A multi-level stacked AW filter package (200) including a first acoustic wave, AW, filter (208) stacked on a second AW filter (204) employs semiconductor fabrication methods and structures, including a metallization layer comprising interconnects to couple a contact surface to the second AW filter. Each AW filter includes an AW filter circuit on a semiconductor substrate. A second substrate (206) disposed on a frame (218) on the substrate protects the AW filter circuit. In a multi-level AW filter package, the second substrate of the first AW filter comprises a glass substrate with a similar expansion rate as the semiconductor substrate. The interconnects coupling the second AW filter to the contact surface are disposed on insulators on the side wall surfaces of the semiconductor substrates of the first AW filter for isolation. In a stacked AW filter package comprising a single AW filter, the interconnects couple the contact surface to the AW filter
A package (100) that includes an acoustic device, a frame (105) coupled to the acoustic device and a cap substrate (104) coupled to the acoustic device through the frame. The acoustic device includes a substrate (120) and an acoustic element (121) coupled to the substrate. The cap substrate includes an inductor. The cap substrate is configured as a cap for the acoustic device. The package includes a cavity (103) located between the acoustic device and the cap substrate. The frame may include a polymer frame (105) or a multi-metal frame / interconnections for copper-tin-copper metal diffusion bonding of the substrates. Further RDL layers may be present. The inductor may be a 3D inductor realized by TSVs (142) in the cap substrate in the region bounded by the frame.
H03H 3/007 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
An apparatus is disclosed for harmonic reduction with filtering. In example aspects, the apparatus includes a filter circuit with a first filter port (302-1) and a second filter port (302-2), a first lattice filter (134-1) and a second lattice filter (134-2), and a first signal manipulator circuit (132-1) and a second signal manipulator circuit (132-2). The first signal manipulator circuit includes a first port (304-1), a second port (304-2), and a third port (304-3) coupled to the first filter port. The first signal manipulator circuit splits an input signal into multiple split signals, shifts a phase thereof to produce at least one phase-shifted split signal (314), and provides the phase- shifted split signal to the first and second ports. The first lattice filter is coupled to the first port, and the second lattice filter is coupled to the second port. The second signal manipulator circuit (132-2) includes a first port (404-1) coupled to the first lattice filter, a second port (404-2) coupled to the second lattice filter, and a third port coupled to the second filter port (404-3).
H03H 7/46 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/54 - Filtres comprenant des résonateurs en matériau piézo-électrique ou électrostrictif
H03H 7/09 - Filtres comportant une inductance mutuelle
H03H 9/00 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
Disclosed are a device (100) and techniques for fabricating the device (100). The device (100) includes a top substrate (110) including a plurality of top vias (115) coupled to a first top metal layer (M1(a)) that forms a top winding portion of a first inductor. The device also includes a middle substrate (120) including one or more middle metal layers (M1-4(b)). The top substrate (110) is disposed on the middle substrate (120). The one or more middle metal layers (M1-4(b)) form a middle winding portion of the first inductor. The device (100) also includes a bottom substrate (140) electrically coupled to the middle substrate (120) opposite the top substrate (110), where a first bottom metal layer (M1(c)) of the bottom substrate (140) forms a bottom winding portion of the first inductor.
H01F 17/00 - Inductances fixes du type pour signaux
H05K 1/16 - Circuits imprimés comprenant des composants électriques imprimés incorporés, p. ex. une résistance, un condensateur, une inductance imprimés
H01L 49/02 - Dispositifs à film mince ou à film épais
H01F 41/04 - Appareils ou procédés spécialement adaptés à la fabrication ou à l'assemblage des aimants, des inductances ou des transformateursAppareils ou procédés spécialement adaptés à la fabrication des matériaux caractérisés par leurs propriétés magnétiques pour la fabrication de noyaux, bobines ou aimants pour la fabrication de bobines
5.
SURFACE-ACOUSTIC-WAVE (SAW) FILTER WITH A COMPENSATION LAYER HAVING MULTIPLE DENSITIES
An apparatus is disclosed for a surface-acoustic-wave filter (402) with a compensation layer (128) having multiple densities (130-1 to 130-N). In an example aspect, the apparatus includes at least one surface-acoustic-wave filter with a piezoelectric layer (304), a substrate layer (306), and a compensation layer (128) positioned between the piezoelectric layer (304) and the substrate layer (306). The compensation layer includes a first portion having a first density and a second portion having a second density. The second density is greater than the first density. The first portion is positioned closer to the piezoelectric layer as compared to the second portion. The second portion is positioned closer to the substrate layer as compared to the first portion.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
6.
ELECTROACOUSTIC FILTER WITH LOW PHASE DELAY FOR MULTIPLEXED SIGNALS
Aspects of the disclosure relate to wireless communication filtering. One aspect is an apparatus including a first acoustic resonator that is part of a first bandpass filter having a first passband and coupled to a circuitry connection port and a communication connection port, and a second acoustic resonator that is part of one of a second bandpass filter or a notch filter. The apparatus further includes a third acoustic resonator that is part of the first bandpass filter, and a fourth acoustic resonator that is part of the second bandpass filter or the notch filter.
Aspects are provided for multiband multiplexers. One example is a multiband multiplexer with a first filter element configured to have a first passband that spans a first predefined frequency range of a first communication band and a second predefined frequency range of a second communication band, wherein the first predefined frequency range overlaps a portion of the second predefined frequency range, a second filter element configured to have a second passband distinct from the first passband, a third filter element configured to have a third passband distinct from the first and second passbands, and a fourth filter element configured to have a fourth passband distinct from the first, second, and third passbands.
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
Certain aspects of the present disclosure can be implemented in an electroacoustic device. The electroacoustic device generally includes a substrate and one or more resonator structures disposed above the substrate. In some cases, each resonator structure of the one or more resonator structures includes a bulk acoustic resonator, an acoustic mirror disposed below the bulk acoustic resonator, and one or more porous material layers disposed below the acoustic mirror and above the substrate.
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
Disclosed are apparatuses and methods for fabricating the apparatuses. In one aspect, an apparatus includes a high-power die mounted on a backside of a package substrate. A heat transfer layer is disposed on the backside of the high-power die. A plurality of heat sink interconnects is coupled to the heat transfer layer, where each of the plurality of heat sink interconnects is directly coupled to the heat transfer layer in a vertical orientation.
Disclosed are apparatuses and methods for fabricating the apparatuses. In one aspect, an apparatus includes a high-power die mounted on a backside of a package substrate. A heat transfer layer is disposed on the backside of the high-power die. A plurality of heat sink interconnects is coupled to the heat transfer layer. The plurality of heat sink interconnects is located adjacent the high-power die in a horizontal direction.
H01L 23/367 - Refroidissement facilité par la forme du dispositif
H01L 21/56 - Encapsulations, p. ex. couches d’encapsulation, revêtements
H01L 23/31 - Encapsulations, p. ex. couches d’encapsulation, revêtements caractérisées par leur disposition
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 23/522 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre comprenant des interconnexions externes formées d'une structure multicouche de couches conductrices et isolantes inséparables du corps semi-conducteur sur lequel elles ont été déposées
H03F 3/213 - Amplificateurs de puissance, p. ex. amplificateurs de classe B, amplificateur de classe C comportant uniquement des dispositifs à semi-conducteurs dans des circuits intégrés
H01L 21/60 - Fixation des fils de connexion ou d'autres pièces conductrices, devant servir à conduire le courant vers le ou hors du dispositif pendant son fonctionnement
H01L 23/00 - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
Disclosed are apparatuses and methods for fabricating the apparatuses. In one aspect, an apparatus includes a high-power die mounted on a backside of a package substrate. A heat transfer layer is disposed on the backside of the high-power die. A plurality of heat sink interconnects is coupled to the heat transfer layer. The plurality of heat sink interconnects is located adjacent the high-power die in a horizontal direction.
