or I/O data delivery mechanisms, HMI routines, and the like.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
  • G06F 13/38 - Transfert d'informations, p. ex. sur un bus

16.

I/O CARRIER AND BACKPLANE FOR INDUSTRIAL PROCESS CONTROL SYSTEMS

      
Numéro d'application US2024047970
Numéro de publication 2025/075811
Statut Délivré - en vigueur
Date de dépôt 2024-09-23
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary, K.
  • Stock, Robert
  • Eastberg, Charles
  • Verastegui, Ernesto
  • St. Michael, Stephen

Abrégé

A backplane for use in an I/O device includes a first bus configured to communicatively couple each of a plurality of electronic marshalling component (EMC) slots to each of one or more I/O processor module slots. The I/O device also includes a second bus, redundant to the first bus, configured to communicatively couple each of the plurality of EMC slots to each of the one or more I/O processor module slots. For each pair of a one of the plurality of EMC slots and a one of the one or more I/O processor module slots, a first path length of the first bus between the pair is the same as a second path length of the second bus between the pair, such that data transmitted between the pair on the first bus has a same latency as data transmitted between the pair on the second bus.

Classes IPC  ?

  • H04L 12/40 - Réseaux à ligne bus
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • G06F 11/20 - Détection ou correction d'erreur dans une donnée par redondance dans le matériel en utilisant un masquage actif du défaut, p. ex. en déconnectant les éléments défaillants ou en insérant des éléments de rechange
  • G06F 13/40 - Structure du bus
  • H05K 7/14 - Montage de la structure de support dans l'enveloppe, sur cadre ou sur bâti

17.

I/O CARRIER AND BACKPLANE FOR INDUSTRIAL PROCESS CONTROL SYSTEMS

      
Numéro d'application US2024047974
Numéro de publication 2025/075813
Statut Délivré - en vigueur
Date de dépôt 2024-09-23
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Eastberg, Charles
  • Mann, Richard
  • Slade, Scott

Abrégé

An I/O device is configured to couple a plurality of process control field devices to a process controller controlling a process in an industrial process plant. The I/O device includes a backplane and a plurality of electronic marshalling component (EMC) slots. The EMC slots are each configured to receive a respective EMC and to receive either of (i) a first-type EMC associated with a first communication protocol or (ii) second-type EMC associated with a second communication protocol. The I/O device also includes I/O processor module slots, each communicatively coupled, via the backplane, to each of the EMC slots and to each of a first one or more connectors and a second one or more connectors in each of the EMC slots. The I/O device further includes communication ports, each communicatively coupled to the I/O processor module slots via the backplane.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • H05K 7/14 - Montage de la structure de support dans l'enveloppe, sur cadre ou sur bâti

18.

METHODS AND APPARATUS TO PERFORM PROCESS CONTROL ANALYTICS

      
Numéro d'application US2024049294
Numéro de publication 2025/075921
Statut Délivré - en vigueur
Date de dépôt 2024-09-30
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Law, Gary K.
  • Fayad, Claudio Aun
  • Nixon, Mark

Abrégé

Systems, apparatus, articles of manufacture, and methods to perform process control analytics are disclosed. An example method includes generating a prompt based on the request for analytics data, providing the prompt to a large language model for generation of analytics instructions, validating the analytics instructions to determine whether the analytics instructions are to be executed, and in response to the determination that the analytics instructions are to be executed, executing the analytics instructions to generate the analytics data.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06N 20/00 - Apprentissage automatique
  • G06N 3/08 - Méthodes d'apprentissage
  • G05B 19/00 - Systèmes de commande à programme

19.

METHODS AND APPARATUS TO MODIFY USER INTERFACES USING ARTIFICIAL INTELLIGENCE

      
Numéro d'application US2024049438
Numéro de publication 2025/075974
Statut Délivré - en vigueur
Date de dépôt 2024-10-01
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Thompson, Curtis

Abrégé

Methods and apparatus to modify user interfaces using artificial intelligence are disclosed. An example apparatus comprises instructions access first image data corresponding to a first diagram representing a process control system, the first diagram to be displayed via a user interface of the process control system, the first diagram including a first feature having a first visual characteristic and a second feature having a second visual characteristic, determine a first visual perception score associated with the first feature and a second visual perception score associated with the second feature, determine a third visual characteristic for the first feature, the third visual characteristic to increase the first visual perception score, generate second image data corresponding to the second diagram including the first and second features, the first feature having the third visual characteristic and the second feature having the second visual characteristic, and display the second diagram via the user interface.

Classes IPC  ?

  • G06F 3/0486 - Glisser-déposer
  • G05B 23/02 - Test ou contrôle électrique
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux

20.

AUTOMATED INDUSTRIAL PROCESS RECIPE GENERATION

      
Numéro d'application US2024049515
Numéro de publication 2025/076026
Statut Délivré - en vigueur
Date de dépôt 2024-10-02
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary, K.
  • Uy, Cristopher Ian Sarmiento
  • Cutchin, Andrew, E.

Abrégé

Techniques for automatically generating a process definition for an industrial process to create a product in an industrial plant are provided, including capturing sensor data associated with an individual performing a set of process operations to a set of process materials to make a product, analyzing the sensor data associated with the individual performing the set of process operations to the set of process materials to make the product, and identifying, based on analyzing the sensor data associated with the individual performing the set of process operations to the set of process materials to make the product, a process definition including the set of process materials, the equipment used to make the product, the set of process operations applied to the materials to make the product, a sequence of the process operations, a timing of the process operations, and/or a quantity of materials used in the process.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projetsPlanification d’entreprise ou d’organisationModélisation d’entreprise ou d’organisation
  • G06Q 50/04 - Fabrication
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

21.

METHODS AND APPARATUS FOR ARTIFICIAL INTELLIGENCE CONTROL OF PROCESS CONTROL SYSTEMS

      
Numéro d'application US2024049615
Numéro de publication 2025/076103
Statut Délivré - en vigueur
Date de dépôt 2024-10-02
Date de publication 2025-04-10
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Law, Gary K.
  • Fayad, Claudio Aun
  • Nixon, Mark

Abrégé

Methods and apparatus for artificial intelligence control of process control systems are described. An example non-transitory machine readable storage medium comprising instructions to cause programmable circuitry to at least: collect a measurement of an operation of a process; utilize machine learning based on a state of the process and a goal function that references one or more measurement(s); and modify operation of a controller based on the machine learning.

Classes IPC  ?

  • G05B 19/04 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique
  • G06N 5/00 - Agencements informatiques utilisant des modèles fondés sur la connaissance
  • G05B 15/00 - Systèmes commandés par un calculateur
  • G06N 20/00 - Apprentissage automatique
  • G06N 3/02 - Réseaux neuronaux
  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques
  • G06Q 50/04 - Fabrication

22.

METHODS AND APPARATUS FOR ARTIFICIAL INTELLIGENCE CONTROL OF PROCESS CONTROL SYSTEMS

      
Numéro d'application 18904853
Statut En instance
Date de dépôt 2024-10-02
Date de la première publication 2025-04-03
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Law, Gary K.
  • Fayad, Claudio Aun
  • Nixon, Mark

Abrégé

Methods and apparatus for artificial intelligence control of process control systems are described. An example non-transitory machine readable storage medium comprising instructions to cause programmable circuitry to at least: collect a measurement of an operation of a process; utilize machine learning based on a state of the process and a goal function that references one or more measurement(s); and modify operation of a controller based on the machine learning.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques

23.

I/O CARRIER AND BACKPLANE FOR INDUSTRIAL PROCESS CONTROL SYSTEMS

      
Numéro d'application 18891836
Statut En instance
Date de dépôt 2024-09-20
Date de la première publication 2025-04-03
Propriétaire FISHER- ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Stock, Robert
  • Eastberg, Charles
  • Verastegui, Ernesto
  • St.Michael, Stephen

Abrégé

A backplane for use in an I/O device includes a first bus configured to communicatively couple each of a plurality of electronic marshalling component (EMC) slots to each of one or more I/O processor module slots. The I/O device also includes a second bus, redundant to the first bus, configured to communicatively couple each of the plurality of EMC slots to each of the one or more I/O processor module slots. For each pair of a one of the plurality of EMC slots and a one of the one or more I/O processor module slots, a first path length of the first bus between the pair is the same as a second path length of the second bus between the pair, such that data transmitted between the pair on the first bus has a same latency as data transmitted between the pair on the second bus.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

24.

I/O CARRIER AND BACKPLANE FOR INDUSTRIAL PROCESS CONTROL SYSTEMS

      
Numéro d'application 18891841
Statut En instance
Date de dépôt 2024-09-20
Date de la première publication 2025-04-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Mann, Richard
  • Eastberg, Charles
  • Slade, Scott

Abrégé

An I/O device is configured to couple a plurality of process control field devices to a process controller controlling a process in an industrial process plant. The I/O device includes a backplane and a plurality of electronic marshalling component (EMC) slots. The EMC slots are each configured to receive a respective EMC and to receive either of (i) a first-type EMC associated with a first communication protocol or (ii) second-type EMC associated with a second communication protocol. The I/O device also includes I/O processor module slots, each communicatively coupled, via the backplane, to each of the EMC slots and to each of a first one or more connectors and a second one or more connectors in each of the EMC slots. The I/O device further includes communication ports, each communicatively coupled to the I/O processor module slots via the backplane.

