A catheter insertable into a patient for monitoring pressure having an expandable outer balloon. An expandable inner balloon is positioned within the lumen of the catheter and has having a second outer wall and forms a gas chamber to monitor pressure within the patient. In response to pressure exerted on the outer wall of the outer balloon, fluid within the outer balloon enters an opening in the wall of the catheter lumen to exert a pressure on the outer wall of the expanded inner balloon to deform the inner balloon and compress the gas within the inner balloon. A pressure sensor communicates with the gas containing chamber for measuring pressure based on compression of gas caused by deformation of the expanded inner balloon resulting from deformation of the expanded outer balloon.
A cable for use with a pressure monitoring catheter, the catheter including an inflatable balloon forming a fluid chamber for pressure measurement. The cable has a first end operably connectable to the catheter, a second end operably connectable to a monitor providing pressure displays, and a printed circuit. The cable includes one or both of the filter system to enable collection and analysis of data and an adjustment feature to adjust pressure values in response to patient movement.
A method and device for measuring intra-abdominal pressure in a pregnant woman to assess likelihood or occurrence of pre-eclampsia. The method includes providing a catheter having first and second lumens and a balloon, inserting the catheter into a bladder of the patient, injecting gas into the first lumen of the catheter to expand the balloon, obtaining a first pressure reading of the bladder based on deformation of the balloon to thereby monitor pressure within an abdomen of the mother to assess if pre-eclampsia is occurring or likely to occur and transmitting the first pressure reading to an external monitor connected to the catheter. The pressure reading is indicative of the presence and/or risk of pre-eclampsia to determine when intervention should occur to prevent morbidity and mortality of the woman and baby.
A catheter insertable into a patient for monitoring pressure having an expandable outer balloon. An expandable inner balloon is positioned within the lumen of the catheter and has having a second outer wall and forms a gas chamber to monitor pressure within the patient. In response to pressure exerted on the outer wall of the outer balloon, fluid within the outer balloon enters an opening in the wall of the catheter lumen to exert a pressure on the outer wall of the expanded inner balloon to deform the inner balloon and compress the gas within the inner balloon. A pressure sensor communicates with the gas containing chamber for measuring pressure based on compression of gas caused by deformation of the expanded inner balloon resulting from deformation of the expanded outer balloon.
A catheter insertable into a cavity of a patient for monitoring pressure including a first lumen for drainage from the cavity and an expandable balloon. The balloon has a liquid containing chamber to monitor pressure within the cavity of the patient as pressure on the outer wall of the balloon deforms the balloon and compresses the liquid within the balloon. An exit port provides passage of air from an interior of the balloon to outside the catheter. A membrane has plurality of pores dimensioned to enable passage of air but prevent passage of the liquid therethrough. A pressure sensor communicates with the liquid containing chamber for measuring pressure based on compression of liquid caused by deformation of the expanded balloon.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
A61B 5/01 - Mesure de la température de parties du corps
A61B 5/03 - Mesure de la pression des fluides à l'intérieur du corps autre que la pression du sang, p. ex. de la pression cérébrale
A61B 5/1455 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang en utilisant des capteurs optiques, p. ex. des oxymètres à photométrie spectrale
A multi-lumen catheter for monitoring intramuscular pressure having an elongated body configured and dimensioned for insertion into a compartment of a patient. The catheter has a pressure sensor to determine if excessive pressure is being applied. A sensor is in communication with the lumen to continuously measure pressure to provide continuous readings of intramuscular pressure.
A multi-lumen catheter for monitoring intra-abdominal pressure, the catheter including an expandable outer balloon and an expandable inner balloon positioned within the outer balloon. A first lumen communicates with the inner balloon and the inner balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The catheter is configured for attachment of an external pressure transducer communicating with the gas filled chamber for measuring bladder pressure based on gas compression caused by deformation of the expanded inner balloon deformed by the expanded outer balloon.
A catheter insertable into a cavity of a patient for monitoring pressure including a first lumen for drainage from the cavity and an expandable balloon. The balloon has a liquid containing chamber to monitor pressure within the cavity of the patient as pressure on the outer wall of the balloon deforms the balloon and compresses the liquid within the balloon. An exit port provides passage of air from an interior of the balloon to outside the catheter. A membrane has plurality of pores dimensioned to enable passage of air but prevent passage of the liquid therethrough. A pressure sensor communicates with the liquid containing chamber for measuring pressure based on compression of liquid caused by deformation of the expanded balloon.