Electroacoustic devices (502) with a capacitive element (504) and methods for fabricating such electroacoustic devices. An example method includes forming an acoustic device (502) above a first region (506b) of a substrate, and forming a capacitive element (504) above a second region (506a) of the substrate and adjacent to the acoustic device. The forming of the capacitive element may include forming a protective layer (510) above the substrate where a first portion of the protective layer is above the second region of the substrate and a second portion of the protective layer is above the first region of the substrate, forming a dielectric region (512) above the protective layer, and forming an electrode (514) above the dielectric region. The dielectric region (512) may include a different material than the protective layer (510).
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
An apparatus and method for making an acoustic filter package where the apparatus includes a base layer (110); a support layer (150) disposed on the base layer; a piezoelectric structure (120) disposed on the support layer; wherein the piezoelectric structure comprises: a piezoelectric layer (122); a top electrode (124) on a top surface of the piezoelectric layer; a bottom electrode (121) on a bottom surface of the piezoelectric layer; a contact pad (123) coupled to the bottom electrode that extends through an opening in the piezoelectric layer and is coupled to the bottom electrode or the top electrode; and a corrosion resistant pad (125) disposed on the contact pad; and a capping structure (131, 132, 133, 134) disposed on the piezoelectric structure.
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H01L 23/485 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes formées de couches conductrices inséparables du corps semi-conducteur sur lequel elles ont été déposées formées de structures en couches comprenant des couches conductrices et isolantes, p. ex. contacts planaires
An apparatus is disclosed for site-selective piezoelectric-layer trimming. The apparatus includes at least one surface-acoustic-wave filter with an electrode structure and a piezoelectric layer. The electrode structure has multiple gaps. The piezoelectric layer has a planar surface defined by a first (X) axis and a second (Y) axis that is perpendicular to the first (X) axis.The piezoelectric layer is configured to propagate an acoustic wave along the first (X) axis. The piezoelectric layer includes a first portion that supports the electrode structure and a second portion that is exposed by the multiple gaps of the electrode structure. The second portion has different heights across the second (Y) axis. The different heights are defined with respect to a third (Z) axis that is substantially normal to the planar surface.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
15.
PACKAGE COMPRISING METAL LAYER CONFIGURED FOR ELECTROMAGNETIC INTERFERENCE SHIELD AND HEAT DISSIPATION
A package that includes a substrate (202), an integrated device (204, 206, 208) coupled to the substrate, an encapsulation layer (209) located over the substrate, at least one encapsulation layer interconnect (211, 212) located in the encapsulation layer (209), and a metal layer (210) located over the encapsulation layer. The substrate (202) includes at least one dielectric layer (220) and a plurality of interconnects (221). The encapsulation layer interconnect (211, 212) is coupled to the substrate (202). The metal layer (210) is configured as an electromagnetic interference (EMF) shield for the package. The metal layer is located over a backside of the integrated device (204, 206, 208).
H01L 23/552 - Protection contre les radiations, p. ex. la lumière
H01L 23/433 - Pièces auxiliaires caractérisées par leur forme, p. ex. pistons
H01L 21/60 - Fixation des fils de connexion ou d'autres pièces conductrices, devant servir à conduire le courant vers le ou hors du dispositif pendant son fonctionnement
16.
Package comprising metal layer configured for electromagnetic interference shield and heat dissipation
A package that includes a substrate, an integrated device coupled to the substrate, an encapsulation layer located over the substrate, at least one encapsulation layer interconnect located in the encapsulation layer, and a metal layer located over the encapsulation layer. The substrate includes at least one dielectric layer and a plurality of interconnects. The encapsulation layer interconnect is coupled to the substrate. The metal layer is configured as an electromagnetic interference (EMI) shield for the package. The metal layer is located over a backside of the integrated device.
H01L 23/552 - Protection contre les radiations, p. ex. la lumière
H01L 21/48 - Fabrication ou traitement de parties, p. ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes ou
H01L 21/56 - Encapsulations, p. ex. couches d’encapsulation, revêtements
H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif
H01L 23/367 - Refroidissement facilité par la forme du dispositif
H01L 23/373 - Refroidissement facilité par l'emploi de matériaux particuliers pour le dispositif
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes
H01L 23/49 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p. ex. fils de connexion ou bornes formées de structures soudées du type fils de connexion
17.
ELECTROACOUSTIC FILTER WITH LOW PHASE DELAY FOR MULTIPLEXED SIGNALS
Aspects of the disclosure relate to wireless communication, and high-frequency filters with resonators configured to systematically modify phase characteristics of an antenna reflection coefficient. One aspect is a wireless communication apparatus comprising an acoustic resonator having a first resonator side and a second resonator side, the first resonator side coupled to a first signal connection port, a first capacitor including a first side coupled to the first resonator side and the first signal connection port, the first capacitor further including a second side coupled to a ground connection port, and a second capacitor including a first side coupled to the ground connection port, the second capacitor further including a second side, the second resonator side and the second side of the second capacitor coupled to an output port.
H03H 9/54 - Filtres comprenant des résonateurs en matériau piézo-électrique ou électrostrictif
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
18.
SURFACE ACOUSTIC WAVE RESONATOR WITH PISTON MODE DESIGN AND ELECTROSTATIC DISCHARGE PROTECTIONS
Certain aspects of the present disclosure provide a surface acoustic wave (SAW) resonator with piston mode design and electrostatic discharge (ESD) protections. An example electroacoustic device generally includes a piezoelectric material and a first electrode structure disposed above the piezoelectric material. The first electrode structure comprises first electrode fingers arranged within an active region having a first region and a second region. At least one of the first electrode fingers has at least one of a different width or a different height in the first region than in the second region, and the first electrode fingers comprise a first electrode finger that has a width or height in the second region that is less than a corresponding width or height of the at least one of the first electrode fingers in the second region.
Aspects of the disclosure relate to wireless communication, and high-frequency filters with resonators. One example is a frequency band filter circuit having a split resonator. The split resonator comprises a resonator including a first section of a shared input busbar (722), a first section of a shared output busbar (724), and an electrode structure between the first section of the shared input busbar and the first section of the shared output busbar, the electrode structure configured for a resonance. The split resonator also comprises a detuned resonator. The detuned resonator includes a second section of the shared input busbar, a second section of the shared output busbar, and a detuned electrode structure between the second section of the shared input busbar and the second section of the shared output busbar, the detuned electrode structure configured for a detuned resonance different from the resonance.
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
20.
