A low-temperature-resistant hot-rolled H-beam and a manufacturing method therefor. Said H-beam comprises the chemical components in percentage by weight: C: 0.10-0.13; Si≤0.25; Mn: 0.8-1.0; V: 0.07-0.11; P≤0.01; S≤0.005; Nb: 0.005-0.015; Al: 0.008-0.015; N: 0.08-0.012; O≤0.003; and RE: 0.008-0.015, wherein As+Sn+Zn+Ca+Mg+S≤0.03, and the balance is Fe and inevitable impurities. By means of online structure control and microalloying process design, in view of the characteristics of reciprocating rolling for H-beams, industrial production for large-sized high-strength and high-toughness H-beam products is achieved, and the requirements of transverse impact toughness are met.
B21B 45/00 - Dispositifs pour le traitement de surface des pièces spécialement combinés aux laminoirs, disposés dans les laminoirs, ou adaptés pour être utilisés avec les laminoirs
2.
PREDICTION METHOD FOR FATIGUE STRENGTHS OF METAL MATERIALS WITH DIFFERENT STRENGTHS UNDER AVERAGE STRESSES
INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES (Chine)
Inventeur(s)
Ma, Heng
Wang, Zhongxue
Gao, Chong
Pang, Jianchao
He, Kang
Zhang, Zhefeng
Wang, Yuexiang
Zhang, Pei
Zhang, Qingpu
Li, Yan
Zhang, Qing
Abrégé
The present invention relates to the technical field of metal material property testing, and in particular to a prediction method for fatigue strengths of metal materials with different strengths under average stresses. On the basis of Walker and P-C models, the prediction method of the present invention well describes changes of the fatigue strengths of the metal materials with different strengths under the average stresses. The prediction method comprises: firstly, describing a relationship between a tensile strength and a fatigue strength of a metal material on the basis of the P-C model; then using the Walker model to analyze change parameters of the fatigue strength of the material under different average stresses; and establishing a relationship among the average stresses, the tensile strength and the fatigue strength by combining the two models. The method reduces the design costs of the material and trial and error during process selection, thereby truly realizing efficient prediction of the materials with different strengths under different average stresses.
G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation
3.
FATIGUE-RESISTANT AND CORROSION-RESISTANT 500 MPA-GRADE STEEL PLATE FOR MARINE WIND POWER AND PREPARATION METHOD THEREFOR
The present invention relates to a fatigue-resistant and corrosion-resistant 500 MPa-grade steel plate for marine wind power, the chemical composition of which is as follows, by mass percentage: C: 0.10%-0.12%, Si: 0.20%-0.30%, Mn: 1.20%-1.40%, P≤0.010%, S≤0.005%, Nb: 0.030%-0.040%, Ti: 0.018%-0.030%, Ni: 0.28%-0.38%, Cu: 0.35%-0.55%, Al: 0.020%-0.050%, Pcm being controlled to be ≤0.25%, and the remainder being Fe and unavoidable impurity elements. The 500 MPa-grade steel plate for marine wind power of the present invention is produced using a TMCP+tempering process, and has a thickness of 30 mm-60 mm, a yield strength of ≥500 MPa, a tensile strength of 600-760 MPa, an elongation after fracture of ≥17%, and a core impact energy of ≥120 J at -30℃. Corrosion resistance is improved by 50% or more compared with conventional 355 MPa-grade steel plate for marine wind power. After the steel plate is welded by submerged arc welding with a heat input of ≥35 kJ/cm, the tensile strength of the welded joint is ≥600 MPa, and the impact energy at -30℃ is ≥80 J; under conditions of a stress ratio of 0.5, the fatigue limit of a welded joint after 107 cycles of axial loading is ≥450 MPa. The steel has the characteristics of high strength, fatigue resistance, corrosion resistance and easy welding, and can meet the development requirements of safe service, high strength and light weight for marine wind power facilities.
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
4.
