A flexible storage container may have a first footprint when empty, and retracts to a second footprint when filled with a substance. A load sensing apparatus used for determining the volume of the substance in the flexible storage container can include a first set of load-sensitive sensors arranged in at least a region of the first footprint external to the second footprint, and a second set of load-sensitive sensors arranged within the second footprint. The sensor data from the load-sensitive sensors can be used to create a pressure level profile, and the volume of the substance contained in the flexible storage container can be calculated from the pressure level profile.
Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
Methods, devices, and systems are presented for calibrating or otherwise correcting the pointing accuracy of a gimbal. Measurements of the actual planes of rotation of each of a gimbal's rotatable elements is made using an off-board measurement device, such as a coordinate measuring machine (CMM). The measurements from the off-board device can be combined with those from native, on-board gimbal sensors of the rotation angles at which the planes are tilted/pitched with respect to their nominal planes of rotation. Information representing the error vectors between the nominal and actual planes of rotation is stored and used for correcting the pointing accuracy of the gimbal. The corrected pointing vector of the gimbal can be combined with measurements from an inertial measurement unit (INU) and rangefinder in order to accurately determine a geographic target position to which the gimbal points.
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
G01C 19/54 - Dispositifs de redressage pour ramener l'axe du rotor à une position désirée avec correction des forces d'accélération produites par le mouvement de l'instrument
4.
Operational control logic for harmonized turret with gimbaled sub-systems
Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
A flexible storage container may have a first footprint when empty, and retracts to a second footprint when filled with a substance. A load sensing apparatus used for determining the volume of the substance in the flexible storage container can include a first set of load-sensitive sensors arranged in at least a region of the first footprint external to the second footprint, and a second set of load-sensitive sensors arranged within the second footprint. The sensor data from the load-sensitive sensors can be used to create a pressure level profile, and the volume of the substance contained in the flexible storage container can be calculated from the pressure level profile.
Multiple independently gimbaled devices, such as an electro-optical sensor and machine gun, are mounted to a rotating platform on a vehicle. The platform can rotate to prevent one device from blocking the other while aiming at an off-board location. A control system can harmonize the rotation of the device gimbals and rotating platform so that they remain pointed at the same location. The platform can be rotated to place a firing weapon downwind of a sensor or otherwise compensate for effects of one on the other.
Methods, devices, and systems are presented for compensating for gyroscopic drift in a stabilized gimbal system mounted on a vehicle. When the vehicle is parked and the gimbal is not being commanded to move by an operator, encoders or resolvers of the gimbal stabilized system are read and periodically read thereafter. When the vehicle begins to move or the gimbal is commanded to move, the last periodic reading of the resolvers is used to determine the amount that the gimbal has moved during the rest period. A gyroscopic drift rate is computed by dividing the amount of angular movement by the time period between the readings, and the gyroscopic drift rate is used for corrections while the vehicle is moving or gimbal is commanded to move. Each time the vehicle stops, the gyroscopic drift rate is re-computed and updated. The gyroscope can be heated until the drift rate is constant with respect to temperature, further helping the calibration.
G01C 19/00 - GyroscopesDispositifs sensibles à la rotation utilisant des masses vibrantesDispositifs sensibles à la rotation sans masse en mouvementMesure de la vitesse angulaire en utilisant les effets gyroscopiques
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
Rapidly deployable and reconfigurable fluid pumping systems may include a central controller communicatively coupled with one or more local pumping stations connected with a fluid pipeline. The local pumping stations may include at least one pump, and a local controller in communication with the central controller configured to monitor each device of the local pumping station. The local controllers may also provide individual control of each device within the local pumping station.