FILTER WITH MULTIPLE OUTPUTS OR INPUTS TO IMPLEMENT MULTIPLE FILTER FREQUENCY RESPONSES
A filter is provided that includes a set of cascaded resonator stages (310-1, 310-2, 310-3, 310-N) coupled between a filter input (IN) and a first filter output (OUT1), wherein the filter includes a second filter output (OUT2) coupled to an output of a first or an intermediate one of the set of cascaded resonator stages. Another filter includes a set of cascaded resonator stages coupled between a first filter input and a filter output, wherein the filter includes a second filter input coupled to an input of an intermediate or a last one of the set of cascaded resonator stages. Both filters are configured to apply a first filter frequency response to a first signal propagating via the set of cascaded resonator stages, and apply a second filter frequency response to a second signal propagating via a subset of one or more of the set of cascaded resonator stages.
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
H03H 7/46 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
H03H 11/34 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences différentes ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
21.
MULTIBAND ELECTROACOUSTIC FILTER WITH PHASE MATCHING MODIFICATION
Aspects of the disclosure relate to wireless communication, and high-frequency filters with resonators configured to systematically modify phase characteristics of an antenna reflection coefficient. One example is a wireless communication apparatus for a multi-band system comprising a frequency band filter circuit having a filter passband that includes a first band of the multi-band system. The frequency band filter circuit comprises a plurality of resonators (504, 506, 508, 510, 512) coupled between an antenna port (502) and a signal port (516) and a resonant structure (650) electrically coupled to the plurality of resonators. The resonant structure has a resonance outside of the first band and a second band of the multi-band system, the resonance being closer to the second band than to the first band.
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 7/46 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
22.
ELECTROACOUSTIC DEVICE WITH CONDUCTIVE ACOUSTIC MIRRORS
Certain aspects of the present disclosure can be implemented in an electroacoustic device. The electroacoustic device generally includes: a substrate; a bottom electrode layer disposed above the substrate; an acoustic mirror stack having a dielectric layer disposed above the bottom electrode layer and a conductive layer disposed above the dielectric layer; a piezoelectric layer disposed above the acoustic mirror stack; and one or more vias disposed between the bottom electrode layer and the conductive layer, the one or more vias electrically coupling the bottom electrode layer and the conductive layer.
In certain aspects, a chip includes an acoustic resonator (150A, 150B), and a mirror (130A, 130B) under the acoustic resonator. The mirror includes a first plurality of porous silicon layers (132A-1,132A-2,...), and a second plurality of porous silicon layers (136A-1, 136A-2,...), wherein the mirror alternates between the first plurality of porous silicon layers and the second plurality of porous silicon layers, and each of the first plurality of porous silicon layers has a higher porosity than each of the second plurality of porous silicon layers.
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
24.
SURFACE ACOUSTIC WAVE (SAW) DEVICE WITH HIGH PERMITTIVITY DIELECTRIC FOR INTERMODULATION DISTORTION IMPROVEMENT
Certain aspects of the present disclosure provide a surface acoustic wave (SAW) device and methods for fabricating such a SAW device. One example SAW device generally includes a piezoelectric substrate, an interdigital transducer (IDT) disposed above the piezoelectric substrate, and a plurality of first regions of dielectric material. The IDT comprises a first electrode having a first plurality of fingers and a second electrode having a second plurality of fingers interdigitated with the first plurality of fingers of the first electrode. The plurality of first regions are disposed above the piezoelectric substrate and between the first and second pluralities of fingers of the IDT, and the dielectric material has a relative permittivity greater than 3.9.
Certain aspects of the present disclosure provide an electroacoustic device and methods for signal processing via the electroacoustic device. One example electroacoustic device generally includes a first surface acoustic wave (SAW) resonator comprising a first apodized interdigital transducer (IDT) disposed between a first busbar and a second busbar, and a second SAW resonator comprising a second apodized IDT disposed between the second busbar and a third busbar, wherein the second busbar is at an angle with respect to at least one of the first busbar or the third busbar.
Disclosed is a device and methods for making same. In one aspect, a device includes a package having at least four pins, and, within the package, a die that includes a filter circuit electrically coupled to the four pins. The filter can: receive, from a first pin, an input signal comprising first and second frequency components, produce, at a second pin, a first output signal of the first frequency component, and produce, at a third and fourth pin, a second output signal of the second frequency component; and/or receive, from a second pin, a first input signal comprising the first frequency component, receive, from a third or fourth pin, a second input signal comprising the second frequency component, and produce, at a first pin, an output signal comprising the first and second frequency components. The second pin is interposed between the third and fourth pins on the package.
33). In an example aspect, the apparatus includes at least one surface-acoustic-wave filter including an electrode structure, a substrate layer, and a piezoelectric layer disposed between the electrode structure and the substrate layer. The piezoelectric layer includes lithium niobate material configured to enable propagation of an acoustic wave across its planar surface in a direction along a first filter axis. A second filter axis is along the planar surface and perpendicular to the first filter axis. A third filter axis is normal to the planar surface. An orientation of the first, second, and third filter axes is relative to a crystalline structure of the lithium niobate material as defined by Euler angles λ, µ, and θ. A value of µ has a range approximately from -70° to -55° or at least one symmetrical equivalent.
Certain aspects of the present disclosure provide a bulk acoustic wave (BAW) resonator having a substrate with a heatsink region and an electrical insulator region. An example electroacoustic device generally includes a piezoelectric layer, a first electrode structure, a second electrode structure, one or more reflector layers, and a substrate having a heatsink region and an electrical insulator region. The heatsink region is arranged under a first portion of the first electrode structure, the first portion of the first electrode structure overlapping the second electrode structure. The insulator region is arranged under a second portion of the first electrode structure, the second portion of the first electrode structure being adjacent to the first portion of the first electrode structure.
Certain aspects of the present disclosure generally relate to a filter, such as an acoustic resonator filter. An example filter generally includes a first series resonator coupled between a first port of the filter and a second port of the filter, the first series resonator including a first piezoelectric layer disposed between a first electrode and a second electrode of the first series resonator. The filter also includes a first shunt resonator coupled between a first node of the filter and a reference potential node of the filter, the first shunt resonator including a second piezoelectric layer disposed between a third electrode and a fourth electrode of the first shunt resonator. The first node is coupled between the two ports, and the second piezoelectric layer's thickness is greater than the first piezoelectric layer's thickness.
Aspects of the disclosure relate to an electroacoustic device that includes a piezoelectric material (602) and an electrode structure (604) that includes a first busbar (622) and a second busbar (624) along with electrode fingers (626) arranged in an interdigitated manner and including a first plurality of fingers (626a) connected to the first busbar and a second plurality of fingers (626b) connected to the second busbar. The electrode structure further includes a first conductive structure (629a) disposed between each of the first plurality of fingers and disposed between the first busbar and the second plurality of fingers. The electrode structure further includes a second conductive structure (629b) disposed between each of the second plurality of fingers and disposed between the second busbar and the first plurality of fingers. The first conductive structure and the second conductive structure each have a height that is less than a height of the second plurality of fingers.
Aspects of the disclosure relate to an electroacoustic device that includes a piezoelectric material (620) and an electrode structure (629). The electrode structure includes a first busbar (622) and a second busbar (624). The electrode structure further includes electrode fingers (626a, 626b) arranged in an interdigitated manner and including a first plurality of fingers (626a) connected to the first busbar and a second plurality of fingers (626b) connected to the second busbar. A first distance (631a) between the first busbar and the second plurality of fingers and a second distance (631b) between the second busbar and the first plurality of fingers both being less than a pitch of the electrode fingers. The electrode fingers have a central region (627) with a first trap region (627a) and a second trap region (627b) respectively located on boundaries of the central region. A structural characteristic of the electroacoustic device is different in the first trap region and the second trap region relative to the central region.