LOW-COST THICK-SPECIFICATION HIGH-TOUGHNESS LOW-TEMPERATURE-RESISTANT HOT-ROLLED H-SHAPED STEEL FOR SHIP STRUCTURE, AND PREPARATION METHOD FOR H-SHAPED STEEL
The present invention relates to the technical field of metallurgy, and in particular to low-cost thick-specification high-toughness low-temperature-resistant hot-rolled H-shaped steel for a ship structure, and a preparation method for the H-shaped steel. The H-shaped steel comprises the following chemical components in percentage by weight: C: 0.05%-0.07%; Si: ≤0.25%; Mn: 1.20%-1.50%; V: 0.11%-0.15%: A1t: 0.035%-0.055%; Cr: 0.3%-0.5%; P: ≤0.015%; S: ≤0.005%; N: ≤0.010%-0.015%; O: ≤0.004%; and the balance being Fe and inevitable impurities. The preparation method comprises the following steps: pretreatment of a liquid iron, smelting in a 120 t converter, argon blowing of ladle, refining in an LF, casting of a special-shaped continuous casting blank, slow cooling of the continuous casting blank in a slow cooling pit, heating by a heating furnace, rough rolling by a BD, a steel turning operation of an intermediate billet, reversible rolling by a TM during finish rolling, inter-rack cooling, water cooling of rolled flanges in a phase change area, dense slow cooling on a cooling bed, straightening by a straightening machine, and a finishing treatment of a finished product. According to the present invention, high-toughness hot-rolled H-shaped steel having stable performance and having a 420 MPa grade or above is obtained on a universal hot-rolled H-shaped steel rolling mill.
Disclosed in the present invention are an easily welded marine engineering steel plate containing a magnesium oxide, and a preparation method therefor. The steel plate comprises the following chemical components, in percentages by mass: C: 0.05-0.09%, Si: 0.15-0.30%, Mn: 1.10-1.50%, P≤0.010%, S≤0.003%, Nb: 0.008-0.020%, Ti: 0.005-0.015%, Al: 0.005-0.010%, and Mg: 0.0010-0.0025%, with the balance being Fe and inevitable impurities. The parent material of the easily welded marine engineering steel plate has a yield strength of larger than or equal to 420 MPa, a tensile strength of larger than or equal to 550 MPa, A≥45%, and a transverse and longitudinal impact energy of the near surface position, the 1/4 position and the center at -60ºC of larger than or equal to 200 J, and CEV is controlled to be less than or equal to 0.34, and Pcm is controlled to be less than or equal to 0.18. After ≥300 kJ/cm wire input welding, the tensile strength of a joint is larger than or equal to 540 MPa, the impact energy at -60ºC in the thickness direction is larger than or equal to 150 J, which completely satisfy the requirements for high heat input welding. The easily welded marine engineering steel produced by means of magnesium-oxide-containing metallurgy technology disclosed in the present invention has good comprehensive mechanical properties, a low alloy cost, high production line adaptability, and wide popularization prospects.
B22D 11/00 - Coulée continue des métaux, c.-à-d. en longueur indéfinie
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 11/00 - Commande ou régulation du processus lors de traitements thermiques
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 33/06 - Fabrication des alliages ferreux par fusion en utilisant des alliages-mère
C21C 5/28 - Fabrication d'acier dans des convertisseurs
C21C 7/00 - Traitement à l'état liquide des alliages ferreux, p. ex. des aciers, non couverts par les groupes
C21C 7/06 - Élimination des impuretés par addition d'agent traitant de l'oxygène, p. ex. calmer
6.
SINGLE-TOOTH TRACK PLATE COGGING-DOWN PASS AND HOT ROLLING METHOD
Analysis shows that the present disclosure discloses a single-tooth track plate cogging-down pass and a hot rolling method, comprising a first cogging hole and a second cogging hole, the first cogging hole is formed by a first upper roller and a first lower roller of a cogging mill, and the second cogging hole is formed by a second upper roller and a second lower roller of the cogging mill, wherein the first cogging hole is a front hole, and the first cogging hole is used to extrude the rectangular continuous casting billet into a mountain shaped middle billet including a right bent limb, a first center column, and a left bent limb, wherein the second cogging hole is a rear hole, the second cogging hole is used to extrude the mountain shaped middle billet into an inverted T-shaped middle billet including a right flat limb, a second center column, and a left flat limb. The present disclosure significantly reduces the dependence on billet size, allowing for the production of larger single-tooth track plates using smaller billets, which has a good energy-saving and consumption reducing effect. The unique design of the first and second cogging holes eliminate the shortcomings of low efficiency, poor safety, and poor dimensional accuracy caused by the instability of billets, and realizes the efficient production of single-tooth track plate.
B21B 1/38 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des feuilles de longueur limitée, p. ex. des feuilles pliées, des feuilles superposées
7.