G05B 13/02 - Systèmes de commande adaptatifs, c.-à-d. systèmes se réglant eux-mêmes automatiquement pour obtenir un rendement optimal suivant un critère prédéterminé électriques
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
F04B 17/03 - Pompes caractérisées par leur combinaison avec des machines motrices ou moteurs particuliers qui les entraînent ou par leur adaptation à ceux-ci entraînées par des moteurs électriques
F04B 17/05 - Pompes caractérisées par leur combinaison avec des machines motrices ou moteurs particuliers qui les entraînent ou par leur adaptation à ceux-ci entraînées par des moteurs à combustion interne
F04B 49/02 - Commande d'arrêt, de démarrage, de décharge ou de ralenti
Methods are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
Methods and apparatuses are presented for optimizing performance of a base vehicle platform (e.g. an automobile) and operating the base vehicle platform without human intervention. Some embodiments may receive base vehicle platform data indicative of at least one performance characteristic of the base vehicle platform. Some embodiments may also receive environmental conditions data indicative of at least one characteristic of at least one weather condition or terrain condition, and receive base sensor data from at least one base sensor indicative of at least one up-to-date environmental condition or base vehicle platform condition. Embodiments may then generate at least one module based on the base vehicle platform data, the environmental conditions data, and the base sensor data, such that the at least one module operates the base vehicle platform without human intervention, and dynamically modifies at least one base vehicle platform performance characteristic without human reconfiguration.
B60W 40/02 - Calcul ou estimation des paramètres de fonctionnement pour les systèmes d'aide à la conduite de véhicules routiers qui ne sont pas liés à la commande d'un sous-ensemble particulier liés aux conditions ambiantes
B60W 40/06 - Calcul ou estimation des paramètres de fonctionnement pour les systèmes d'aide à la conduite de véhicules routiers qui ne sont pas liés à la commande d'un sous-ensemble particulier liés aux conditions ambiantes liés à l'état de la route
B60W 30/00 - Fonctions des systèmes d'aide à la conduite des véhicules routiers non liées à la commande d'un sous-ensemble particulier, p. ex. de systèmes comportant la commande conjuguée de plusieurs sous-ensembles du véhicule
B60W 30/02 - Commande de la stabilité dynamique du véhicule
11.
Generalized system architecture for peripheral connectivity and control
Generally, systems, devices, and methods for a generalized architecture for power and networking in robotic systems is presented. On a robotic chassis, a branching cable harness routes multiple power connections and communications interfaces from an onboard computer and multiple power supplies to various locations on the chassis. Each branch carries all the power and communications connections that are needed by various peripherals, and all the branches terminate with identical connectors. A custom patch cable for each peripheral, such as a camera, taps the appropriate power and communications interfaces from the branches for the peripheral. The peripherals can be relocated on the chassis by unplugging their respective patch cables from the central cable, relocating, and then plugged the patch cables into the nearest branch.
High-bit depth sensors often capture more information then can be displayed on a commercially available display. Due to this, image processing systems and methods are disclosed to ensure that as much information as possible is presented to a user in a meaningful and statistically significant manner. The image processing systems and methods disclosed herein allow a user to view and process data that would otherwise be invisible to the user.
A hand controller for controlling an electro-optic sensor of a weapons system may include a first cam/spring mechanism configured to provide non-linear displacement to an operator applying a torque to rotate the hand controller in a first direction. A second cam/spring mechanism may be configured to provide non-linear displacement to an operator applying a torque to rotate the hand controller in a second direction. A first sensor may be configured to sense torque being applied in the first direction and to generate a command signal to control rotation of the electro-optic sensor in the first direction. A second sensor may be configured to sense torque being applied in the second direction and to generate a command signal to control rotation of the electro-optic sensor in the second direction. The command signals may be substantially mathematically proportional rate command signals with respect to applied torque.
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
14.
Systems and methods for operational verification of a missile approach warning system
A coupler that generates and emits a simulated missile signature for assessing the operational capability of a missile approach warning system. The coupler may be directly attached to the system by an adapter. Couplers may be used in multiplicity, simultaneously or sequentially. The simulated signature may be digitally stored, as may be the results of the assessment. Simulated signatures may also be generated from freeform. The coupler also performs sensitivity testing.
Systems and methods for the detection of substances (particularly particulate substances) within mail pieces, specifically letters and other “flats” of mail. In particular, the systems and methods are for the detection of residues of Chemical or Biological Warfare Agents (CBWAs) which may be present within the mail pieces. The system is principally designed to be included as part of Dual Pass Rough Cull System (DPRCS) for the collection and detection of the residue when the contaminated mail piece first enters a mail facility and before it is intermingled with other mail pieces. The system also utilizes aerosol chambers using at least two arrays of pinch rollers to provide for decreased incremental changes on mail pieces and decrease the likelihood of mail piece damage.