Aspects of the disclosure relate to an electroacoustic device that includes a piezoelectric material and an electrode structure. The electrode structure includes a first busbar (622) and a second busbar (624). The electrode structure further includes a first conductive structure (629a) connected to the first busbar and a second conductive structure (629b) connected to the second busbar. The first conductive structure and the second conductive structure is disposed between the first busbar and the second busbar. The first conductive structure and the second conductive structure each include a plurality of conductive segments (631) separated from each other and extending towards one of the first busbar or the second busbar. The electrode structure further includes electrode fingers (626, 626a, 626b) arranged in an interdigitated manner and each connected to either the first conductive structure or the second conductive structure. The electrode fingers have a pitch (632) that is different than a pitch (654) of the plurality of conductive segments.
Systems and methods for packaging an acoustic device (408A) in an integrated circuit (400) include walls formed on a wiring substrate (504). The walls (405) have a height which is just shorter than an expected height of a solder bump (504) on the acoustic device after solder reflow. The walls are positioned on either side of the acoustic device and a small portion lies underneath an exterior edge of the acoustic device such that a relatively small gap (516) is formed between an upper surface of the wall and the lower surface of the acoustic device. By providing a small gap between wall and acoustic device, encroachment by an encapsulating material (518) into a keep out zone (520) of the acoustic device is minimized.
H03H 3/007 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
A surface acoustic wave device (5) is provided using a layered substrate system with a special material and a special cut of a piezoelectric thin film (4) selected for utilizing Rayleigh mode. The proper choice of the material and the cut of the piezoelectric thin film leads to a low velocity of the excited wave mode, which allows the usage of smaller devices without deteriorating other performance parameters according to specifications.
A fullcover package solution in combination with copper pillars or solder bumps and acoustic cavities is proposed to provide maximum usable design area compared to current thin film acoustic wafer level packages. Manufacturing can be done in a self- aligned interconnection process.
In at least one embodiment, the electric component comprises a first BAW-resonator (1), a second BAW-resonator (2) electrically connected to the first BAW-resonator and a carrier substrate (3) with a top side (30) on which the BAW-resonators are arranged. The first and the second BAW-resonator each comprise a bottom electrode (11,21) and a top electrode (12,22). The bottom electrodes are in each case located between the carrier substrate and the respective top electrode. A first piezoelectric layer (13) is arranged between the top electrode and the bottom electrode of the first BAW-resonator and laterally protrudes from the first BAW-resonator. The second BAW-resonator is mounted on the first piezoelectric layer in a region laterally next to the first BAW-resonator and comprises a second piezoelectric layer (23) between its top electrode and its bottom electrode. The two piezoelectric layers may have different thickness to realize resonators with different resonance frequencies on the same die.
H03H 3/04 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 9/205 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant des résonateurs multiples
37.
SAW MULTIPLEXER WITH SWA FILTERS HAVING DIFFERENT BANDWIDTHS DUE TO DIELECTRIC LAYER BETWEEN IDT AND PIEZOELECTRIC LAYER ADJUSTING ACOUPLING FACTOR
The SAW filter chip comprises a plurality of SAW filters (1, 2), wherein at least one of the several electric filters is a first-type electric filter (1) comprising at least one first-type SAW-resonator (10). The first-type SAW-resonator comprises a piezoelectric layer (11), an intermediate layer (12) on the piezoelectric layer (11) and an interdigital electrode structure (13) on the intermediate layer (12). The interdigital electrode structure is separated from the piezoelectric layer by the intermediate layer. The intermediate layer is made of a dielectric, non-piezoelectric material and adjusts the electromechanical coupling factor and the bandwidth of the respective filter. The plurality of SAW filters form an LTE multiplexer, wherein the thickness of the intermediate layer is chosen to adjust the required bandwidth to the desired bands. The intermediate layer may be absent for larger required bandwidths.
Cascades of SAW resonators with different apertures can reduce the effects of unwanted transversal modes and other spurious modes of the SAW resonator. As part of a filter circuit cascades of SAW resonators have the potential to improve insertion attenuation, skirt steepness, group delay ripple, compression and power durability of SAW filters as well as their sensitivity to fabrication tolerances.
A micro-acoustic wave device is proposed for application in ultrahigh frequency range. The device uses a thin film piezoelectric material stacked on a carrier substrate. Additionally, a material is embedded between carrier substrate and piezoelectric thin film that decouples the acoustic of these layers. With this approach it is possible to achieve very high Q factor even for longitudinal waves, which are required for high frequency applications.
An electroacoustic resonator comprises a substrate (3) with a piezoelectric material and an interdigital electrode structure on a top side (33) of the substrate. The electrode structure comprises a first electrode (1) and a second electrode (2) each with a busbar (20) and a plurality of fingers (10). The fingers of both electrodes interdigitate. The region of the top side between the two busbars is subdivided into two barrier regions (113), two trap regions (112) and one track region (111), the trap regions being located between the two barrier regions and the track region being located between the two trap regions. At least some fingers each comprise one barrier portion (13), two trap portions (12) and one track portion (11), wherein the barrier portion is associated with the barrier region closest to the busbar assigned to the finger, the trap portions are each associated with one of the trap regions and the track portion is associated with the track region. The fingers are configured such that the velocity of a main mode of surface acoustic waves is smaller in the trap regions than in the track region. Each electrode comprises a plurality of stub fingers (30) being shorter than the fingers. Each stub finger is associated only with the barrier region closest to the busbar assigned to the stub finger. The electrodes are configured such that a velocity of the main mode in the barrier regions is greater than in the track region.
A BAW resonator (RN) with reduced lateral modes is provided. The resonator has an active stack of bottom electrode (BE), piezoelectric material (PM) and top electrode (TE) and at least one element of this active stack has a curved side wall (CSW). Two or more curved side walls may be arranged on spheres, on cylinders or prisms with an elliptical footprint with different radii.
The RF receiving filter, RX filter (Rx), comprises an input port (A) for receiving a radio frequency signal from an antenna (Ant) and an output port (R) on which the filtered radio frequency signal is provided. The RX filter (Rx) comprises a cascade circuit of a bulk acoustic wave, BAW, filter portion (BAW_f), a dual-mode SAW filter, DMS filter (DMS) and a surface acoustic wave, SAW, filter portion (SAW_f). The BAW filter portion (BAW_f) comprises at least one BAW resonator and is arranged on an input side of the RX filter (Rx). The SAW filter portion (SAW_f) comprises at least one SAW resonator and is arranged on an output side of the RX filter (Rx). The DMS filter (DMS) is arranged between the BAW filter portion (BAW_f) and the SAW filter portion (SAW_f). BAW and SAW portions may be on same or on different dies. Dies may be side-by-side or stacked either facing each other or both directed towards the carrier. SAW and BAW portions may be on the same or on opposite sides of the same die. SAW portions and BAW portions of multiple filters in a multiplexer may be realized together on a common SAW and a common BAW die.
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
44.