HIGH-STRENGTH, HIGH-TOUGHNESS, LOW-TEMPERATURE-RESISTANT HOT-ROLLED H-SHAPED STEEL FOR FLOATING OIL STORAGE SHIP AND PREPARATION METHOD THEREFOR
The present invention belongs to the technical field of metallurgy and rolling, and specifically relates to high-strength, high-toughness, low-temperature-resistant hot-rolled H-shaped steel for a floating oil storage ship and a preparation method therefor. The high-strength, high-toughness, low-temperature-resistant hot-rolled H-shaped steel comprises the following chemical components in percentages by weight: 0.07-0.11% of C, less than or equal to 0.2% of Si, 1.5-1.9% of Mn, 0.06-0.10% of V, 0.02-0.05% of Nb, 0.1-0.4% of Ni, 0.001-0.002% of B, 0.025-0.045% of Alt, less than or equal to 0.015% of P, less than or equal to 0.006% of S, 0.01-0.015% of N, less than or equal to 0.003% of O, and the balance being Fe and inevitable impurities. The H-shaped steel of the present invention is based on a green and environmentally friendly concept, has an outstanding lightweight technology, reduces the transportation cost of the floating ship as a whole, improves the utilization efficiency of the material, achieves the aim of weight reduction of 15-30% for the lightweight structure of the floating oil storage ship, and provides the product and technical support for the steel structure used in the hull module.
Provided are a hot-rolled, low-temperature-resistant, H-shaped steel with a grade of 420 MPa and a preparation method therefor. The H-shaped steel comprises the following chemical components in percentages by weight: C: 0.08-0.10%, Si≤0.2%, Mn: 1.25-1.45%, V: 0.03-0.045%, Ti: 0.015-0.025%, Cr: 0.15-0.30%, Als: 0.02-0.04%, N: 0.007-0.01%, P≤0.008%, S≤0.005%, O≤0.004%, and the balance being Fe and inevitable impurities. In the preparation method, the characteristic of the flange of the small-specification H-shaped steel being thin in rectangular blank rolling is combined, the design of a low content of C suitable for normalizing rolling being in cooperation with a V micro-alloyed component is used, an appropriate amount of Cr is added to control the cooling rate, and the situation whereby the low-temperature impact toughness of steel deteriorates due to the occurrence of abnormal structures such as widmanstatten is avoided, thus a stably controlled, high-strength and high-toughness, hot-rolled, H-shaped steel with a grade of 420 MPa or more is obtained on a hot-rolled H-shaped steel rolling mill.
The present invention provides a heavy-gauge, fatigue-resistant, easy-to-weld, and high-strength steel plate for wind power and a manufacturing method therefor. The steel plate is composed of the following chemical components in percentage by mass: C: 0.12%-0.15%, Si: 0.15%-0.35%, Mn: 1.30%-1.50%, P≤0.015%, S≤0.005%, Nb: 0.015%-0.030%, V: 0.015%-0.030%, Ti: 0.005%-0.020%, and Al: 0.005%-0.030%, with the balance being Fe and unavoidable impurities. The manufacturing method comprises the steps of smelting, refining, continuous casting, heating, rolling and the like. Low-C and high-Mn Nb+V+Ti composite microalloying is used to significantly inhibit the growth of austenite grains; and a normalizing rolling process is used, so that the process flow is short, the cost is low, and the production line adaptability is strong.
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 33/06 - Fabrication des alliages ferreux par fusion en utilisant des alliages-mère
C21C 5/28 - Fabrication d'acier dans des convertisseurs
C21C 7/00 - Traitement à l'état liquide des alliages ferreux, p. ex. des aciers, non couverts par les groupes
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
The present invention provides a high-strength and high-toughness mast profile steel and a manufacturing method therefor. The profile steel is composed of the following chemical components in percentage by mass: C: 0.15% to 0.50%, Si: 0.35% to 0.50%, Mn: 1.40% to 2.50%, P ≤ 0.020%, S ≤ 0.010%, V: 0.07% to 0.20%, Nb: 0.025% to 0.100%, Cr: 0.30% to 1.00%, N: 0.01% to 0.015%, RE: 0.5 ppm to 50 ppm, As ≤ 80 ppm, B ≤ 5 ppm, and the balance being iron and inevitable impurities. Feeding RE wires to a crystallizer solves the problems of easy oxidation and poor molten steel pourability. The yield strength of the profile steel material is greater than or equal to 500 MPa, the low-temperature impact energy at -20℃ is 50 J or above, the leg thickness precision of the profile steel is ±0.5 mm, and the leg height is ±0.8 mm.