Classes IPC  ?

25.

METHODS AND APPARATUS TO MODIFY USER INTERFACES USING ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18901730
Statut En instance
Date de dépôt 2024-09-30
Date de la première publication 2025-04-03
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Nixon, Mark
  • Thompson, Curtis

Abrégé

Methods and apparatus to modify user interfaces using artificial intelligence are disclosed. An example apparatus comprises instructions access first image data corresponding to a first diagram representing a process control system, the first diagram to be displayed via a user interface of the process control system, the first diagram including a first feature having a first visual characteristic and a second feature having a second visual characteristic, determine a first visual perception score associated with the first feature and a second visual perception score associated with the second feature, determine a third visual characteristic for the first feature, the third visual characteristic to increase the first visual perception score, generate second image data corresponding to the second diagram including the first and second features, the first feature having the third visual characteristic and the second feature having the second visual characteristic, and display the second diagram via the user interface.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06T 7/00 - Analyse d'image

26.

METHODS AND APPARATUS TO PERFORM PROCESS CONTROL ANALYTICS

      
Numéro d'application 18902314
Statut En instance
Date de dépôt 2024-09-30
Date de la première publication 2025-04-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Qiu, Shaobo
  • Law, Gary K.
  • Fayad, Claudio Aun
  • Nixon, Mark

Abrégé

Systems, apparatus, articles of manufacture, and methods to perform process control analytics are disclosed. An example method includes generating a prompt based on the request for analytics data, providing the prompt to a large language model for generation of analytics instructions, validating the analytics instructions to determine whether the analytics instructions are to be executed, and in response to the determination that the analytics instructions are to be executed, executing the analytics instructions to generate the analytics data.

Classes IPC  ?

27.

Automated Recipe Generation

      
Numéro d'application 18375727
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2025-04-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Law, Gary K.
  • Uy, Cristopher Ian Sarmiento
  • Cutchin, Andrew E.

Abrégé

Techniques for automatically generating a process definition for an industrial process to create a product in an industrial plant are provided, including capturing sensor data associated with an individual performing a set of process operations to a set of process materials to make a product, analyzing the sensor data associated with the individual performing the set of process operations to the set of process materials to make the product, and identifying, based on analyzing the sensor data associated with the individual performing the set of process operations to the set of process materials to make the product, a process definition including the set of process materials, the equipment used to make the product, the set of process operations applied to the materials to make the product, a sequence of the process operations, a timing of the process operations, and/or a quantity of materials used in the process.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G10L 15/08 - Classement ou recherche de la parole

28.

WHITELISTING FOR HART COMMUNICATIONS IN A PROCESS CONTROL SYSTEM

      
Numéro d'application 18967285
Statut En instance
Date de dépôt 2024-12-03
Date de la première publication 2025-03-20
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Diaz, Sergio
  • Sherriff, Godfrey R.
  • Peluso, Marcos
  • Hokeness, Scott N.

Abrégé

A cybersecurity system for use in a process plant provides whitelisting of device specific and common practice HART read commands in process controllers and safety controllers to perform communications in a process plant that are very secure, but that still enable the implementation of advanced functionality provided in HART devices. A whitelist implementation application applies one or more whitelists in a security gateway device to determine if messages, such as HART messages, should be allowed or processed. A whitelist learning application automatically creates and configures whitelists through the use of a lock/learn mode, and a whitelist configuration application discovers Device Specific and Common Practice HART commands by issuing device description requests to specific devices, parsing the response, and communicating the whitelist configuration information with the parsed command types to the relevant process controllers and safety controllers for use in the whitelists. A user interface enables users to interact with and guide the configuration process to provide for a highly secure system that still enables the diagnostic and other high level functionality of field devices in a process plant.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

29.

RAW SENSOR DATA INPUT TO CONTROL SYSTEM

      
Numéro d'application US2024041936
Numéro de publication 2025/042611
Statut Délivré - en vigueur
Date de dépôt 2024-08-12
Date de publication 2025-02-27
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Law, Gary K.

Abrégé

Systems, methods, and media for monitoring and controlling an operation (e.g., an automotive manufacturing operation, a chemical processing operation, an oil and gas operation, etc.) using raw sensor data inputs. A system includes a sensor device and a control system in electrical communication with the sensor device. The sensor device includes a sensor configured to generate an electrical signal indicative of a measured process variable and a converter circuit configured to receive the electrical signal and generate a raw sensor data packet using the electrical signal. The control system is configured to receive the raw sensor data packet from the sensor device, calculate a value for the measured process variable based on the raw sensor data packet, and control the operation based on the value for the measured process variable.

Classes IPC  ?

30.

Raw Sensor Data Input to Control System

      
Numéro d'application 18453791
Statut En instance
Date de dépôt 2023-08-22
Date de la première publication 2025-02-27
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Nixon, Mark
  • Law, Gary K.

Abrégé

Systems, methods, and media for monitoring and controlling an operation (e.g., an automotive manufacturing operation, a chemical processing operation, an oil and gas operation, etc.) using raw sensor data inputs. A system includes a sensor device and a control system in electrical communication with the sensor device. The sensor device includes a sensor configured to generate an electrical signal indicative of a measured process variable and a converter circuit configured to receive the electrical signal and generate a raw sensor data packet using the electrical signal. The control system is configured to receive the raw sensor data packet from the sensor device, calculate a value for the measured process variable based on the raw sensor data packet, and control the operation based on the value for the measured process variable.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques

31.

Architecture-independent process control

      
Numéro d'application 18178673
Numéro de brevet 12321145
Statut Délivré - en vigueur
Date de dépôt 2023-03-06
Date de la première publication 2024-09-12
Date d'octroi 2025-06-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Jundt, Larry Oscar
  • Law, Gary K.
  • Mcdevitt, Edward
  • Stoner, Matt
  • Sherriff, Godfrey R.
  • Denison, David R.
  • Nixon, Mark J.
  • Balentine, James R.
  • Lucas, J. Michael
  • Gilbert, Stephen

Abrégé

Process control systems for operating process plants are disclosed herein. The process control systems include control modules that are decoupled from the I/O architecture of the process plants using signal objects or generic shadow blocks. This decoupling is effected by using the signal objects or generic shadow blocks to manage at least part of the communication between the control modules and the field devices. Signal objects may convert between protocols used by control modules and field devices, thus decoupling the control modules from the I/O architecture. Generic shadow blocks may be automatically configured to mimic the operation of field devices within a controller executing the control modules, thus partially decoupling the control modules from the I/O architecture by using the shadow blocks to manage communication between the control modules and the field devices.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 13/36 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus ou au système à bus communs
  • H04L 12/00 - Réseaux de données à commutation
  • H04L 12/46 - Interconnexion de réseaux

32.

MODEL PREDICTIVE CONTROL SYSTEMS FOR PROCESS AUTOMATION PLANTS

      
Numéro d'application US2024016510
Numéro de publication 2024/182167
Statut Délivré - en vigueur
Date de dépôt 2024-02-20
Date de publication 2024-09-06
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Xu, Shu
  • Nixon, Mark

Abrégé

A model predictive control (MPC) device includes an input interface configured to receive an industrial process input associated with at least one component of a process automation plant, an output interface configured to transmit a control instruction to control the component, memory configured to store first and second MPC process models corresponding to different states, and a processor configured to identify a current state parameter of an industrial process, and predict a future industrial process output using the first or second MPC process model, based on the current state parameter being associated with the first or second MPC process model. The processor is configured to calculate a target operating point according to the predicted future industrial process output, determine a control signal to drive the industrial process to the calculated target operating point, and output the determined control signal to control operation of the component of the industrial process plant.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs
  • G05B 17/02 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes électriques

33.

MODEL PREDICTIVE CONTROL SYSTEMS FOR PROCESS AUTOMATION PLANTS

      
Numéro d'application 18115317
Statut En instance
Date de dépôt 2023-02-28
Date de la première publication 2024-08-29
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Xu, Shu
  • Nixon, Mark

Abrégé

A model predictive control (MPC) device includes an input interface configured to receive an industrial process input associated with at least one component of a process automation plant, an output interface configured to transmit a control instruction to control the component, memory configured to store first and second MPC process models corresponding to different states, and a processor configured to identify a current state parameter of an industrial process, and predict a future industrial process output using the first or second MPC process model, based on the current state parameter being associated with the first or second MPC process model. The processor is configured to calculate a target operating point according to the predicted future industrial process output, determine a control signal to drive the industrial process to the calculated target operating point, and output the determined control signal to control operation of the component of the industrial process plant.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme

34.