A hand controller for controlling an electro-optic sensor of a weapons system may include a first cam/spring mechanism configured to provide non-linear displacement to an operator applying a torque to rotate the hand controller in a first direction. A second cam/spring mechanism may be configured to provide non-linear displacement to an operator applying a torque to rotate the hand controller in a second direction. A first sensor may be configured to sense torque being applied in the first direction and to generate a command signal to control rotation of the electro-optic sensor in the first direction. A second sensor may be configured to sense torque being applied in the second direction and to generate a command signal to control rotation of the electro-optic sensor in the second direction. The command signals may be substantially mathematically proportional rate command signals with respect to applied torque.
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
The present invention concerns a telescopic mast which at least includes one or more telescoping joints, where a telescoping joint is formed of two telescoping sections dimensioned so that one section can be moved into another section, where between each of the two adjacent telescoping sections in a telescoping joint there is provided at least one actuator urging the adjacent telescoping sections away from each other, where these actuators are disposed internally of the telescoping joints and offset at the internal periphery. By disposing actuators offset at the inner periphery of the telescoping sections, several advantages are achieved. The actuators are provided at a protected location, and the actuators may be designed with lengths that overlap each other when the telescopic mast is collapsed.
E04H 12/18 - ToursMâts ou pylônesCheminées d'usineChâteaux d'eauProcédés d'édification de ces structures mobiles ou avec des sections mobiles, p. ex. tournantes ou télescopiques
There is disclosed a telescopic mast (2) including two or more cylindric telescoping sections (4) with parallel walls (6), where the distal one of two adjacent telescoping sections (4) is narrower than the proximal one of the two adjacent telescoping sections (4), so that the distal telescoping section (4) can be moved into and out of the proximal telescoping section (4), respectively. In the interspace (8) between two adjacent telescoping sections (4) there is provided at least one device (10) interacting with an actuator (16) and pressing the adjacent walls (6) away from each other. Hereby play is eliminated or minimized.
There is described a method for making a vehicle (2), including a body comprising carbon fibres, preferably a military vehicle. The method consists of the body being wound up over a mandrel with threads (28) wetted in glue. The threads (28) contain carbon fibres. The threads (28) wound around the mandrel (22) are subsequently cured. After the curing, the body is drawn off the mandrel (22), and the ends of the body are cut off at appropriate angles. Then the front end and rear end of the body are closed with closure elements, preferably closure elements containing carbon fibres and armouring materials. During the winding process, one or more layers of lightweight ceramic and/or other armouring materials (26) are laid in, which thereby become integrated in the basic body.
B65H 81/00 - Procédés, appareils ou dispositifs pour recouvrir ou habiller les noyaux, en enroulant des bandes, des rubans, ou un matériau filiforme, non prévus ailleurs
20.
Systems and methods for operational verification of a missile approach warning system
A coupler that generates and emits a simulated missile signature for assessing the operational capability of a missile approach warning system. The coupler may be directly attached to the system by an adapter. Couplers may be used in multiplicity, simultaneously or sequentially. The simulated signature may be digitally stored, as may be the results of the assessment. Simulated signatures may also be generated from freeform. The coupler also performs sensitivity testing.
A method is provided for detection of an airborne contaminant in a atmospheric environment. The method comprises capturing an air sample from the atmospheric environment; separating candidate particles of interest from particles of non interest in the air sample; generating an image of the candidate particles; identifying a contaminant from among the candidate particles by comparing the image of candidate particles with a plurality of stored reference images, each of which reflects a respective identified contaminant; and notifying a remote third party in response to detecting a contaminant from among the candidate particles.
A dual compartment cooling device that is designed to cool water, or other beverages, as a batch based on expected demand. This provides for the cooling of beverages which are to be consumed in a subsequent demand cycle at which time it is refilled but allows remaining water to remain “hotter” until it is to be in the next dispense cycle.
F25D 13/06 - Dispositifs fixes associés à des machines frigorifiques, p. ex. chambres froides avec transporteurs faisant traverser la chambre de refroidissement aux produits à refroidir
F25D 3/08 - Récipients mobiles portatifs, c.-à-d. adaptés pour être facilement transportables par une personne
F25D 25/04 - Introduction, port ou déchargement des produits à refroidir par transporteurs
23.