Provided in the present invention are magnetic levitation track profile steel and a preparation method. The profile steel is composed of the following chemical components, in percentage by mass: C: 0.08-0.13%, Si: 0.20-0.50%, Mn: 0.80-1.10%, P≤0.015%, S≤0.010%, Als: 0.020-0.060%, Cr≤0.20%, Cu≤0.20%, Ni≤0.30%, Ti≤0.005%, B≤40 ppm, and H≤1.5 ppm, with the balance being iron and inevitable impurities. A magnetic levitation track is directly rolled by means of a one-step hot-rolling forming process, and the magnetic levitation track has good comprehensive properties including magnetic conductivity, strength, ductility, low-temperature impact toughness, etc. The content of Ti, which is disadvantageous for magnetic conductivity, in the profile steel is significantly reduced, and the content of B is controlled within a small fluctuation range. Small ranges of C and Mn result in an improvement in the toughness of the profile steel in a dead zone of deformation.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C22C 33/04 - Fabrication des alliages ferreux par fusion
B22D 11/18 - Commande ou régulation des opérations ou du fonctionnement de la coulée
B21B 1/46 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer du métal immédiatement après la coulée continue
12.
HOT-ROLLED H-SHAPED STEEL FOR FABRICATED BUILDING STRUCTURE AND PREPARATION METHOD THEREFOR
A hot-rolled H-shaped steel for a fabricated building structure and a preparation method therefor. The hot-rolled H-shaped steel comprises the following chemical components in percentages by weight: C: 0.03-0.05, Si: <0.15, Mn: 0.6-0.9, P: 0.030-0.045, S≤0.005, Cu: 0.20-0.35, Cr: 0.25-0.50, Ni: 0.20-0.50, Nb: 0.02-0.04, Ti: 0.01-0.025, Al: 0.005-0.015, Mo: 0.10-0.15, Cu/Ni≤1.0, Al+Ti≤0.03, As+Sn+Zn+Ca+Mg+B≤0.030, and the balance of Fe and inevitable impurities. The hot-rolled H-shaped steel meets the use requirements for hot-rolled H-shaped steel materials in the steel building field such as fabricated building structures in ordinary regions and cold regions, and provides support for large-scale promotion of H-shaped steel for fabricated building structures.
The present invention belongs to the field of metal materials and provides a high-toughness and easy-to-weld steel for wind power and a preparation method therefor. The high-toughness and easy-to-weld steel for wind power comprises the following chemical components in mass percentage: C: 0.02-0.04%, Si: 0.15-0.25%, Mn: 1.0-1.2%, Mo: 0.15-0.25%, Cr: 0.1-0.3%, Nb: 0.05-0.07%, Ti: 0.01-0.02%, Ni: 0.2-0.4%, Alt: 0.02-0.04%, P<0.01%, and S<0.006%, the remainder being iron and unavoidable impurities; the carbon equivalent CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15, and 0.25
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 33/04 - Fabrication des alliages ferreux par fusion
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
14.
NORMALIZED ROLLED 420 MPA GRADE HIGH-STRENGTH AND HIGH-TOUGHNESS WIND POWER STEEL PLATE AND PREPARATION METHOD THEREOF
The present invention belongs to the field of iron and steel metallurgy, and relates to a normalized rolled 420 MPa grade high-strength and high-toughness wind power steel plate and a preparation method thereof. In terms of weight percentage, the steel plate comprises the following components: C: 0.14-0.20%, Si: 0.20-0.60%, Mn: 1.00-1.70%, P≤0.025%, S≤0.020%, Nb: 0.010-0.050%, Ti: 0.006-0.050%, V: 0.01-0.12%, Cr: 0.10-0.30%, Als: 0.015-0.040%, N≤0.006%, the rest being Fe and unavoidable impurities, requiring As≤0.007% and B≤0.0005%; and the carbon equivalent CEV of the steel plate is ≤0.45%. The preparation method comprises the steps of molten steel converter smelting-RH+LF refining-continuous casting-ingot heating-rolling, etc. The present invention can achieve carbon equivalent ≤0.43%, average yield strength ≥470 MPa, average fatigue strength ≥470 MPa, average tensile strength ≥570 MPa, average elongation ≥24%, average impact energy at -20℃≥160 J. The steel plate has the characteristics of high strength and high-toughness, easy welding, reduced weight, and reduced carbon, thereby significantly increasing the service life of wind power steel.