FIELD DEVICE LOOP WARNING PARAMETER CHANGE SMART NOTIFICATION

      
Numéro d'application 18649305
Statut En instance
Date de dépôt 2024-04-29
Date de la première publication 2024-08-22
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Bacus, Joseph Aballe
  • Geronimo Balla, Jehiel Camille
  • Diancin, Wynn Gervacio
  • Samson, Dashene Aren

Abrégé

A system validates critical parameter changes in a DCS by intercepting commands, transmitting warnings, receiving responses, and releasing commands if allowed. A method involves intercepting parameter change commands, transmitting warnings, receiving responses, and releasing commands if responses allow. A non-transitory computer-readable medium causes a computer to intercept commands, transmit warnings, receive responses, and release commands if allowed.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
  • H04L 41/0686 - Présence d’informations supplémentaires dans la notification, p. ex. pour l’amélioration de métadonnées spécifiques
  • H04L 41/069 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant des journaux de notificationsPost-traitement des notifications
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • H04L 67/75 - Services réseau en affichant sur l'écran de l'utilisateur les conditions du réseau ou d'utilisation

35.

HIGH AVAILABILITY NETWORKING DEVICE

      
Numéro d'application US2024014259
Numéro de publication 2024/167790
Statut Délivré - en vigueur
Date de dépôt 2024-02-02
Date de publication 2024-08-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC. (USA)
Inventeur(s)
  • Peterson, Neil
  • Law, Gary
  • Griffith, Alexandra
  • Nicolet, Scott J.
  • Diaz, Sergio
  • Nixon, Mark

Abrégé

A networking device and networking method for use in industrial automation applications. The networking device includes redundant circuitry that can allow the networking device to continue normal operation in the event of a failure that occurs with hardware of the networking device. The networking device includes both primary and secondary network switch circuits, and associated components. The networking device can be an advanced physical layer (APL) switch that interfaces with APL field devices.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

36.

SECONDARY CONTROL FOR DE-ENERGIZING SAFETY FIELD DEVICES WITH DIGITAL PROTOCOLS

      
Numéro d'application US2024014257
Numéro de publication 2024/167789
Statut Délivré - en vigueur
Date de dépôt 2024-02-02
Date de publication 2024-08-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary

Abrégé

A two-wire routing device (102, 122, 124) includes an upstream communication interface for communication with a controller (112), a two-wire communication and power interface configured to convey communication and power to a field device (116) over a two-wire link, and a router electronic controller. The router electronic controller is coupled to the upstream communication interface and the two- wire communication and power interface. The router electronic controller receives, via the upstream communication interface, a safe state command from the controller, and transmits, via the two-wire communication and power interface, the safe state command to a field device over the two-wire link. The router electronic controller further executes a secondary de-energization scheme for the field device to control a power switch to cut power over the two-wire link to the field device.

Classes IPC  ?

  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

37.

Secondary control for de-energizing safety field devices with digital protocols

      
Numéro d'application 18165739
Numéro de brevet 12316469
Statut Délivré - en vigueur
Date de dépôt 2023-02-07
Date de la première publication 2024-08-08
Date d'octroi 2025-05-27
Propriétaire Fisher-Rosemount Systems Inc. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary

Abrégé

A two-wire routing device includes an upstream communication interface for communication with a controller, a two-wire communication and power interface configured to convey communication and power to a field device over a two-wire link, and a router electronic controller. The router electronic controller is coupled to the upstream communication interface and the two-wire communication and power interface. The router electronic controller receives, via the upstream communication interface, a safe state command from the controller, and transmits, via the two-wire communication and power interface, the safe state command to a field device over the two-wire link. The router electronic controller further executes a secondary de-energization scheme for the field device to control a power switch to cut power over the two-wire link to the field device.

Classes IPC  ?

  • G06F 15/173 - Communication entre processeurs utilisant un réseau d'interconnexion, p. ex. matriciel, de réarrangement, pyramidal, en étoile ou ramifié
  • H04L 12/10 - Dispositions pour l'alimentation

38.

High Availability Networking Device

      
Numéro d'application 18165750
Statut En instance
Date de dépôt 2023-02-07
Date de la première publication 2024-08-08
Propriétaire Fisher-Rosemount Systems Inc. (USA)
Inventeur(s)
  • Peterson, Neil
  • Law, Gary
  • Griffith, Alexandra
  • Nicolet, Scott J.
  • Diaz, Sergio
  • Nixon, Mark

Abrégé

A networking device and networking method for use in industrial automation applications. The networking device includes redundant circuitry that can allow the networking device to continue normal operation in the event of a failure that occurs with hardware of the networking device. The networking device includes both primary and secondary network switch circuits, and associated components. The networking device can be an advanced physical layer (APL) switch that interfaces with APL field devices.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

39.

Automatic Plant Data Recorder Appliance on the Edge

      
Numéro d'application 18381957
Statut En instance
Date de dépôt 2023-10-19
Date de la première publication 2024-07-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Dones, Jeph
  • Wang, Zhiyu
  • Ian Sarmiento, Cristopher
  • Nixon, Mark J.
  • Salvador, Mikhaila

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

40.

Compute Fabric Functionalities for a Process Control or Automation System

      
Numéro d'application 18382288
Statut En instance
Date de dépôt 2023-10-20
Date de la première publication 2024-07-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric performs various control, monitoring, diagnostics, simulation, and configuration activities with respect to a plurality of devices at the one or more specific sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

41.

Gateway for Facilitating Control System Upgrades

      
Numéro d'application 18480036
Statut En instance
Date de dépôt 2023-10-03
Date de la première publication 2024-07-11
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Crews, Aaron
  • Schleiss, Duncan
  • William, Nobin
  • Troy, Marc

Abrégé

Gateway devices, systems, and methods for facilitating control system upgrades including hosting a web application via a gateway device that permits configuration of the gateway device via a web browser. A redundant gateway system can be implemented such that both a primary gateway device and a secondary gateway device are used in conjunction. The web application can provide significant advantages in terms of ease of configurability and integration of legacy input/output (I/O) systems to facilitate control system upgrades in a variety of applications.

Classes IPC  ?

  • H04L 12/66 - Dispositions pour la connexion entre des réseaux ayant différents types de systèmes de commutation, p. ex. passerelles
  • H04L 67/025 - Protocoles basés sur la technologie du Web, p. ex. protocole de transfert hypertexte [HTTP] pour la commande à distance ou la surveillance à distance des applications
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

42.

ENTERPRISE ENGINEERING AND CONFIGURATION FRAMEWORK FOR ADVANCED PROCESS CONTROL AND MONITORING SYSTEMS

      
Numéro d'application 18375735
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-07-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark J.
  • Dakoju, Sireesha
  • Joshi, Krishna

Abrégé

An enterprise engineering and configuration system includes a common configuration database and support services stored in and executed in a compute fabric of an enterprise. The configuration database and support services use and implement a common configuration data schema to support the configuration of hardware and software in the compute fabric and at multiple different sites or physical locations of the enterprise even when different control and automation systems are used at these different sites or physical locations. The configuration system enables implementing hardware or software configuration changes to various different sites or locations of an enterprise either centrally from a configuration device connected directly to the compute fabric of the enterprise or locally from any physical location or site of the enterprise, while maintaining a single integrated enterprise configuration database that stores configuration data for each of the multiple sites of the enterprise. This configuration system is flexible as it enables engineering and configuration changes to be made by users anywhere in the enterprise for any of the sites of the enterprise and across different sites of the enterprise.

Classes IPC  ?

  • G06F 16/23 - Mise à jour
  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage

43.

CONFIGURATION SUPPORT FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18382292
Statut En instance
Date de dépôt 2023-10-20
Date de la première publication 2024-07-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Lamothe, Brian

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the software executing in the compute fabric by accessing and downloading new components for execution in the compute fabric from a centralized registry. The configuration system may provide feedback regarding the operation of the new component to a component developer to enable the developer to test and alter the component. The configuration system makes it possible for a user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

44.

SPOKE AND HUB CONFIGURATION FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18382296
Statut En instance
Date de dépôt 2023-10-20
Date de la première publication 2024-07-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Vinyard, Brian
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Bartel, Wayne
  • Hartmann, Peter
  • Nixon, Mark J.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric is implemented in a spoke and hub configuration in which the compute fabric includes computing infrastructure organized into one or more hubs, with each hub disposed in a particular geographical region or area. Each hub of the compute fabric may include communication connections in the form of spokes to each of a plurality of geographical locations or areas, such as plants, and may store and process the data from each of the associated spokes in the hub. The various different hubs may be used to organize or control what enterprise data is processed or handled in particular geographical regions and where enterprise actions, such as control actions, take place in the enterprise.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

45.

AUTOMATIC LOAD BALANCING AND PERFORMANCE LEVELING OF VIRTUAL NODES RUNNING REAL-TIME CONTROL IN PROCESS CONTROL SYSTEMS

      
Numéro d'application 18438250
Statut En instance
Date de dépôt 2024-02-09
Date de la première publication 2024-06-06
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

46.