A multi-lumen catheter for monitoring uterine contraction pressure having an elongated body configured and dimensioned for insertion into a bladder of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion, the first lumen communicating with the first balloon. The second lumen communicates with the bladder to remove fluid from the bladder. The first balloon is filled with a gas to form along with the first lumen a gas filled chamber to monitor pressure within the bladder to thereby monitor uterine contraction pressure of the patient.
A cable for use with a pressure monitoring catheter, the catheter including an inflatable balloon forming a fluid chamber for pressure measurement. The cable has a first end operably connectable to the catheter, a second end operably connectable to a monitor providing pressure displays, and a printed circuit. The cable includes one or both of the filter system to enable collection and analysis of data and an adjustment feature to adjust pressure values in response to patient movement.
A cable for use with a pressure monitoring catheter, the catheter including an inflatable balloon forming a fluid chamber for pressure measurement. The cable has a first end operably connectable to the catheter, a second end operably connectable to a monitor providing pressure displays, and a printed circuit. The cable includes one or both of the filter system to enable collection and analysis of data and an adjustment feature to adjust pressure values in response to patient movement.
A multi-lumen catheter for monitoring intrauterine pressure comprising an elongated body configured and dimensioned for insertion into a uterus of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion. The first lumen communicates with the first balloon and the second lumen has an opening within the uterus for injection of x-ray dye or other fluid into the uterus for imaging the uterine cavity and the fallopian tubes of a patient. The first balloon contains a gas to form along with the first lumen a chamber to monitor pressure within the uterus to thereby determine if excessive pressure is being applied to the fallopian tubes of the patient. A sensor is in communication with the first lumen to measure pressure about a circumferential area of the balloon to measure pressure in the uterus to provide readings of intrauterine pressure.
A multi-lumen catheter for monitoring uterine contraction pressure having an elongated body configured and dimensioned for insertion into a bladder of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion, the first lumen communicating with the first balloon. The second lumen communicates with the bladder to remove fluid from the bladder. The first balloon is filled with a gas to form along with the first lumen a gas filled chamber to monitor pressure within the bladder to thereby monitor uterine contraction pressure of the patient.
A method and device for measuring intra-abdominal pressure in a pregnant woman to assess likelihood or occurrence of pre-eclampsia. The method includes providing a catheter having first and second lumens and a balloon, inserting the catheter into a bladder of the patient, injecting gas into the first lumen of the catheter to expand the balloon, obtaining a first pressure reading of the bladder based on deformation of the balloon to thereby monitor pressure within an abdomen of the mother to assess if pre-eclampsia is occurring or likely to occur and transmitting the first pressure reading to an external monitor connected to the catheter. The pressure reading is indicative of the presence and/or risk of pre-eclampsia to determine when intervention should occur to prevent morbidity and mortality of the woman and baby.
A multi-lumen catheter for monitoring intra-abdominal pressure, the catheter including an expandable outer balloon and an expandable inner balloon positioned within the outer balloon. A first lumen communicates with the inner balloon and the inner balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The catheter is configured for attachment of an external pressure transducer communicating with the gas filled chamber for measuring bladder pressure based on gas compression caused by deformation of the expanded inner balloon deformed by the expanded outer balloon.
A catheter insertable into a patient for monitoring pressure having an expandable outer balloon. An expandable inner balloon is positioned within the lumen of the catheter and has having a second outer wall and forms a gas chamber to monitor pressure within the patient. In response to pressure exerted on the outer wall of the outer balloon, fluid within the outer balloon enters an opening in the wall of the catheter lumen to exert a pressure on the outer wall of the expanded inner balloon to deform the inner balloon and compress the gas within the inner balloon. A pressure sensor communicates with the gas containing chamber for measuring pressure based on compression of gas caused by deformation of the expanded inner balloon resulting from deformation of the expanded outer balloon.
A multi-lumen catheter for monitoring intra-abdominal pressure, the catheter including an expandable outer balloon and an expandable inner balloon positioned within the outer balloon. A first lumen communicates with the inner balloon and the inner balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The catheter is configured for attachment of an external pressure transducer communicating with the gas filled chamber for measuring bladder pressure based on gas compression caused by deformation of the expanded inner balloon deformed by the expanded outer balloon.