High-strength and high-toughness hot-rolled H-shaped steel for a building and a preparation method therefor. The H-shaped steel comprises the following chemical components in percentage by weight (wt%): C: 0.06-0.10; Si: ≤0.25; Mn: 0.8-1.30; P≤0.015; S≤0.008; Cu: 0.15-0.25; Cr: 0.25-0.60; Ni: 0.10-0.19; V: 0.01-0.03; Al: 0.01-0.03; RE: 0.009-0.019; As+Sn+Zn+Pb+Ca+Mg≤0.035; N≤0.008; T.[O]≤0.002; and the balance being Fe and inevitable impurities. The H-shaped steel achieves the weight reduction of building structural steel, and has good comprehensive properties such as corrosion resistance, Z-direction property, and low-temperature toughness.
C21C 7/06 - Élimination des impuretés par addition d'agent traitant de l'oxygène, p. ex. calmer
B21B 1/46 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer du métal immédiatement après la coulée continue
B21B 45/00 - Dispositifs pour le traitement de surface des pièces spécialement combinés aux laminoirs, disposés dans les laminoirs, ou adaptés pour être utilisés avec les laminoirs
B21B 45/02 - Dispositifs pour le traitement de surface des pièces spécialement combinés aux laminoirs, disposés dans les laminoirs, ou adaptés pour être utilisés avec les laminoirs pour lubrifier, refroidir ou nettoyer
16.
80 MM THICK 690 MPA-GRADE ULTRA-HIGH STRENGTH AND TOUGHNESS MARINE STEEL PLATE AND PREPARATION METHOD THEREFOR
The present invention relates to an 80 mm thick 690 MPa-grade ultra-high strength and toughness marine steel plate and a preparation method thereof. The composition thereof by mass percentage are: C: 0.08%-0.10%, Si: 0.20%-0.30%, Mn: 1.10%-1.25%, P≤0.007%, S≤0.002%, Nb: 0.020%-0.030%, Ti: 0.010%-0.020%, V: 0.030%-0.045%, Cr: 0.40%-0.60%, Ni: 1.40%-1.50%, Cu: 0.15%-0.25%, Mo: 0.25%-0.35%, and Als: 0.015%-0.045%, controlling Pcm≤0.33%, Ceq≤0.64%, and the remainder being Fe and inevitable impurity elements. For the 80 mm 690 MPa-grade ultra-high strength marine steel plate of the present invention, all performance indicators meet the certification requirements of China Classification Society EH690 steel, having a -300mV (relative to an Ag/AgCl reference electrode) saturated corrosion current density ≤ 1.90mA/cm2, and a density of corrosion-active inclusions ≤ 9/mm2. The product has high strength, low-temperature resistance, corrosion resistance and other characteristics.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 33/04 - Fabrication des alliages ferreux par fusion
17.
56 KG-GRADE LOW-YIELD-RATIO ULTRAHIGH-STRENGTH MARITIME WORK STEEL PLATE AND PREPARATION METHOD THEREFOR
The present invention belongs to the field of steel material preparation, and relates to a 56 kg-grade low-yield-ratio ultrahigh-strength maritime work steel plate and a preparation method therefor. The composition design of the present invention comprises the following components: C: 0.05%-0.012%, Si: 0.20%-0.50%, Mn: 1.00%-1.50%, P ≤ 0.015%, S ≤ 0.005%, Nb: 0.010%-0.030%, Ti: 0.010%-0.030%, Cr: 0.20%-0.45%, V: 0.010%-0.035%, Cu: 0.20%-0.50%, Mo: 0.10%-0.25%, Ni: 0.50%-0.95%, Als: 0.015%-0.045%, N ≤ 0.004%, and the balance being Fe and inevitable impurities, wherein the carbon equivalent Cev is ≤ 0.55, and the Pcm is is ≤ 0.25. According to the present invention, Nb, V and Ti multi-element microalloying elements are utilized, Mo, Ni and other refined and precipitated second-phase particles are added, the refined grain strengthening and precipitation strengthening effects are improved, and the subcritical quenching and high-temperature tempering processes are combined, such that the steel plate has a ReH ≥ 600Mpa, Rm of 730 Mpa to 800 Mpa, a yield ratio ≤ 0.82, and transverse and longitudinal impact energy at -60ºC of ≥ 200 J; in addition, the resulting second-phase particles are dispersed and distributed in a welding heat affected zone, so that the strength of a welding joint is improved, an input of 150-220 kJ/cm can be achieved, and the impact energy at -60ºC after welding is ≥ 100 J.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 33/06 - Fabrication des alliages ferreux par fusion en utilisant des alliages-mère
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
B21B 37/74 - Commande de la température, p. ex. en refroidissant ou en chauffant les cylindres ou le produit
B21B 1/46 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer du métal immédiatement après la coulée continue
18.