NEBULA FLEET MANAGEMENT

      
Numéro d'application US2023034272
Numéro de publication 2024/086015
Statut Délivré - en vigueur
Date de dépôt 2023-10-02
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Jordan, Jason, A.
  • Lamothe, Brian
  • Law, Gary, K.
  • Doraiswamy, Narayanan
  • Lakhani, Ayub

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented. One or more applications, executing via the location-agnostic compute fabric, provide for access, management, and/or reconfiguration of various aspects of one or more process control systems across one or more physical sites operated by an enterprise. The one or more applications may, for example, provide for viewing of operational parameters and/or health statuses based upon information accessed from one, two, three four or more physical sites.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 19/18 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

47.

ENTERPRISE ENGINEERING AND CONFIGURATION FRAMEWORK FOR ADVANCED PROCESS CONTROL AND MONITORING SYSTEMS

      
Numéro d'application US2023034351
Numéro de publication 2024/086019
Statut Délivré - en vigueur
Date de dépôt 2023-10-03
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark, J.
  • Dakoju, Sireesha
  • Joshi, Krishna

Abrégé

An enterprise engineering and configuration system includes a common configuration database and support services stored in and executed in a compute fabric of an enterprise. The configuration database and support services use and implement a common configuration data schema to support the configuration of hardware and software in the compute fabric and at multiple different sites or physical locations of the enterprise even when different control and automation systems are used at these different sites or physical locations. The configuration system enables implementing hardware or software configuration changes to various different sites or locations of an enterprise either centrally from a configuration device connected directly to the compute fabric of the enterprise or locally from any physical location or site of the enterprise, while maintaining a single integrated enterprise configuration database that stores configuration data for each of the multiple sites of the enterprise. This configuration system is flexible as it enables engineering and configuration changes to be made by users anywhere in the enterprise for any of the sites of the enterprise and across different sites of the enterprise.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

48.

CONFIGURATION SUPPORT FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035611
Numéro de publication 2024/086338
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Lamothe, Brian

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the software executing in the compute fabric by accessing and downloading new components for execution in the compute fabric from a centralized registry. The configuration system may provide feedback regarding the operation of the new component to a component developer to enable the developer to test and alter the component. The configuration system makes it possible for a user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 19/18 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

49.

COMPUTE FABRIC FUNCTIONALITIES FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035618
Numéro de publication 2024/086344
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric performs various control, monitoring, diagnostics, simulation, and configuration activities with respect to a plurality of devices at the one or more specific sites.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau

50.

AUTHENTICATION/AUTHORIZATION FRAMEWORK FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023033926
Numéro de publication 2024/086008
Statut Délivré - en vigueur
Date de dépôt 2023-09-28
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark, J.
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

An architecture supporting a process control or automation system may include an authentication service which determines whether an entity (e.g., a human, automated, virtual, or physical entity) is the party the entity claims to be, and an authorization service which determines whether a request of the entity to access a resource is allowed. The authentication service provides unique identities of entities and respective security credentials, e.g. tokens utilized during authorization. The authorization service authorizes an entity to access a requested resource based on role-based permissions of a role to which the entity is assigned and resource access permissions protecting the requested resource. The role-based permissions and/ or the resource access permissions may be respectively scoped to limit or restrict actions, activities, operations, and/or resource access based on specified criteria. Each entity may be authenticated, and each request of an authenticated entity may be authorized.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

51.

LOCATION SPECIFIC COMMUNICATIONS GATEWAY FOR MULTI-SITE ENTERPRISE

      
Numéro d'application US2023034349
Numéro de publication 2024/086018
Statut Délivré - en vigueur
Date de dépôt 2023-10-03
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific plant sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices using a communications gateway device at each plant site that provides secured communications between the compute fabric and the one or more physical control or field devices at each plant site. The communications gateway at each plant site implements one or more secured point-to-point or peer-to-peer communication networks between the compute fabric and the plant site using one or more virtual private networks.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 12/46 - Interconnexion de réseaux
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

52.

SPOKE AND HUB CONFIGURATION FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023035613
Numéro de publication 2024/086340
Statut Délivré - en vigueur
Date de dépôt 2023-10-20
Date de publication 2024-04-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Vinyard, Brian
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Bartel, Wayne
  • Hartmann, Peter
  • Nixon, Mark, J.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric is implemented in a spoke and hub configuration in which the compute fabric includes computing infrastructure organized into one or more hubs, with each hub disposed in a particular geographical region or area. Each hub of the compute fabric may include communication connections in the form of spokes to each of a plurality of geographical locations or areas, such as plants, and may store and process the data from each of the associated spokes in the hub. The various different hubs may be used to organize or control what enterprise data is processed or handled in particular geographical regions and where enterprise actions, such as control actions, take place in the enterprise.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 12/66 - Dispositions pour la connexion entre des réseaux ayant différents types de systèmes de commutation, p. ex. passerelles

53.

GENERAL REINFORCEMENT LEARNING FRAMEWORK FOR PROCESS MONITORING AND ANOMALY/ FAULT DETECTION

      
Numéro d'application 17954307
Statut En instance
Date de dépôt 2022-09-27
Date de la première publication 2024-04-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Xu, Shu

Abrégé

A method includes receiving a metric-reward mapping; and using reinforcement machine learning to train a state-action mapping. A method includes receiving a set of metrics corresponding to an ongoing industrial control process; determining anomaly/fault and normal action values by reference to a reinforcement learning-determined state-action mapping; and causing a remedial action to occur. A process control system includes an anomaly/fault detection device, that receives metrics, determines anomaly/fault and normal action values; and causes a remedial action to occur.

Classes IPC  ?

54.

A GENERAL REINFORCEMENT LEARNING FRAMEWORK FOR PROCESS MONITORING AND ANOMALY/ FAULT DETECTION

      
Numéro d'application US2023033593
Numéro de publication 2024/072729
Statut Délivré - en vigueur
Date de dépôt 2023-09-25
Date de publication 2024-04-04
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark, J.
  • Xu, Shu

Abrégé

A method includes receiving a metric-reward mapping; and using reinforcement machine learning to train a state-action mapping. A method includes receiving a set of metrics corresponding to an ongoing industrial control process; determining anomaly/fault and normal action values by reference to a reinforcement learning-determined state-action mapping; and causing a remedial action to occur. A process control system includes an anomaly/fault detection device, that receives metrics, determines anomaly/fault and normal action values; and causes a remedial action to occur.

Classes IPC  ?

  • G06N 3/006 - Vie artificielle, c.-à-d. agencements informatiques simulant la vie fondés sur des formes de vie individuelles ou collectives simulées et virtuelles, p. ex. simulations sociales ou optimisation par essaims particulaires [PSO]
  • G06N 3/092 - Apprentissage par renforcement
  • G06N 20/00 - Apprentissage automatique
  • G05B 13/00 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé
  • G05B 19/00 - Systèmes de commande à programme

55.

METHODS AND APPARATUS FOR EXECUTING RULES

      
Numéro d'application US2023074228
Numéro de publication 2024/059732
Statut Délivré - en vigueur
Date de dépôt 2023-09-14
Date de publication 2024-03-21
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • De Guzman, Francis
  • Tjiong, Ching Lung
  • Serapio Fos, Paul Oliver
  • Samson, Dashene Aren

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An apparatus for executing a rule includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to access a property value from a data collector, the property value including an operational value of a workstation within a process control system, create a data model instance representing the workstation, apply the property value to the data model instance, identify a rule associated with the data model instance, cause execution of an executable package associated with the rule using the data model instance; and record a result of the execution of the executable package.

Classes IPC  ?

  • G05B 17/02 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes électriques
  • G06Q 10/0633 - Analyse du flux de travail
  • G07C 3/08 - Enregistrement ou indication de la production de la machine avec ou sans enregistrement du temps de fonctionnement ou d'arrêt
  • H04L 41/0663 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant la reprise sur incident de réseau en réalisant des actions prédéfinies par la planification du basculement, p. ex. en passant à des éléments de réseau de secours
  • H04L 41/0681 - Configuration des conditions de déclenchement
  • H04L 43/02 - Capture des données de surveillance
  • H04L 43/10 - Surveillance active, p. ex. battement de cœur, utilitaire Ping ou trace-route
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G05B 23/02 - Test ou contrôle électrique
  • G06F 8/20 - Conception de logiciels
  • G06F 11/22 - Détection ou localisation du matériel d'ordinateur défectueux en effectuant des tests pendant les opérations d'attente ou pendant les temps morts, p. ex. essais de mise en route
  • G06F 11/26 - Tests fonctionnels

56.

METHODS AND APPARATUS FOR EXECUTING RULES

      
Numéro d'application 17945624
Statut En instance
Date de dépôt 2022-09-15
Date de la première publication 2024-03-21
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • De Guzman, Francis
  • Tjiong, Ching Lung
  • Serapio Fos, Paul Oliver
  • Samson, Dashene Aren

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An apparatus for executing a rule includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to access a property value from a data collector, the property value including an operational value of a workstation within a process control system, create a data model instance representing the workstation, apply the property value to the data model instance, identify a rule associated with the data model instance, cause execution of an executable package associated with the rule using the data model instance; and record a result of the execution of the executable package.

Classes IPC  ?

  • G05B 13/04 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques impliquant l'usage de modèles ou de simulateurs

57.