ELECTRO ACOUSTIC RESONATOR WITH REDUCED SPURIOUS MODES, RF FILTER AND MULTIPLEXER
An electro acoustic resonator with reduced spurious modes comprises an interdigital transducer with two bus bars and interdigitated electrode fingers and a wave guide structure to excite a piston mode in the resonator. With adjacent inner track region, trap region, barrier region and bus bar regions the wave guide structure establishes a particular transversal velocity profile. A first parameter (p1) of the wave guide structure varies along the longitudinal direction. The paramter (p1) may be the transversal dimension of or velocity, mass load or stiffness in one of the regions, the distance between two regions or electrode width or thickness.
An electro acoustic filter component with improved acoustic and/or electro acoustic performance is provided. The component comprises a piezoelectric material (PM) the sides of which are plane and preferably free from chipping defects. The piezoelectric material may be arranged above a carrier substrate (CS). A functional layer (FL) with plane sides may be arranged above an electrode structure (ES) as trimming, TCF or passivation layer. In the manufacturing method the piezoelectric material and the functional layer are removed from the dicing line, such that no chipping occurs for these layers.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
46.
3 SAW RESONATOR ON SILICON SUBSTRATE WITH REDUCED SPURIOUS MODES
322 and amorphous or polycrystalline materials. In addition a silicon nitride layer is provided as passivation (PAL). Electrodes are made of aluminum. Thicknesses of all layers are selected in particular ranges to optimize SAW behaviour.
At least three acoustic filters circuits FC are arranged on a single chip CH. At least two of them are electrically connected already on the chip for multiplexing. This reduces space consumption and leads to smaller device size.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
A bump pad enclosure providing an improved reliability of a bump connection is provided. The bump pad enclosure comprises an electrode pad, a UBM and a first shield. The first shield covers at least a first perimeter area of the electrode pad. The first shield is provided and configured to shield the first perimeter area from a detrimental influence of the environment.
Electric component, electric device and method for manufacturing a plurality of electric components In at least one embodiment, the electric component (10) comprises a piezoelectric layer (1a), an electrode structure (2) with a first electrode (21) on a top side (11) of the piezoelectric layer, a metallic frame (3) on the top side of the piezoelectric layer and a cover sheet (4) on top of the metallic frame. The electrode structure together with the piezoelectric layer forms a resonator for acoustic waves. A first section (21a) of the first electrode overlaps with an active region of the resonator. The cover sheet, the metallic frame and the piezoelectric layer surround a gas filledcavity (5). The first section of the first electrode is located in the cavity and is spaced from the cover sheet.
A BAW resonator with reduced losses is provided. The BAW resonator (BAWR) has a first gap (G1) arranged between the piezoelectric material (PM) and a first electrode (EL1) selected from the bottom electrode (BE) and the top electrode (TE) of the resonator.
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
An acoustic delay component providing a large bandwidth and a high center frequency together with a low insertion loss is provided. The delay component comprises two or more functional cells (FC1, FC2. FC3) arranged in a transducer (TD) of a transducer structure in an acoustic track. The functional cells are selected from excitation cells, excitation-only cells, reflection cells, reflection-only cells, directivity cells, SPUDT cells, non-reflection cells.
The invention relates to a bulk acoustic wave (BAW) device comprising a first BAW resonator (1) and a second BAW resonator (2). The first BAW resonator and the second BAW resonator each comprise a first electrode (11, 21), a second electrode (12, 22) and a piezoelectric layer (13, 23), which are each arranged between the first electrode and the second electrode of the associated BAW resonator. The first electrodes, the second electrodes and the piezoelectric layers of the two BAW resonators have a substantially identically design. A first conductor track (24) extends from the first electrode of the second BAW resonator to a third electric element (3) of the BAW device and connects the first electrode electrically to the third electric element. A first dummy conductor track (14) extends from the first electrode of the first BAW resonator, is electrically connected to the first electrode and is not electrically connected to any other electrical element apart from the first electrode. The first dummy conductor track is configured such that it substantially influences the acoustic and capacitive properties of the first BAW resonator in the same way as the first conductor track influences the acoustic and capacitive properties of the second BAW resonator.
A SAW transducer and a SAW resonator are proposed composed of consecutively arranged unit cells of length L. Slight geometry or material variations such as variations of the metallization ratio η or the unit cell length L affecting the pitch) between these unit cells result in improved spurious mode suppression while the main mode performance is unaffected.
A micro-acoustic bandstop filter comprises a serial inductor (130) coupled between first and second ports (110, 120). A circuit block (140) coupled between the first and second port comprises at least one serial capacitance (141) and at least one shunt capacitance (142), wherein the serial and/or the shunt capacitance is realized by a micro-acoustic resonator (141). A shunt inductor (150) is coupled between the circuit block (140) and a terminal for a reference potential (160).
In at least one embodiment, the SAW device comprises a carrier substrate (1), a piezoelectric thin-film (2) on the carrier substrate, an interdigital electrode structure (3) on the piezoelectric thin-film and a layer stack (4) of waveguide layers. The layer stack is arranged between the carrier substrate and the piezoelectric thin-film. The layer stack comprises a first waveguide layer (41) and a second waveguide layer (42), wherein a sound velocity in the first waveguide layer is at least 1.5 times as great as in the second waveguide layer. The device may comprise a temperature compensating layer (5) and a trap rich layer (6) between the layer stack and the carrier substrate.
A surface acoustic wave resonator arrangement comprises a piezoelectric substrate (100) and a surface acoustic wave resonator (110) which includes an interdigital transducer (111,112 ) disposed on the piezoelectric substrate (100). A trench (13 0) is disposed within the piezoelectric substrate (100) facing the resonator (110). Trench (130) causes reflected waves (143,144) in response to waves (141,142) leaking from the surface acoustic wave resonator. Trench (130) is configured such that the reflected acoustic waves (143,144) achieve phases at the edge (115) of the resonator (110) such that the accumulated phases of all the reflected waves received at edge (115) is zero or substantially zero, thereby avoiding constructive interference of the reflected waves with the acoustic waves resonating in the resonator. Thereby undesired acoustic coupling between resonators or influence of waves reflected at edges of the piezoelectric substrate or dicing lines is reduced.
SAW resonators with reduced spurious modes are provided. For example a wave mode separator (WMS) between a carrier substrate (CS), a piezoelectric layer (PL) and an electrode structure (ES) separates a spurious acoustic mode from a wanted acoustic mode.
An improved DMS filter with 11 IDTs and three-dimensional electrode structures (L1,L2,L3) for line crossings between a first port and a second port is provided. Ground connections of IDTs are realized with an upper metal layer (L3, IIC3, IIC4, IMS) passing via an intermediate insulating layer (L2) over signal wirings. Signal connections of IDTs are multi layered and realized in a lower metal layer (L1, IIC1, IIC2, LMS) and an upper metal layer (L3,IIC1, IIC2, UMS). The upper metal layer of signal wirings may partly overlap the insulating layer (L2).
An improved DMS filter with electrode structures between a first port and a second port is provided. Wiring junctions are realized in multilayer crossing with dielectric material in between. There are insulating patches (L2) between crossing conductor layers (L1,L3). Signal wirings may be realized with multiple conductor layers (L1, L3) to reduce wiring resistance and the upper conductor layer (L3) of the signal wiring may partly overlap the insulating patches (L2). The insulating patches (L2) may extend over the acoustic path to achieve temperature compensation.