CORROSION-RESISTANT HIGH-STRENGTH STEEL SHEET WELDABLE WITH HIGH HEAT INPUT AND USED FOR OCEAN ENGINEERING, AND PREPARATION METHOD THEREFOR
22 (-40°C) of a HAZ is ≥ 47 J after the steel sheet is welded with a heat input of 160-210 kJ/cm; and the steel sheet has good impact toughness at low temperature, has a 35% or higher improvement in seawater corrosion resistance compared with that of conventional steel for ocean engineering, and has the characteristics of high strength and toughness, corrosion resistance, weldability with high heat input, low cost, etc.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/16 - Alliages ferreux, p. ex. aciers alliés contenant du cuivre
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21C 7/06 - Élimination des impuretés par addition d'agent traitant de l'oxygène, p. ex. calmer
C21C 7/00 - Traitement à l'état liquide des alliages ferreux, p. ex. des aciers, non couverts par les groupes
Provided in the present invention are a single-tooth track plate cogging-down pass and hot rolling method. The single-tooth track plate cogging-down pass comprises a first cogging hole and a second cogging hole, wherein the first cogging hole is formed by means of a first upper roller and a first lower roller of a cogging machine; the second cogging hole is formed by means of a second upper roller and a second lower roller of the cogging machine; the first cogging hole is a front hole and configured to press a rectangular continuous casting blank into an intermediate blank in the shape of the Chinese character "山" comprising a right bent branch, a first middle column, and a left bent branch; and the second cogging hole is a rear hole and configured to press the intermediate blank in the shape of the Chinese character "山" into an inverted T-shaped intermediate blank comprising a right flat branch, a second middle column, and a left flat branch. The present invention significantly reduces the dependence on a blank size, can produce a large-sized single-tooth track plate from a small blank, and has good energy-saving and consumption-reducing effects; and the unique design of the first cogging hole and the second cogging hole eliminates the disadvantages of low efficiency, poor safety, low size accuracy, etc. caused by the instability of the blank, and thus the single-tooth track plate is efficiently produced.
B21B 1/08 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des pièces de section particulière, p. ex. des cornières
A steel board for polar marine engineering and a preparation method therefor. According to weight percentage, the components of the steel board are: C: 0.06-0.09%, Si: 0.20-0.35%, Mn: 1.48-1.63%, Nb: 0.020%-0.035%, Ti: 0.010%-0.020%, V: 0.020%-0.035%, Ni: 0.08%-0.17%, Als: 0.015%-0.040%, P: ≤0.013% and S: ≤0.005%. The preparation method for the steel board comprises: pre-refining, refining and casting to obtain a cast billet, and the slowly cooling down same. The slowly cooled billet is heated and then rolled out to obtain the steel board; and the steel board is cooled down and ready. The steel has an excellent comprehensive performance in terms of having high strength and low temperature resistance, being easy to weld and corrosion proof, and the steel has good low-temperature aging impact toughness.
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
244 solution or 3.5% HCl solution, the corrosion resistance thereof can be 4 times or more of that of conventional NM450. The welding performance of the steel plate of the present invention is equivalent to that of traditional wear-resistant steel, and the steel plate is especially suitable for preparing wear-resistant and corrosion-resistant steel for a sediment transport pipeline in seawater or an acidic environment.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/60 - Alliages ferreux, p. ex. aciers alliés contenant du plomb, du sélénium, du tellure, de l'antimoine, ou plus de 0,04% en poids de soufre
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 33/04 - Fabrication des alliages ferreux par fusion
22.
HOT-ROLLED, LOW-TEMPERATURE-RESISTANT, H-SHAPED STEEL WITH GRADE OF YIELD STRENGTH OF 420 MPA, AND PREPARATION METHOD THEREFOR
Provided are a hot-rolled, low-temperature-resistant, H-shaped steel with a grade of 420 MPa, and a preparation method therefor. The H-shaped steel comprises the following chemical components in percentages by weight: C: 0.08-0.10%, Si≤0.2%, Mn: 1.25-1.45%, V: 0.03-0.045%, Ti: 0.015-0.025%, Cr: 0.15-0.30%, A1s: 0.02-0.04%, N: 0.007-0.01%, P≤0.008%, S≤0.005%, O≤0.004%, and the balance being Fe and inevitable impurities. In the preparation method, the characteristic of the flange of the small-specification H-shaped steel being thin in rectangular blank rolling is combined, the design of a low content of C suitable for normalizing rolling being in cooperation with a V micro-alloyed component is used, an appropriate amount of Cr is added to control the cooling rate, and the situation whereby the low-temperature impact toughness of steel deteriorates due to the occurrence of abnormal structures such as widmanstatten is avoided, thus a stably controlled, high-strength and high-toughness, hot-rolled, H-shaped steel with a grade of 420 MPa or more is obtained on a hot-rolled H-shaped steel rolling mill.