Industrial process control system as a data center of an industrial process plant

      
Numéro d'application 18515927
Numéro de brevet 12190216
Statut Délivré - en vigueur
Date de dépôt 2023-11-21
Date de la première publication 2024-03-14
Date d'octroi 2025-01-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Amaro, Jr., Anthony
  • Hartmann, Peter
  • Schleiss, Trevor Duncan
  • Natarajan, Seshatre

Abrégé

A distributed control system (DCS) of an industrial process plant includes a data center storing a plant information model that includes a description of physical components, the control framework, and the control network of the plant using a modeling language. A set of exposed APIs provides DCS applications access to the model, and to an optional generic framework of the data center which stores basic structures and functions from which the DCS may automatically generate other structures and functions to populate the model and to automatically create various applications and routines utilized during run-time operations of the DCS and plant. Upon initialization, the DCS may automatically sense the I/O types of its interface ports, detect communicatively connected physical components within the plant, and automatically populate the plant information model accordingly. The DCS may optionally automatically generate related control routines and/or I/O data delivery mechanisms, HMI routines, and the like.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
  • G06F 13/38 - Transfert d'informations, p. ex. sur un bus
  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • G05B 19/41 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par l'interpolation, p. ex. par le calcul de points intermédiaires entre les points extrêmes programmés pour définir le parcours à suivre et la vitesse du déplacement le long de ce parcours

58.

PUBLISH-SUBSCRIBE COMMUNICATION ARCHITECTURE FOR FIELD DEVICES IN CONTROL AND AUTOMATION SYSTEMS

      
Numéro d'application 18514543
Statut En instance
Date de dépôt 2023-11-20
Date de la première publication 2024-03-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Law, Gary K.

Abrégé

A method includes receiving at a field device, from a first client device or application, a message indicating a selection of a first one of a plurality of publish categories corresponding to a type of information desired by the first client device or application. The method further includes transmitting, from the field device to the first client device or application, an identification of each of a plurality of publish lists corresponding to the first one of the selected publish category. The publish lists are stored on the field device and each includes a set of parameters associated with the field device. The method includes receiving at the field device, from the first client device or application, a selection of a publish list identified by the field device, and transmitting, from the field device to the first client device or application, the set of parameters associated with the selected publish list.

Classes IPC  ?

  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

59.

Industrial process control system as a data center of an industrial process plant

      
Numéro d'application 18516533
Numéro de brevet 12190217
Statut Délivré - en vigueur
Date de dépôt 2023-11-21
Date de la première publication 2024-03-14
Date d'octroi 2025-01-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Fayad, Claudio
  • Halgren, Iii, Robert G.
  • Amaro, Jr., Anthony
  • Hartmann, Peter
  • Schleiss, Trevor Duncan
  • Natarajan, Seshatre

Abrégé

A distributed control system (DCS) of an industrial process plant includes a data center storing a plant information model that includes a description of physical components, the control framework, and the control network of the plant using a modeling language. A set of exposed APIs provides DCS applications access to the model, and to an optional generic framework of the data center which stores basic structures and functions from which the DCS may automatically generate other structures and functions to populate the model and to automatically create various applications and routines utilized during run-time operations of the DCS and plant. Upon initialization, the DCS may automatically sense the I/O types of its interface ports, detect communicatively connected physical components within the plant, and automatically populate the plant information model accordingly. The DCS may optionally automatically generate related control routines and/or I/O data delivery mechanisms, HMI routines, and the like.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme
  • G06F 13/38 - Transfert d'informations, p. ex. sur un bus
  • G05B 19/05 - Automates à logique programmables, p. ex. simulant les interconnexions logiques de signaux d'après des diagrammes en échelle ou des organigrammes
  • G05B 19/41 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par l'interpolation, p. ex. par le calcul de points intermédiaires entre les points extrêmes programmés pour définir le parcours à suivre et la vitesse du déplacement le long de ce parcours

60.

Quick Activation Techniques for Industrial Augmented Reality Applications

      
Numéro d'application 18506767
Statut En instance
Date de dépôt 2023-11-10
Date de la première publication 2024-03-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Pan, Yicheng Peter
  • Velena, Anna
  • Denison, David R.
  • Nambiar, Marikandan
  • Chin, Kuo-Lung
  • Re, Guido Maria

Abrégé

An augmented reality (AR) node location and activation technique for use in an AR system in a process plant or other field environment quickly and easily detects an AR node in a real-world environment and is then able to activate an AR scene within the AR system, which improves the usability and user experience of the AR system. The AR node location and activation system generally enables users to connect to and view an AR scene within an AR system or platform even when the user is not directly at an existing AR node, when the user is experiencing poor lighting conditions in the real-world environment and in situations in which the user is unfamiliar with the AR nodes that are in the AR system database. As a result, the user can quickly and easily activate the AR system and connect to an AR scene for an AR node close to the user in the field environment under varying weather and lighting conditions in the field and without requiring a large amount of image processing to locate the correct AR scene based on photographic images provided by the user.

Classes IPC  ?

  • G06V 20/20 - ScènesÉléments spécifiques à la scène dans les scènes de réalité augmentée
  • G06K 7/14 - Méthodes ou dispositions pour la lecture de supports d'enregistrement par radiation électromagnétique, p. ex. lecture optiqueMéthodes ou dispositions pour la lecture de supports d'enregistrement par radiation corpusculaire utilisant la lumière sans sélection des longueurs d'onde, p. ex. lecture de la lumière blanche réfléchie
  • G06N 20/00 - Apprentissage automatique
  • G06T 19/00 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie
  • G06V 20/00 - ScènesÉléments spécifiques à la scène

61.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR AN APPLICATION MARKETPLACE FOR PROCESS CONTROL SYSTEMS

      
Numéro d'application 17819532
Statut En instance
Date de dépôt 2022-08-12
Date de la première publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Amaro, Jr., Anthony
  • Halgren, Iii, Robert Gustaf
  • Fayad, Claudio Aun
  • Hartmann, Peter

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for an application marketplace for process control systems. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to detect at least one of a configuration or a state of operation of a process control system based on telemetry data associated with the process control system, execute a machine learning model to generate an output based on the at least one of the configuration or the state of operation, the output to be representative of a recommendation to change a portion of the process control system, and cause a change of the portion of the process control system based on the recommendation.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques

62.

Methods and apparatus to perform process analyses in a distributed control system

      
Numéro d'application 17886420
Numéro de brevet 12222713
Statut Délivré - en vigueur
Date de dépôt 2022-08-11
Date de la première publication 2024-02-15
Date d'octroi 2025-02-11
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Caldwell, John M.
  • Nixon, Mark
  • Hernandez, Cheyenne

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An example system to modify an industrial control system includes: at least one memory; programmable circuitry; and instructions to cause the programmable circuitry to: configure a device driver based on a first command, the first command to configure the device driver to initiate a device-specific communication protocol to collect input data from a publisher device coupled to the device driver; access a second command from a subscriber device, the second command to include a device identifier of the publisher device and to specify at least one of a communication mode, a device calibration configuration, or a fault detection configuration, the second command based on a product quality prediction, the product quality prediction generated using a spectral data model; and provide the second command to the device driver.

Classes IPC  ?

  • G05B 23/02 - Test ou contrôle électrique
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

63.

METHODS AND APPARATUS TO PERFORM PROCESS ANALYSES IN A DISTRIBUTED CONTROL SYSTEM

      
Numéro d'application US2023072039
Numéro de publication 2024/036283
Statut Délivré - en vigueur
Date de dépôt 2023-08-10
Date de publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Anthony
  • Caldwell, John M.
  • Nixon, Mark
  • Hernandez, Cheyenne

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed. An example system to modify an industrial control system includes: at least one memory; programmable circuitry; and instructions to cause the programmable circuitry to: configure a device driver based on a first command, the first command to configure the device driver to initiate a device-specific communication protocol to collect input data from a publisher device coupled to the device driver; access a second command from a subscriber device, the second command to include a device identifier of the publisher device and to specify at least one of a communication mode, a device calibration configuration, or a fault detection configuration, the second command based on a product quality prediction, the product quality prediction generated using a spectral data model; and provide the second command to the device driver.

Classes IPC  ?

  • G06F 9/44 - Dispositions pour exécuter des programmes spécifiques
  • G06F 15/177 - Commande d'initialisation ou de configuration

64.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR AN APPLICATION MARKETPLACE FOR PROCESS CONTROL SYSTEMS

      
Numéro d'application US2023027374
Numéro de publication 2024/035506
Statut Délivré - en vigueur
Date de dépôt 2023-07-11
Date de publication 2024-02-15
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark
  • Amaro, Anthony
  • Halgren, Robert Gustaf
  • Fayad, Claudio Aun
  • Hartmann, Peter

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for an application marketplace for process control systems. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of instantiate or execute the machine readable instructions to detect at least one of a configuration or a state of operation of a process control system based on telemetry data associated with the process control system, execute a machine learning model to generate an output based on the at least one of the configuration or the state of operation, the output to be representative of a recommendation to change a portion of the process control system, and cause a change of the portion of the process control system based on the recommendation.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06N 20/00 - Apprentissage automatique
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

65.