An RF filter (BPF) with an increased bandwidth is provided. The filter comprises a half-lattice topology and a phase shifter (PS) comprising inductively coupled inductance elements in a parallel branch parallel to a first segment (S1) of a signal path (SP) between a first port (P1) and a second port (P2) of the filter.
This invention focuses on minimizing the hot spots on a filter chip by creating thermal radiators using the mechano-acoustic structures and connection circuitry. A gradual increase of metal to wafer relation is made to provide better heat dissipation and heat sinking. Preferably the shunt lines of the ladder type arrangement of SAW resonators (RS1, RS2, RS3) comprise a broadened section (BBCN). Each two series resonators (RS1, RS2, RS3) that are subsequent to each other in the series signal line are connected via a common busbar (BBCN) extending over a whole length of that subsequent series resonators, a lateral extension of the common busbars represents a first section of a respective shunt line each, each first shunt line section between a node and the parallel resonator (RP1, RP2) of a shunt line (SLS1) comprises a broadened section (BS) that is broader than the common busbar, the broadened section extends over the whole width of the parallel resonator (RP1), the first reflector (REF1) of the parallel resonator that faces the laterally adjacent series resonator is formed from the broadened section (BS).
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
An electro-acoustic resonator comprises an acoustic mirror (120) disposed on a carrier substrate (110), a bottom electrode (130) and a piezoelectric layer (140). An aluminum seed layer (180) is disposed on the piezoelectric layer and a structured silicon dioxide flap layer (150) is disposed on the aluminum seed layer. The aluminum seed layer (180) increases the quality factor of the resonator and leads to enhanced RF filter performance.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/13 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux se composant de matériaux piézo-électriques ou électrostrictifs
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
63.
BAW RESONATOR WITH IMPROVED CRYSTALLINE QUALITY, RF FILTER, MULTIPLEXER AND METHOD OF MANUFACTURING
An improved BAW resonator is provided. The resonator has a compensation layer (CL) between the bottom electrode (BE) and the piezoelectric layer (PL) to compensate lattice mismatch. The compensation layer (CL) may comprise GaN, InN, InGaN and the piezoelectric layer (PL) epitaxial AIN or AIScN. The compensation layer may have several sublayers (SL1,...SL6) with stepwise or continuously varying composition and content of gallium and indium. A further layer for compensating lattice mismatch may be present between piezoelectric (PL) layer and top electrode (TE).
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
64.
ELECTRO ACOUSTIC COMPONENT, RF FILTER AND METHOD OF MANUFACTURING
Electro acoustic component, comprising - a carrier substrate (CS), - a first layer stack (BAWR) on or above the carrier substrate, - a second layer stack (EC) on or above the carrier substrate, wherein - the first layer stack comprises a first functional structure (IL) and a second functional structure (TE, BM, PE) arranged on or above the first functional structure, - the second layer stack comprises a raising structure (RS) and a third functional structure (BU, UBM, B) arranged on or above the raising structure, - the raising structure raises the third functional structure to the vertical level of the second functional structure.
A configurable micro-acoustic RF filter comprises first and second filter subsections (140, 150) and at least one switch(160) to selectively bypass or activate the second filter subsection (150). The filter sections include at least one serially connected and at least one shunt connected micro-acoustic resonator.
A micro-acoustic device comprises a confinement structure (CS) adapted to block propagation of acoustic waves of an acoustic wave resonator (TEL, PL, BEL; ES) at an operation frequency of the device to confine the acoustic waves to the acoustic path or the acoustic volume. It is proposed to use a phononic crystal material for producing the confinement structure.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
67.
ELECTRO-ACOUSTIC RESONATOR AND METHOD FOR MANUFACTURING THE SAME
Electro-acoustic resonator and method for manufacturing the same An electro-acoustic resonator comprises an acoustic mirror (120) disposed on a carrier substrate (110), a bottom electrode (130) and a piezoelectric layer (140). A structured silicon dioxide flap layer (150) is disposed on the piezoelectric layer (140), both layers having a common contact surface. Direct disposal of the silicon dioxide (150) on the piezoelectric layer (140) increases the quality factor of the resonator and leads to enhanced RF filter performance.
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
68.
SURFACE ACOUSTIC WAVE RESONATOR AND MULTIPLEXER INCLUDING THE SAME
A surface acoustic wave resonator (100) comprises a layered substrate including a carrier substrate (110) and a dielectric layer (112) having a low acoustic velocity. Another dielectric layer (122) is disposed on a piezoelectric layer (113) and interdigitated electrodes (131, 132) having an acoustic velocity lower than the acoustic velocity of the carrier substrate (110) and a positive temperature coefficient of frequency.
An electronic component comprises a piezoelectric substrate (1) and an interdigital capacitor (2) on top of the piezoelectric substrate. The interdigital capacitor comprises two electrodes (21, 22), each of the electrodes comprising a plurality of fingers (23). The fingers each comprise an associated first metal layer (231) and at least some of the fingers comprise an associated second metal layer (232) on top of the first metal layer. For each finger comprising a first and a second metal layer a width of the finger in the region of the associated first metal layer is larger than the width of the finger in the region of the associated second metal layer.
A wafer-level package for micro-acoustic devices and a method of manufacture is provided. The package comprises a base wafer with electric device structures. A frame structure is sitting on top of the base wafer enclosing particular device areas for the micro-acoustic devices. A cap wafer provided with a thin polymer coating is bonded to the frame structure to form a closed cavity over each device area and to enclose within the cavity the device structures arranged on the respective device area.
H03H 9/64 - Filtres utilisant des ondes acoustiques de surface
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
H03H 7/46 - Réseaux pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
Piezoelectric nitride compound materials with improved properties is provided. The piezoelectric material comprises aluminium, nitrogen and ternary and quaternary dopants that can be selected from calcium, ruthenium, boron and/or yttrium.
Piezoelectric nitride compound materials with improved properties are provided. The piezoelectric material comprises aluminum, nitrogen and binary and ternary dopants that can be selected from silver, niobium and/or scandium or from silver and/or niobium.
C23C 14/06 - Revêtement par évaporation sous vide, pulvérisation cathodique ou implantation d'ions du matériau composant le revêtement caractérisé par le matériau de revêtement
74.
ELECTRO ACOUSTIC RESONATOR WITH SUPPRESSED TRANSVERSAL GAP MODE EXCITATION AND REDUCED TRANSVERSAL MODES
An electro acoustic resonator is provided. The resonator has a gap short structure (GSS) to electrically short at least an area of the transversal gap to suppress transversal gap mode excitations. The gap short structure may be provided by a conductive stripe in the gap and parallel to or inclined with respect to the bus bar (BB) shorting adjacent IDT fingers. Additional connectors between the stripe and the bus bar may be provided. The connectors may have different pitch or metallization ratio with respect to the ID fingers. The connectors may be offset from the position of the fingers and my be inclined with respect to the bus bars. Multiple parallel stripes in the gap may provide a transversal reflector. By using a gap short structure a further improved transversal mode suppression of piston mode designs can be achieved.