High-strength, low-temperature-resistant H-shaped steel for marine engineering tempering treatment and a preparation method therefor. The chemical components of the H-shaped steel comprise according to percentage by weight: C: 0.09-0.15, Si≤0.5, Mn: 1.0-1.6, V: 0.04-0.59, Nb: 0.01-0.03, Ni: 0.51-0.7, P≤0.02, S≤0.005, Cr: 0.51-0.7, B: 0.001-0.002, Al: 0.02-0.05, N≤0.014, O≤0.004, and the remainder is Fe and inevitable impurities. The H-shaped steel for marine engineering has a yield strength which is greater than 610 MPa, a tensile strength which is greater than 700 MPa, and in particular longitudinal impact power which is greater than 50 J at -40°C.
A roll assembly for rolling special-shaped steel, comprising: an upper roll (5), a lower roll (6), a left roll (9), and a right roll (8). The left roll has a left forming surface (7), the right roll has a right forming surface (81), the upper roll has an upper forming surface (51), and the lower roll has a lower forming surface (61); the left forming surface, the right forming surface, the upper forming surface and the lower forming surface together enclose a cavity; the upper roll and the lower roll can respectively move in an up-down direction; the left roll and the right roll can respectively move in a left-right direction. Also disclosed is a rolling mill train. The rolling mill train comprises at least two rolling mills; each rolling mill comprises a stand and a roll assembly provided on the stand; the roll assembly can be applicable to special-shaped steel similar in shape but different in size; moreover, when a cavity wall of the cavity is worn, on-line compensation can be implemented without stopping production and disassembling rolls. Thus, the production efficiency is ensured, and the purchase cost of rolls is saved.
B21B 1/08 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des pièces de section particulière, p. ex. des cornières
Disclosed are steel for a high-cleanliness camshaft and a rolling method therefor. The mass percentages of the chemical components of the steel are as follows: C: 0.17-0.22%; Si: 0.17-0.37%; Mn: 1.10-1.40%; Cr: 1.00-1.30%; P: ≤0.020%; S: ≤0.020%; B: ≤0.0005%; Ti: ≤0.010%; Ca≤0.002%; Al: 0.020-0.060%; [O]≤12 ppm and [N]≤90 ppm, and the remainder being Fe and unavoidable impurities. In the present invention, by reasonably designing the rolling process, the hardness of the steel is stably controlled at 160-217 HB.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/18 - Alliages ferreux, p. ex. aciers alliés contenant du chrome
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
B21B 1/08 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des pièces de section particulière, p. ex. des cornières
B21B 37/00 - Dispositifs ou procédés de commande spécialement adaptés aux laminoirs ou aux produits laminés
B21B 37/74 - Commande de la température, p. ex. en refroidissant ou en chauffant les cylindres ou le produit
26.
HIGH-STRENGTH AND HIGH-TOUGHNESS ULTRALOW TEMPERATURE IMPACT RESISTANT TUBING HEAD FORGE PIECE BLANK AND MANUFACTURING METHOD THEREFOR
Disclosed are a high-strength and high-toughness ultralow temperature impact resistant tubing head forge piece blank and a manufacturing method therefor. The high-strength and high-toughness ultralow-temperature impact-resistant tubing head forge piece blank comprises the following chemical components in percentage by mass: 0.30-0.40% of C; 0.20-0.50% of Si; 0.70-1.00% of Mn; 1.00-1.30% of Cr; 0.20-0.50% of Ni; 0.20-0.30% of Mo; 0.02-0.05% of V; 0.02-0.05% of Al; less than or equal to 0.012% of P; less than or equal to 0.005% of S; five harmful elements, i.e., less than or equal to 0.015% of Sn, less than or equal to 0.015% of As, less than or equal to 0.015% of Pb, less than or equal to 0.015% of Sb, and less than or equal to 0.015% of Bi; and gases, i.e., less than or equal to 1.5 ppm of [H], less than or equal to 15 ppm of [O], and less than or equal to 60 ppm of [N], with the balance being Fe and other inevitable impurities. According to the present invention, the composition design has marked superiority, the purity of steel materials is high, the structure uniformity of the forge piece can be significantly improved by means of forging under high pressure, and the strength, toughness and -60℃ low temperature impact resistance of the tubing head forge piece blank can be significantly improved.