BATCH DEGASSING OF DIELECTRIC OIL WITH VACUUM SONICATION
A degassing and water removal apparatus is used in combination with the testing or replacement of dielectric oil in an RF transmitter. The apparatus comprises at least one ultrasound transducer in vibrational communication with a bulk oil sample held in a tank having a reduced internal air pressure. The tank has fluid connections to the RF transmitter through which oil from the transmitter is drained to the tank and through which the ambient air pressure in the transmitter is reduced. A fluid pump is used to pump the oil from the tank back to the RF transmitter. In a method of using such an apparatus, the RF transmitter is held at reduced internal pressure during the return of oil thereto, so that the oil does not dissolve gases in the atmosphere internal to the RF transmitter.
A degassing and water removal apparatus is used in combination with the testing or replacement of dielectric oil in an RF transmitter. The apparatus comprises at least one ultrasound transducer in vibrational communication with a bulk oil sample held in a tank having a reduced internal air pressure. The tank has fluid connections to the RF transmitter through which oil from the transmitter is drained to the tank and through which the ambient air pressure in the transmitter is reduced. A fluid pump is used to pump the oil from the tank back to the RF transmitter. In a method of using such an apparatus, the RF transmitter is held at reduced internal pressure during the return of oil thereto, so that the oil does not dissolve gases in the atmosphere internal to the RF transmitter.
A pneumatic door closer with a protective external telescoping cylinder and angled handhold. Such a closer is generally outfitted with a structural tubular support that follows the telescoping and collapsing of the closer's piston and that has sufficient stiffness to limit the stresses imposed on the piston throughout its extension. The support provides a resistance to perpendicular force. Moreover, when the piston is collapsed within the exterior chamber, the support pivots to the exterior chamber with bushing(s) fixed to the end of the support that travel along the length of the exterior column as the closer telescopes or collapses, to permit continued smooth sliding motion throughout the extension stroke.
E05F 3/02 - Appareils de fermeture ou d'ouverture à dispositif de freinage, p. ex. ralentisseursStructure des dispositifs de freinage pneumatique ou à liquide avec freins à piston pneumatique
A dual compartment cooling device that is designed to cool water, or other beverages, as a batch based on expected demand. This provides for the cooling of beverages which are to be consumed in a subsequent demand cycle at which time it is refilled but allows remaining water to remain 'hotter' until it is to be in the next dispense cycle, which results in power savings.
A telescoping mast for supporting and raising a load may be telescopically extended by a zipper-action chain extension system further comprising a system for the management of one or more cables, such as power or communication cables traversing the length of the mast, and is capable of being locked into a rigid formation along a range of telescopic lengths.
E04H 12/34 - Dispositions pour élever ou abaisser des tours, mâts, poteaux, corps de cheminée ou analogues
E04H 12/18 - ToursMâts ou pylônesCheminées d'usineChâteaux d'eauProcédés d'édification de ces structures mobiles ou avec des sections mobiles, p. ex. tournantes ou télescopiques
A cyclonic separator and methods of cyclonic separation which provide for a band pass separation of particles. That is, a cyclonic separator able to remove particles from an air stream that are greater than a predetermined minimum (which is greater than zero) while being smaller than a particular maximum. This band pass separation may be performed with the inclusion of a secondary vortex break on a cyclonic separator. Also discussed are cyclonic flow systems which provide for less deposition of aerosolized particles onto the cyclonic flow generator and related structures to improve likelihood of particles of interest being provided to an attached detector.
A digital pressure controller that utilizes a microprocessor provides for control of the speed of a fluid pump engine for the purpose of maintaining specified pressures at both the inlet and outlet of the pump. Based upon pressure sensor output, and computations based on multiple calibrations between pump speed and pressure, and between output voltage and pump speed, a pump drive mechanism speed is determined by the control logic of the microprocessor, which speed maintains at least one of the inlet and outlet pressures within a specified range. The microprocessor may determine the specific weight of the fluid being pumped in order to select the pump drive mechanism speed.
F04B 49/00 - Commande des "machines", pompes ou installations de pompage ou mesures de sécurité les concernant non prévues dans les groupes ou présentant un intérêt autre que celui visé par ces groupes