I/O Server Services for Selecting and Utilizing Active Controller Outputs from Containerized Controller Services in a Process Control Environment

      
Numéro d'application 18375708
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-02-01
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G05B 19/4155 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le déroulement du programme, c.-à-d. le déroulement d'un programme de pièce ou le déroulement d'une fonction machine, p. ex. choix d'un programme

66.

LOCATION SPECIFIC COMMUNICATIONS GATEWAY FOR MULTI-SITE ENTERPRISE

      
Numéro d'application 18375818
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-02-01
Propriétaire FISHER-ROSEMOUNT SYSTEMS INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific plant sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices using a communications gateway device at each plant site that provides secured communications between the compute fabric and the one or more physical control or field devices at each plant site. The communications gateway at each plant site implements one or more secured point-to-point or peer-to-peer communication networks between the compute fabric and the plant site using one or more virtual private networks.

Classes IPC  ?

  • H04L 49/253 - Routage ou recherche de route dans une matrice de commutation en utilisant l'établissement ou la libération de connexions entre les ports
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 12/46 - Interconnexion de réseaux

67.

Module Interface

      
Numéro d'application 17872954
Statut En instance
Date de dépôt 2022-07-25
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Strinden, Daniel R.
  • Uy, Cristopher Lan Sarmiento
  • Joshi, Prashant
  • Naidoo, Julian K.
  • Ramachandran, Ram
  • Cutchin, Andrew E.

Abrégé

A process control system includes one or more field devices positioned in a process control plant and a control module configured to generate control signals for controlling the one or more field devices. The control module may be configured to operate on one or more internal parameters to execute a control strategy. A control module software interface may be configured to define a set of interface parameters based on a strategy type associated with the control strategy of the control module. Each interface parameter of the set of interface parameters may be linked to one of the one or more internal parameters of the control module. Additionally, each interface parameter may be accessible by other control modules and/or other external applications.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

68.

Field Device Digital Twins in Process Control and Automation Systems

      
Numéro d'application 18223359
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

69.

Securing access of a process control or automation system

      
Numéro d'application 18223395
Numéro de brevet 12228897
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Date d'octroi 2025-02-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Jones, Aaron C.
  • Ubach, Antonio
  • Hernandez, Sean
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G06F 15/173 - Communication entre processeurs utilisant un réseau d'interconnexion, p. ex. matriciel, de réarrangement, pyramidal, en étoile ou ramifié
  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • G05B 19/414 - Structure du système de commande, p. ex. automate commun ou systèmes à multiprocesseur, interface vers le servo-contrôleur, contrôleur à interface programmable
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 9/40 - Protocoles réseaux de sécurité

70.

SYSTEMS, APPARATUS, ARTICLES OF MANUFACTURE, AND METHODS FOR SEQUENCE OF EVENT GENERATION FOR A PROCESS CONTROL SYSTEM

      
Numéro d'application US2022037876
Numéro de publication 2024/019724
Statut Délivré - en vigueur
Date de dépôt 2022-07-21
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary Keith
  • Nixon, Mark
  • Peterson, Neil J.

Abrégé

Methods, apparatus, systems, and articles of manufacture are disclosed for sequence of event generation for a process control system. An example apparatus includes at least one memory, machine readable instructions, and processor circuitry to at least one of execute or instantiate the machine readable instructions to obtain a first digital signal from a first field device representative of a first sensor data value labeled with a first timestamp generated by the first field device, obtain a second digital signal from a second field device representative of a second sensor data value labeled with a second timestamp generated by the second field device, and store a data association of the first and second sensor data values in a datastore, the data association representative of a sequence of events including an ordering of the first sensor data value and the second sensor data value based on the first and second timestamps.

Classes IPC  ?

  • G05B 19/04 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique
  • H04L 67/125 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance en impliquant la commande des applications des terminaux par un réseau
  • G05B 19/414 - Structure du système de commande, p. ex. automate commun ou systèmes à multiprocesseur, interface vers le servo-contrôleur, contrôleur à interface programmable
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G16Y 40/35 - Gestion des objets, c.-à-d. commande selon une stratégie ou dans le but d'atteindre des objectifs déterminés
  • H04L 43/02 - Capture des données de surveillance
  • H04L 43/12 - Sondes de surveillance de réseau
  • H04L 67/2869 - Terminaux spécialement adaptés à la communication

71.

FIELD DEVICE DIGITAL TWINS IN PROCESS CONTROL AND AUTOMATION SYSTEMS

      
Numéro d'application US2023027976
Numéro de publication 2024/019996
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron, C.
  • Hartmann, Peter
  • Law, Gary, K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

72.

PROCESS CONTROL OR AUTOMATION SYSTEM ARCHITECTURE

      
Numéro d'application US2023027988
Numéro de publication 2024/020004
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron, C.
  • Hartmann, Peter
  • Law, Gary, K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

73.

MONITORING AND OPERATIONAL FUNCTIONALITIES FOR AN ENTERPRISE USING PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028029
Numéro de publication 2024/020031
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

74.

Nebula Fleet Management

      
Numéro d'application 18479277
Statut En instance
Date de dépôt 2023-10-02
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Jordan, Jason A.
  • Lamothe, Brian
  • Law, Gary K.
  • Doraiswamy, Narayanan
  • Lakhani, Ayub

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented. One or more applications, executing via the location-agnostic compute fabric, provide for access, management, and/or reconfiguration of various aspects of one or more process control systems across one or more physical sites operated by an enterprise. The one or more applications may, for example, provide for viewing of operational parameters and/or health statuses based upon information accessed from one, two, three four or more physical sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

75.

Securing Connections of a Process Control or Automation System

      
Numéro d'application 18223407
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Jones, Aaron C.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 9/40 - Protocoles réseaux de sécurité

76.

Monitoring and Operational Functionalities for an Enterprise Using Process Control or Automation System

      
Numéro d'application 18223416
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

77.

COMPUTE FABRIC ENABLED PROCESS CONTROL

      
Numéro d'application 18370691
Statut En instance
Date de dépôt 2023-09-20
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

An industrial process control system includes a compute fabric having a first portion operating on-premises at an industrial process plant controlled by the industrial process control system and a second portion operating remotely from the industrial process plant controlled by the industrial process control system. The system also includes one or more transmitters in the process plant measuring or sensing physical parameters and includes one or more physical control elements in the process plant, each physical control element responsive to a respective setpoint parameter. The system further includes a plurality of micro-encapsulated execution environments instantiated in the compute fabric, each executing at least a portion of a control module that receives data from the one or more transmitters and transmits at least one setpoint parameter to each of the one or more physical control elements to cause the physical control elements to control a process in the industrial process plant.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

78.

AUTHENTICATION/AUTHORIZATION FRAMEWORK FOR A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application 18374557
Statut En instance
Date de dépôt 2023-09-28
Date de la première publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Ubach, Antonio
  • Doraiswamy, Narayanan
  • Hernandez, Sean
  • Nixon, Mark J.
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

An architecture supporting a process control or automation system may include an authentication service which determines whether an entity (e.g., a human, automated, virtual, or physical entity) is the party that/who the entity claims to be, and an authorization service which determines whether a request of the entity to access a resource is allowed or denied. The authentication service provides unique identities of entities and respective security credentials, which may include tokens utilized during authorization. The authorization service authorizes an entity to access a requested resource based on role-based permissions of a role to which the entity is assigned and resource access permissions protecting the requested resource. The role-based permissions and/or the resource access permissions may be respectively scoped to limit or restrict actions, activities, operations, and/or resource access based on specified criteria. Each entity may be authenticated, and each request of an authenticated entity may be respectively authorized.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques

79.

EMBEDDED DEVICE IDENTIFICATION IN PROCESS CONTROL DEVICES

      
Numéro d'application US2023027978
Numéro de publication 2024/019998
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

80.

SECURING ACCESS OF A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028003
Numéro de publication 2024/020015
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Jones, Aaron, C.
  • Ubach, Antonio
  • Hernandez, Sean
  • Dakoju, Sireesha
  • Joshi, Krishna
  • Villarrubia, Matthew

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

81.

SECURING CONNECTIONS OF A PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028005
Numéro de publication 2024/020016
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Jones, Aaron, C.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

82.

MANAGEMENT FUNCTIONALITIES AND OPERATIONS FOR PROVIDER OF PROCESS CONTROL OR AUTOMATION SYSTEM

      
Numéro d'application US2023028027
Numéro de publication 2024/020030
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de publication 2024-01-25
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Capoccia, Brian, M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark, J.
  • Hartmann, Peter

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually- exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

83.

Embedded Device Identification in Process Control Devices

      
Numéro d'application 18223373
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Hartmann, Peter
  • Doraiswamy, Narayanan
  • Law, Gary K.