A thin film SAW device comprises a carrier substrate (CA), a TCF compensating layer (CL), a piezoelectric layer (PL), and an IDT electrode (EL) on top of the piezoelectric layer. A functional layer (FL) is arranged between piezoelectric layer and TCF compensating layer to further reduce the TCF. The material properties of the functional layer match those of the piezoelectric layer in view of acoustic velocity, density and stiffness such that they do not deviate from each other by more than 10% without having piezoelectric effect. The functional layer my be of the same crystalline constitution as the useful piezoelectric layer but without piezoelectric properties.
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H01L 41/312 - Application de parties ou de corps piézo-électriques ou électrostrictifs sur un élément électrique ou sur un autre support par laminage ou collage de corps piézo-électriques ou électrostrictifs
76.
SPLIT-TYPE, HALF-LATTICE MICRO-ACOUSTIC FILTER USING A PHASE SHIFTER AND HAVING BROAD BANDWIDTH
A micro-acoustic RF filter comprises first and second ports (101, 102). First and a second signal paths (120, 110) are coupled between the first and second ports and include a corresponding resonator (111, 121). The resonator of at least one of the signal paths is a micro-acoustic resonator. One of the signal paths includes also a phase shifter (232) serially connected with the resonator (111). The micro-acoustic RF filter achieves a broad passband determined by the resonance frequencies of the micro-acoustic resonators. The filter allows flexible adaption of the passband and stopband performance.
An electro acoustic resonator compatible with thin piezoelectric films and providing additional degrees of freedom is provided. The resonator comprises an IDT section with two bus bars (ES,BB) and electrode fingers (ES,EF). The IDT section is slanted by an angle α through shearing and rotated as a whole by an angle β with respect to the piezoelectric axis (PA).
An improved electro acoustic resonator that works well with thin film piezoelectric materials is provided. The resonator has an electrode structure with a plurality of electrode fingers and a velocity compensation structure provided and adapted for establishing a homogenous transversal velocity profile.
A seed layer (210) of a noble metal is formed by electrochemical deposition on a metal electrode (111) disposed on a dielectric layer (110,310). The noble metal seed layer allows the deposition of a highly textured piezoelectric layer (320) on the metal electrode.
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 9/13 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux se composant de matériaux piézo-électriques ou électrostrictifs
80.
ELECTRO ACOUSTIC RF FILTER WITH IMPEDANCE ELEMENT HAVING IMPROVED PERFORMANCE AND MULTIPLEXER COMPONENT COMPRISING THE FILTER
An improved electro acoustic RF filter (FC) is provided. The RF filter comprises an electro acoustic resonator (EAR) connected between an input port and an output port, an impedance element and a damping and/or dissipation element (DE) in mechanical contact to the impedance element. The damping and/or dissipation element is provided and configured to remove acoustic energy from the impedance element which has a similar construction as the resonator on the same substrate. With such a construction an acoustically inactive impedance element (AIIE) is obtained.
An electroacoustic resonator such as a piston mode SAW resonator comprises an electrode arrangement including a main track portion (111), trap portions (112a, 112b) and barrier portions (113a, 113b). A suitable selection of the barrier velocity (Vbarrier) causes a reduction of spurious modes in the trap portions (112a, 113b) while maintaining the transversal mode suppression in the main track portion (111).
It is proposed to use a higher mode like the plate mode PM of a SAW resonator to build a bandpass/reject-band filter, functioning at higher frequencies, which may not be realizable with SAW devices that are using only the main mode MM of the resonator. The SAW device may be a ladder type filter constructed out of SAW resonators comprising series and parallel resonators wherein at least one of the resonators is designed to allow excitation of the plate mode wherein the resonance frequency of the main mode is used for forming the pass band and wherein the resonance frequency of the plate mode is used for improving the selectivity of the filter at the resonance frequency of the plate mode.
It is proposed to enhance the bandwidth of a SMR BAW resonator (TE,PL,BE) by circuiting it with a planar coil (WG1, WG2) that is realized in a high impedance layer (HI) of the Bragg mirror (BM) or in an additional metal layer below the Bragg mirror.
A TF-SAW transducer with improved suppression of unwanted modes is provided. The transducer has a transversal velocity profile with a periodic structure.
A BAW resonator comprises a bottom electrode, a piezoelectric layer and a top electrode. A top electrode connection is arranged in a plane above the top electrode. For doing this a spacer is arranged on the top electrode. A capping layer is sitting on the spacer distant from the top electrode such that an air-filled gap to the top electrode is kept. The top electrode connection can now be arranged above the capping layer. An electrically conductive path connects the top electrode and the top electrode connection. Such a resonator needs only one lateral design and can provide a low-ohmic interconnection of resonators e.g. in a filter circuit.
A radio frequency filter comprises a series path coupled between an antenna port (111) and another port (112) which includes surface acoustic wave resonators (115a,..., 115e) that are coupled in series with each other. At least one parallel path (116a,..., 116d) is coupled between at least one resonator of the series path and a terminal for ground potential (117). One or more of the surface acoustic wave resonators (115a,..., 115e) of the series path are provided with a transversal mode suppression feature and the at least one surface acoustic wave resonator (116a,..., 116d) of the at least one parallel path is provided with another transversal mode suppression feature. Using the benefits of both transversal mode suppression features allows an enhanced performance of the filter.
A device operating with acoustic waves comprises a device chip (DC) mounted onto a surface of a substrate (SU) in a flip chip technique. Sealing means close a cavity between device chip and substrate. The sealing means comprises a bottom layer (BL) of a first resin adapted to seal to the surface of the substrate as to close the cavity and to prevent intrusion of further material of the sealing means when reflowing or laminating same onto the bottom layer. A top layer (TL) is deposited on top of the bottom layer and comprises a second resin and a filler that is chosen to provide a thermal conductivity to the top layer of 2.0 to 2.0 W/mK. Optionally a planarizing middle layer (ML) is provided.
A SAW device comprises on a piezoelectric material an acoustic track extending between two acoustic reflectors. Two or more IDT sections (IS1, IS2) are present in the acoustic track and form at least one IDT of the SAW device. Each IDT section has an extension along a respective slanting axis (SA1, SA2) that encloses an angle with the longitudinal axis (LA). At least two adjacent IDT sections possess different slanting angles.
A SAW device comprises on a piezoelectric substrate an acoustic track extending between two acoustic reflectors. Two or more IDT sections (IS1, IS2) are present in the acoustic track and form at least one electroacoustic resonator. Each IDT section has an extension along a respective slanting axis (SA1, SA2) that encloses an angle a with the x-axis (LA). At least two adjacent IDT sections possess different slanting angles (α1, α2).
A BAW resonator is provided wherein the top electrode (TE) has an outer flap (OF). The flap extends away from the active resonator region (AR) and has a projecting section that runs at a level above the piezoelectric layer (PL) that is higher than the level of the top electrode at any of the inwardly located areas enclosed by the outer flap. The higher level is formed by an intermediate step-forming material (SM) arranged between piezoelectric layer and top electrode in the outer flap. The step forming material comprises a structured layer of an acoustic impedance that is low w.r.t. the impedance of the top electrode and the piezoelectric layer.
An RF filter device that provides small spatial dimensions and good electric performance is provided. The filter device comprises a resonator structure and a further electric circuit. An acoustic mirror is arranged between the active structure and the further electric circuit.