A multi-lumen catheter for monitoring intra-abdominal pressure, the catheter including an expandable outer balloon and an expandable inner balloon positioned within the outer balloon. A first lumen communicates with the inner balloon and the inner balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The catheter is configured for attachment of an external pressure transducer communicating with the gas filled chamber for measuring bladder pressure based on gas compression caused by deformation of the expanded inner balloon deformed by the expanded outer balloon.
A multi-lumen catheter for monitoring uterine contraction pressure having an elongated body configured and dimensioned for insertion into a bladder of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion, the first lumen communicating with the first balloon. The second lumen communicates with the bladder to remove fluid from the bladder. The first balloon is filled with a gas to form along with the first lumen a gas filled chamber to monitor pressure within the bladder to thereby monitor uterine contraction pressure of the patient.
A multi-lumen catheter for monitoring intrauterine pressure comprising an elongated body configured and dimensioned for insertion into a uterus of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion. The first lumen communicates with the first balloon and the second lumen has an opening within the uterus for injection of x-ray dye or other fluid into the uterus for imaging the uterine cavity and the fallopian tubes of a patient. The first balloon contains a gas to form along with the first lumen a chamber to monitor pressure within the uterus to thereby determine if excessive pressure is being applied to the fallopian tubes of the patient. A sensor is in communication with the first lumen to measure pressure about a circumferential area of the balloon to measure pressure in the uterus to provide readings of intrauterine pressure.
A multi-lumen catheter for monitoring intrauterine pressure comprising an elongated body configured and dimensioned for insertion into a uterus of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion. The first lumen communicates with the first balloon and the second lumen has an opening within the uterus for injection of x-ray dye or other fluid into the uterus for imaging the uterine cavity and the fallopian tubes of a patient. The first balloon contains a gas to form along with the first lumen a chamber to monitor pressure within the uterus to thereby determine if excessive pressure is being applied to the fallopian tubes of the patient. A sensor is in communication with the first lumen to measure pressure about a circumferential area of the balloon to measure pressure in the uterus to provide readings of intrauterine pressure.
A multi-lumen catheter with a connectable hub for monitoring intra-abdominal pressure including an expandable outer balloon and a first lumen communicating with the balloon. The balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The hub includes a pressure transducer for measuring bladder pressure based on gas compression and has an elongated member insertable into the first lumen to advance gas through first lumen to expand the balloon.
A61B 18/00 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci
A61B 1/00 - Instruments pour procéder à l'examen médical de l'intérieur des cavités ou des conduits du corps par inspection visuelle ou photographique, p. ex. endoscopesDispositions pour l'éclairage dans ces instruments
24.
Catheter for monitoring uterine contraction pressure
A multi-lumen catheter for monitoring uterine contraction pressure having an elongated body configured and dimensioned for insertion into a bladder of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion, the first lumen communicating with the first balloon. The second lumen communicates with the bladder to remove fluid from the bladder. The first balloon is filled with a gas to form along with the first lumen a gas filled chamber to monitor pressure within the bladder to thereby monitor uterine contraction pressure of the patient.
A multi-lumen catheter for monitoring intramuscular pressure having an elongated body configured and dimensioned for insertion into a compartment of a patient. The catheter has a pressure sensor to determine if excessive pressure is being applied. A sensor is in communication with the lumen to continuously measure pressure to provide continuous readings of intramuscular pressure.
A multi-lumen catheter for monitoring uterine contraction pressure having an elongated body configured and dimensioned for insertion into a bladder of a patient, the catheter having a first lumen, a second lumen, and a first balloon at a distal portion, the first lumen communicating with the first balloon. The second lumen communicates with the bladder to remove fluid from the bladder. The first balloon is filled with a gas to form along with the first lumen a gas filled chamber to monitor pressure within the bladder to thereby monitor uterine contraction pressure of the patient.
A multi-lumen catheter for monitoring intra-abdominal pressure, the catheter including an expandable outer balloon and an expandable inner balloon positioned within the outer balloon. A first lumen communicates with the inner balloon and the inner balloon and first lumen are filled with gas to form a gas filled chamber to monitor pressure within the bladder to thereby monitor pressure within an abdomen of the patient. A second lumen communicates with the bladder to remove fluid from the bladder. The catheter is configured for attachment of an external pressure transducer communicating with the gas filled chamber for measuring bladder pressure based on gas compression caused by deformation of the expanded inner balloon deformed by the expanded outer balloon.