Abrégé

A process control device for use in an industrial process control or automation system of an industrial process plant includes a sensor configured to measure a parameter of a process in the industrial process plant and to output to a controller in the industrial process plant the parameter measured. The process control device also or alternatively includes a control element configured to perform an action in the industrial process plant according to an input received from the controller in the industrial process plant. The process control device also includes an embedded device identifier, unique to the process control field device and associated with one or more of an owner of the process control field device, a plant location of the process control field device, a country or geographical or geopolitical region, and a device tag.

Classes IPC  ?

  • G05B 19/414 - Structure du système de commande, p. ex. automate commun ou systèmes à multiprocesseur, interface vers le servo-contrôleur, contrôleur à interface programmable

84.

Process Control or Automation System Architecture

      
Numéro d'application 18223384
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Fayad, Claudio
  • Nanda, Mickey
  • Jones, Aaron C.
  • Hartmann, Peter
  • Law, Gary K.

Abrégé

A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A process plant and industrial control system architecture includes a generalized compute fabric that is agnostic or indifferent to the physical location at which the compute fabric is implemented, includes one or more physical control or field devices located at one or more specific sites at which a product or process is being manufactured and further includes a transport network that securely provides communications between the compute fabric and the pool of physical devices. The compute fabric includes an application layer that includes configured containers or containerized software modules that perform various control, monitoring and configuration activities with respect to one or more devices, control strategies and control loops, sites, plants, or facilities at which control is performed, and includes a physical layer including computer processing and data storage equipment that can be located at any desired location, including at or near a site, plant, or facility at which control is being performed, at a dedicated location away from the location at which control is being performed, in re-assignable computer equipment provided in the cloud, or any combination thereof. This control architecture enables significant amounts of both computer processing and IT infrastructure that is used to support a process plant, an industrial control facility or other automation facility to be implemented in a shared, in an offsite and/or in a virtualized manner that alleviates many of the communications and security issues present in current process and industrial control systems that attempt to implement control with shared or virtualized computing resources set up according to the well-known Purdue model. The industrial control system architecture is protected via more secure and customizable techniques as compared to those used in Purdue model-based control systems. For example, communications between any (and in some cases, all) endpoints of the system may be protected via one or more virtual private networks to which authenticated endpoints must be authorized to access. Endpoints may include, for example, containerized components, physical components, devices, sites or locations, the compute fabric, and the like, and the VPNs may include mutually-exclusive and/or nested VPNs. External applications and services, whether automated or executing under the purview of a person, may access information and services provided by the system via only APIs, and different sets of APIs may be exposed to different users that have been authenticated and authorized to access respective sets of APIs. A configuration system operates within the compute fabric to enable a user to easily make configuration changes to the compute fabric as the user does not generally need to specify the computer hardware within the compute fabric to use to make the configuration changes, making it possible for the user to deploy new configuration elements with simple programming steps, and in some cases with the push of a button.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • H04L 9/40 - Protocoles réseaux de sécurité

85.

Management Functionalities and Operations for Provider of Process Control or Automation System

      
Numéro d'application 18223405
Statut En instance
Date de dépôt 2023-07-18
Date de la première publication 2024-01-18
Propriétaire FISHER-ROSEMOUNT SYSTEMS,INC. (USA)
Inventeur(s)
  • Capoccia, Brian M.
  • Lamothe, Brian
  • Doraiswamy, Narayanan
  • Nixon, Mark J.
  • Hartmann, Peter

Abrégé

A process control or automation system comprising a plurality of instantiated micro-encapsulated execution environments (MEEEs) includes a first one or more instantiated MEEEs communicatively connecting a provider of the plurality of instantiated MEEEs to a first enterprise operating a first one or more industrial or automation processes at a first one or more physical locations or sites. The system also includes a second one or more instantiated MEEEs communicatively connecting the provider to a second enterprise operating a second one or more industrial or automation processes at a second one or more physical locations or sites.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

86.

Smart search capabilities in a process control system

      
Numéro d'application 18373443
Numéro de brevet 12099555
Statut Délivré - en vigueur
Date de dépôt 2023-09-27
Date de la première publication 2024-01-18
Date d'octroi 2024-09-24
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Fabros, Richard Clarence Dayo
  • Amaro, Jr., Anthony
  • Caldwell, John M.

Abrégé

To provide search capabilities in a process control system, a contextual knowledge repository is generated that organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the contextual knowledge repository which is responsive to the process plant search query. The search results are then presented on a user interface device based on the identified data set. To allow for searches to be performed by user interface devices external to the process plant, a data diode is disposed between a field-facing component and an edge-facing component of the process plant so that data flows from the field-facing component to the edge-facing component without flowing from the edge-facing component to the field-facing component.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/903 - Requêtes
  • G06F 16/9035 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • G06F 16/9038 - Présentation des résultats des requêtes
  • G06F 16/908 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu
  • G06F 16/909 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

87.

Framework for privacy-preserving big-data sharing using distributed ledger

      
Numéro d'application 18233055
Numéro de brevet 12321156
Statut Délivré - en vigueur
Date de dépôt 2023-08-11
Date de la première publication 2023-12-14
Date d'octroi 2025-06-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Wang, Gang
  • Nixon, Mark J.
  • Amaro, Jr., Anthony

Abrégé

To provide a trusted, secure, and immutable record of storage operations executed by a storage center for storing measurement data provided by a process plant, techniques are described for utilizing a distributed ledger. When a data contributor such as a process plant generates measurement data, an encrypted version of a set of measurement data is transmitted to a storage center for secure storage of the measurement data. In some instances, the data contributor divides the set of measurement data into several subsets and transmits each subset of encrypted measurement data to a different storage center. Furthermore, the storage center generates a transaction for the storage operation which is recorded in a distributed ledger. When a data subscriber retrieves the encrypted measurement data from a storage center, the data subscriber can verify the authenticity of the data based on the information recorded in the distributed ledger.

Classes IPC  ?

  • H04L 29/06 - Commande de la communication; Traitement de la communication caractérisés par un protocole
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • H04L 9/06 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p. ex. système DES
  • H04L 9/32 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système
  • H04L 9/40 - Protocoles réseaux de sécurité

88.

APPARATUSES AND METHODS FOR NON-DISRUPTIVE REPLACEMENT OF SIMPLEX I/O COMPONENTS

      
Numéro d'application 17837264
Statut En instance
Date de dépôt 2022-06-10
Date de la première publication 2023-12-14
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Diaz, Sergio
  • Law, Gary K.
  • Schleiss, Trevor Duncan

Abrégé

Techniques for physically removing and replacing a simplex I/O component include plant personnel placing the component into a “REPLACEABLE” state via a user interface of the component. In response, the simplex I/O component informs the I/O subsystem thereof. The I/O subsystem stores a record of the component's REPLACEABLE state and begins to hold data values (e.g., field device values) most recently received from the component. When the I/O subsystem detects that the simplex I/O component is uncommunicative (e.g., due to being removed and replaced), based on the stored record of the “REPLACEABLE” state, the I/O subsystem retrieves the most recently received held data value and transmits it to a controller, thereby maintaining controlled (e.g., non-disruptive) execution of a control loop. When the replacement simplex I/O component initializes to an “IN-SERVICE” state, the I/O subsystem updates its state record accordingly, and resumes forwarding live field data values to the controller.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

89.

Operator Interactions with a Runtime Process Control System Via Enhanced Smart Search

      
Numéro d'application 18326146
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

90.

Smart search UI

      
Numéro d'application 18326227
Numéro de brevet 12271165
Statut Délivré - en vigueur
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Date d'octroi 2025-04-08
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

  • G05B 15/02 - Systèmes commandés par un calculateur électriques
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 16/2453 - Optimisation des requêtes
  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/248 - Présentation des résultats de requêtes
  • G06F 16/33 - Requêtes
  • G06F 16/334 - Exécution de requêtes

91.

Enhanced Smart Search for Batch Provisioning, Scheduling, and Control

      
Numéro d'application 18326260
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2023-12-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Hartmann, Peter
  • Amaro, Jr., Anthony
  • Francisco, Mary Grace

Abrégé

To provide enhanced search capabilities in a process control system, a knowledge repository is generated that includes both contextual data and time series data. The contextual data organizes process plant-related data according to semantic relations between the process plant-related data and the process plant entities. When a user submits a process plant search query related to process plant entities within a process plant, search results are obtained by identifying a data set from the knowledge repository. The contextual data categorizes process parameters so that users can search for a particular process parameter category. Users can tag previous searches to execute them once again at a later time. Users can also execute queries for predicted or future states of process plant entities, batch queries regarding batch processes, soft sensor analytics and monitoring applications, parameter lifecycle applications, perturbation applications, step testing applications, or batch provisioning and scheduling applications using the knowledge repository.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

92.

Methods and apparatus to generate and display trends associated with a process control system

      
Numéro d'application 17824439
Numéro de brevet 11922546
Statut Délivré - en vigueur
Date de dépôt 2022-05-25
Date de la première publication 2023-11-30
Date d'octroi 2024-03-05
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • David, Denis
  • Lajoie, Monja
  • Siu Liu, Jessica
  • Johnson, Karen Chau
  • Troyer, Cody
  • Nadas, Ian
  • Harnish, Duane L.
  • Ahuja, Simran
  • Mcconville, Amanda
  • Vallery, Jr., Terry P.