A wafer level package comprises a functional wafer with a first surface, device structures connected to device pads arranged on the first surface. A cap wafer, having an inner and an outer surface, is bonded with the inner surface to the first surface of the functional wafer. A frame structure surrounding the device structures is arranged between functional wafer and cap wafer. Connection posts are connecting the device pads on the first surface to inner cap pads on the inner surface. Electrically conducting vias are guided through the cap wafer connecting inner cap pads on the inner surface and package pads on the outer surface of the cap wafer.
An electroacoustic resonator (EAR) that allows an RF filter having a large bandwidth is provided. The resonator comprises a piezoelectric material (PM) and an electrode structure (ES, EF) on the piezoelectric material. The piezoelectric material is lithium niobate and has a crystal cut defined by the Euler angles (0°, 80° to 88°, 0°).
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
94.
METHOD OF MANUFACTURING A BULK ACOUSTIC WAVE RESONATOR AND BULK ACOUSTIC WAVE RESONATOR DEVICE
A method of manufacturing a bulk acoustic wave resonator comprises the forming of a workpiece on a substrate (A) that includes a separation layer (111) on which a rare earth metal oxide layer (130) is formed that serves as a seed layer for the forming of a metal electrode layer (140). The workpiece layer stack is bonded to a carrier substrate (B) so that the workpiece substrate can be split and removed. A BAW resonator device manufactured according to the method exhibits highly crystalline metal electrodes having high conductivity useful for high frequency BAW resonators.
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface
H03H 3/02 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/13 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux se composant de matériaux piézo-électriques ou électrostrictifs
95.
MULTIPLEXER CIRCUIT WITH IMPROVED ISOLATION AND MULTIPLEXER COMPONENT
A premix gas burner comprises a metal mounting plate (102), a burner deck, a metal plate structure (106), and a gas mixing chamber (108). The metal mounting plate comprises a plain section (107) for mounting the burner in a heating appliance. The burner deck comprises a woven wire mesh (110) onto which the flames are stabilized when the burner is in use. At least part of the metal plate structure is perforated for the premix gas to flow from the gas mixing chamber through the perforations (112) of the metal plate structure before the premix gas flows through the woven wire mesh. The metal mounting plate has an opening (111). The woven wire mesh is inserted from the gas mixing chamber through the opening of the metal mounting plate. The metal plate structure is inserted from the gas mixing chamber through the opening of the metal mounting plate. The woven wire mesh is bent such that a flange (122) is provided along at least part of the circumference of the woven wire mesh. The flange of the woven wire mesh is along the circumference of the porous burner deck split in a plurality of flange segments. The opening of the metal mounting plate comprises two parallel linear sides. The metal mounting plate comprises a plurality of lips (116) at its inner circumference around the opening. The lips are folded over and grab into notches, slots or openings in the metal plate structure thereby clamping the metal plate structure firmly onto the metal mounting plate. The metal mounting plate comprises upstanding ridges (126) providing supporting elements onto which the metal plate structure is clamped by the lips of the metal mounting plate. The upstanding ridges of the metal mounting plate fit into openings between segments of the flange of the woven wire mesh, such that the flange is held between the metal mounting plate and the metal plate structure with play of the flange relative to the metal mounting plate and relative to the metal plate structure.
H04B 1/525 - Dispositions hybrides, c.-à-d. dispositions pour la transition d’une transmission bilatérale sur une voie à une transmission unidirectionnelle sur chacune des deux voies ou vice versa avec des moyens de réduction de la fuite du signal de l’émetteur vers le récepteur
H04B 1/18 - Circuits d'entrée, p. ex. pour le couplage à une antenne ou à une ligne de transmission
H04B 1/00 - Détails des systèmes de transmission, non couverts par l'un des groupes Détails des systèmes de transmission non caractérisés par le milieu utilisé pour la transmission
A radio frequency filter comprises a series path including a plurality of in series connected resonators (110, 121, 122, 131, 132) between an antenna port (ANT) and another port (RX). At least one parallel path is connected between one of the resonators and a terminal (170) for ground potential. The series path comprises a cascade of a first and a second resonator (131, 132) wherein a capacitance (133) is connected in parallel to one of the first and second resonators (132). The capacitance generates an additional damping pole so that the selection of the filter is increased.
A radio frequency multiplexer (210, 220, 230) comprises send and receive circuits each including a RF filter circuit (211, 212, 221, 227, 231,..., 234). The send and receive circuits are coupled to an antenna port (225, 245) and corresponding send and receive ports (221, 222). A portion of the send circuit and a portion of the receive circuit are disposed on a single die (213, 226, 250). The layer stacks of the resonators of the send and receive circuits disposed on the single die can be optimized for the required functionality.
H01P 1/213 - Sélecteurs de fréquence, p. ex. filtres combinant ou séparant plusieurs fréquences différentes
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
98.
SAW DEVICE WITH COMPOSITE SUBSTRATE FOR ULTRA HIGH FREQUENCIES
A SAW device having a stacked design of functional layers is proposed that is build up on a carrier substrate (SUB) that is chosen to provide a high acoustic velocity. The stack further comprises a thin TCF compensation layer (TCL), a thin film piezoelectric layer (PEL) and a set of interdigital electrodes (IDE) on top of the piezoelectric layer. Energy of the desired mode mainly in the high acoustic velocity material. Despite the high possible operating frequencies the SAW device can reliably be manufactured with present lithographic techniques.
An improved electroacoustic SAW or BAW filter (EAF) with improved electric and/or acoustic properties is provided. The filter has a first resonator (Rl) in a first layer stack (LSI) and a second resonator (R2) in a second layer stack (LS2). The second layer stack is different from the first layer stack in at least one parameter selected from the number of layers, the thickness of a layer and the material of a layer.
H03H 3/04 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux piézo-électriques ou électrostrictifs pour obtenir une fréquence ou un coefficient de température désiré
H03H 3/10 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface pour obtenir une fréquence ou un coefficient de température désiré
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 9/17 - Détails de réalisation de résonateurs se composant de matériau piézo-électrique ou électrostrictif ayant un résonateur unique
H03H 9/70 - Réseaux à plusieurs accès pour connecter plusieurs sources ou charges, fonctionnant sur des fréquences ou dans des bandes de fréquence différentes, à une charge ou à une source commune
H03H 9/72 - Réseaux utilisant des ondes acoustiques de surface
100.
ELECTRO-ACOUSTIC RESONATOR AND METHOD OF FORMING THEREOF
An electro-acoustic resonator comprises a piezoelectric substrate (310) on which an electrode structure is disposed. The electrode structure comprises a metal layer (535) of aluminum and copper, a barrier layer (450) forming a barrier against the diffusion of copper and another metal layer (421) disposed on the barrier layer comprising aluminum. An AlCu intermetallic phase formed after an anneal is restricted to the portion beneath the barrier layer (450) so that Galvano-corrosion of the electrode structure is avoided.
H03H 9/145 - Moyens d'excitation, p. ex. électrodes, bobines pour réseaux utilisant des ondes acoustiques de surface
H03H 9/02 - Réseaux comprenant des éléments électromécaniques ou électro-acoustiquesRésonateurs électromécaniques Détails
H03H 3/08 - Appareils ou procédés spécialement adaptés à la fabrication de réseaux d'impédance, de circuits résonnants, de résonateurs pour la fabrication de résonateurs ou de réseaux électromécaniques pour la fabrication de résonateurs ou de réseaux utilisant des ondes acoustiques de surface