Abrégé

Methods and apparatus to generate and display trends associated with a process control system are disclosed. An example apparatus includes memory, machine readable instructions, and processor circuitry to execute the instructions to generate a first graphical user interface. The first graphical user interface to include a graphical representation of a component in a process control system. The processor circuitry to generate a second graphical user interface. The second graphical user interface to include a chart region with a trend represented therein. The trend indicative of values of a process parameter of the process control system over a period of time. The processor circuitry to automatically generate the trend in the chart region in response to a graphical element being dragged and dropped from the first graphical user interface to the second graphical user interface.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06F 3/0486 - Glisser-déposer

93.

METHODS AND APPARATUS TO GENERATE AND DISPLAY TRENDS ASSOCIATED WITH A PROCESS CONTROL SYSTEM

      
Numéro d'application US2023014827
Numéro de publication 2023/229700
Statut Délivré - en vigueur
Date de dépôt 2023-03-08
Date de publication 2023-11-30
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • David, Denis
  • Lajoie, Monja
  • Siu Liu, Jessica
  • Johnson, Karen Chau
  • Troyer, Cody
  • Nadas, Ian
  • Harnish, Duane L.
  • Ahuja, Simran
  • Mcconville, Amanda
  • Vallery, Terry P.

Abrégé

Methods and apparatus to generate and display trends associated with a process control system are disclosed. An example apparatus includes memory, machine readable instructions, and processor circuitry to execute the instructions to generate a first graphical user interface. The first graphical user interface to include a graphical representation of a component in a process control system. The processor circuitry to generate a second graphical user interface. The second graphical user interface to include a chart region with a trend represented therein. The trend indicative of values of a process parameter of the process control system over a period of time. The processor circuitry to automatically generate the trend in the chart region in response to a graphical element being dragged and dropped from the first graphical user interface to the second graphical user interface.

Classes IPC  ?

  • G05B 23/00 - Test ou contrôle des systèmes de commande ou de leurs éléments
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/04842 - Sélection des objets affichés ou des éléments de texte affichés
  • G06F 3/13 - Sortie numérique vers un traceur
  • G06F 7/02 - Comparaison de valeurs numériques
  • G06F 7/16 - Interclassement et tri conjugués
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G05B 15/00 - Systèmes commandés par un calculateur
  • G06F 3/04845 - Techniques d’interaction fondées sur les interfaces utilisateur graphiques [GUI] pour la commande de fonctions ou d’opérations spécifiques, p. ex. sélection ou transformation d’un objet, d’une image ou d’un élément de texte affiché, détermination d’une valeur de paramètre ou sélection d’une plage de valeurs pour la transformation d’images, p. ex. glissement, rotation, agrandissement ou changement de couleur
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
  • G06Q 10/0639 - Analyse des performances des employésAnalyse des performances des opérations d’une entreprise ou d’une organisation

94.

Suspicious control valve performance detection

      
Numéro d'application 17824152
Numéro de brevet 12386334
Statut Délivré - en vigueur
Date de dépôt 2022-05-25
Date de la première publication 2023-11-30
Date d'octroi 2025-08-12
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Xu, Shu
  • Beall, James
  • Nixon, Mark J.

Abrégé

Techniques for detecting suspicious performance of a throttling control valve (also referred to herein as a “valve”) in a process plant are described herein. For each of N time periods, a computing device determines and analyzes process parameter values for process parameters related to a valve to determine a status of the valve for the time period. The computing device compares the valve statuses over the N time periods to determine whether the valve is operating well for at least a threshold portion of at least a subset of the N time periods. In response to determining that the valve is not operating well for at least the threshold portion of at least the subset of the N time periods, the computing device determines that the valve is suspected of performing poorly, and provides an indication of the suspect valve to a user interface for display to a user.

Classes IPC  ?

  • G05B 19/408 - Commande numérique [CN], c.-à-d. machines fonctionnant automatiquement, en particulier machines-outils, p. ex. dans un milieu de fabrication industriel, afin d'effectuer un positionnement, un mouvement ou des actions coordonnées au moyen de données d'un programme sous forme numérique caractérisée par le maniement de données ou le format de données, p. ex. lecture, mise en mémoire tampon ou conversion de données
  • G05B 19/4063 - Contrôle du système de commande général
  • G05B 19/4065 - Contrôle du bris, de la vie ou de l'état d'un outil
  • G05B 23/02 - Test ou contrôle électrique

95.

I/O SERVER SERVICES CONFIGURED TO FACILITATE CONTROL IN A PROCESS CONTROL ENVIRONMENT BY CONTAINERIZED CONTROLLER SERVICES

      
Numéro d'application 18224229
Statut En instance
Date de dépôt 2023-07-20
Date de la première publication 2023-11-23
Propriétaire Fisher-Rosemount Systems, Inc. (USA)
Inventeur(s)
  • Amaro, Jr., Anthony,
  • Nixon, Mark J.

Abrégé

An I/O server service interacts with multiple containerized controller services each implementing the same control routine to control the same portion of the same plant. The I/O server service may provide the same controller inputs to each of the containerized controller services (e.g., representing measurements obtained by field devices and transmitted by the field devices to the I/O server service). Each containerized controller service executes the same control routine to generate a set of controller outputs. The I/O server service receives each set of controller outputs and forwards an “active” set to the appropriate field devices. The I/O server service and other services, such as an orchestrator service, may continuously evaluate performance and resource utilization in the control system, and may dynamically activate and deactivate controller services as appropriate.

Classes IPC  ?

  • G06F 13/20 - Gestion de demandes d'interconnexion ou de transfert pour l'accès au bus d'entrée/sortie

96.

Virtualized real-time I/O in process control systems

      
Numéro d'application 18226234
Numéro de brevet 12189379
Statut Délivré - en vigueur
Date de dépôt 2023-07-25
Date de la première publication 2023-11-23
Date d'octroi 2025-01-07
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes

97.

Publish/subscribe protocol for real-time process control

      
Numéro d'application 18223374
Numéro de brevet 12321161
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de la première publication 2023-11-09
Date d'octroi 2025-06-03
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes

98.

Industrial control system architecture for real-time simulation and process control

      
Numéro d'application 18219262
Numéro de brevet 12386343
Statut Délivré - en vigueur
Date de dépôt 2023-07-07
Date de la première publication 2023-11-02
Date d'octroi 2025-08-12
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony
  • Bell, Noel Howard
  • Caldwell, John M.
  • Law, Gary K.

Abrégé

A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions
  • G06F 13/40 - Structure du bus
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • G05B 17/00 - Systèmes impliquant l'usage de modèles ou de simulateurs desdits systèmes

99.

Modular process control system

      
Numéro d'application 18136052
Numéro de brevet 12416911
Statut Délivré - en vigueur
Date de dépôt 2023-04-18
Date de la première publication 2023-09-21
Date d'octroi 2025-09-16
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Nixon, Mark J.
  • Amaro, Jr., Anthony

Abrégé

In one aspect, a micro-service control architecture provides a modular, flexible platform for designing, diagnosing, updating and/or expanding process control systems. Each service is containerized to provide portability and isolation from other components of the process control system. In another aspect, a function block diagram includes a “shadow” block that acts as an interface to an external, custom calculation engine, thereby enabling the custom calculation engine to operate synchronously with respect to other function blocks of the function block diagram.

Classes IPC  ?

  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]
  • G06F 8/61 - Installation
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/54 - Communication interprogramme

100.

PROCESS LIFECYCLE MANAGEMENT METHODS AND SYSTEMS

      
Numéro d'application US2023011138
Numéro de publication 2023/141203
Statut Délivré - en vigueur
Date de dépôt 2023-01-19
Date de publication 2023-07-27
Propriétaire FISHER-ROSEMOUNT SYSTEMS, INC. (USA)
Inventeur(s)
  • Law, Gary K.
  • Lenich, Robert M.
  • Hill, Kelsey

Abrégé

Process knowledge creation, development, and management techniques allow for and enable the creation of a universal process definition (UPD) of an industrial process, the automatic conversion or transformation of the UPD into different site-specific process definitions, and the implementation of the site-specific process definitions at different manufacturing, production, and/or automation sites. Typically, the UPD is site- and equipment- agnostic, and the transformation may generate and provide a set of site-specific process definition implementation files or routines to configure and/or govern the behavior of various site-specific execution systems, e.g., as site-specific operational instances of the UPD. The techniques may utilize feedback and information generated by site-specific operational instances to generate learned knowledge and update the UPD accordingly so that subsequent instantiations of the UPD may incorporate (and reap the benefits of) the learned knowledge. The techniques may automatically select a most suitable site for a particular instantiation of the UPD.

Classes IPC  ?

  • G06Q 10/06 - Ressources, gestion de tâches, des ressources humaines ou de projetsPlanification d’entreprise ou d’organisationModélisation d’entreprise ou d’organisation
  • G05B 19/042 - Commande à programme autre que la commande numérique, c.-à-d. dans des automatismes à séquence ou dans des automates à logique utilisant des processeurs numériques
  1     2     3     ...     9        Prochaine page