An automatic magnetic particle flaw detection device and method for H-shaped steel, belonging to the technical field of magnetic particle flaw detection. The device comprises: a shot blasting device (1), a reversible roller way (3), a steel turnover machine (4), an automatic magnetic particle flaw detection device (2) and an automatic marking device (10). Surface defects of the H-shaped steel can be identified quickly, efficiently and accurately, so as to satisfy the use requirements of hot rolled H-shaped steel in application fields such as ocean engineering, oil exploitation, wind power and bridges.
G01N 27/84 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques pour rechercher la présence des criques en étudiant des champs magnétiques de dispersion en appliquant une poudre magnétique ou une encre magnétique
G01N 21/95 - Recherche de la présence de criques, de défauts ou de souillures caractérisée par le matériau ou la forme de l'objet à analyser
28.
HEAT TREATMENT METHOD FOR IMPROVING LOW-TEMPERATURE IMPACT TOUGHNESS OF THICK HOT-ROLLED SECTION STEEL
A heat treatment method for improving the low-temperature toughness of thick hot-rolled section steel, comprising the following steps: 1) performing shot blasting treatment on the section steel; and 2) heating the section steel after the shot blasting treatment, wherein the heating temperature is controlled to be 20-50℃ above AC3, carrying out heat preservation after the section steel reaches 20-50℃ above AC3, wherein the heat preservation time is 0.8-1.6 min/mm × section steel thickness mm, and discharging and cooling the section steel to a room temperature. The heat treatment method fundamentally solves the technical problem that a hot-rolled thick section steel having unqualified low-temperature impact performance is difficult to reverse, avoiding direct rejection of steel due to unqualified performance, minimizing economic losses, and increasing economic benefits of enterprises.
A low-temperature-resistant hot-rolled H-type steel for marine engineering and a preparation method therefor. Chemical components of the H-type steel include, in percentage by weight, 0.040-0.070 of C, 0.015-0.30 of Si, 1.20-1.50 of Mn, less than or equal to 0.015 of P, less than or equal to 0.010 of S, 0.02-0.040 of Nb, 0.008-0.025 of Ti, 0.10-0.50 of Ni, 0.015-0.050 of Al, 0.0001-0.0008 of B, less than or equal to 0.04 of As+Sn+Cu+Zn, less than or equal to 0.0040 of N, less than or equal to 0.0015 of T.[O], and the balance of Fe and inevitable impurities. Using composite microalloying to carry out controlled-rolling and controlled-cooling production can achieve batch preparation of products of different shapes and different specifications, and is suitable for production requirements of multi-specification small-batch steels for marine engineering projects in a low temperature environment.
Provided is an H-beam (8) flexible rolling rough-rolling pass system and rolling method; the rough rolling pass system is composed of a flat rolling pass (D) and a vertical rolling pass (E); the flat rolling pass (D) is used for thinning the web thickness (t1), compressing the flange width (B), and controlling the inner width of the web of a billet; the vertical rolling pass (E) is used for vertical pressing of the billet, reducing the inner height of the web (1) to different sizes to obtain an intermediate billet required for the production of different types of H-beams (8).
B21B 13/12 - Cages de laminoirs, c.-à-d. ensembles composés d'un châssis, de cylindres et d’accessoires dont les axes des cylindres sont disposés dans des directions différentes, p. ex. pour le processus de laminage dit "universel" les axes étant dans des plans différents
31.
HOT-ROLLED H-BEAM STEEL BASED ON SPECIAL-SHAPED BILLET ROLLING AND FORMING, AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is a manufacturing method for hot-rolled H-beam steel based on special-shaped billet rolling and forming. The H-beam steel comprises the chemical components in percentage by weight: C: 0.04-0.08; Si≤0.25; Mn: 1.25-1.45; V: 0.04-0.10; Ni: 0.2-1.0; P≤0.02; S≤0.01; Nb: 0.02-0.06; Al: 0.02-0.06; N≤0.015; and O≤0.005, with the balance being Fe and inevitable impurities. The H-beam steel has the yield strength of the upper and lower flanges being greater than or equal to 420 MPa, the -40ºC transverse impact energy being greater than or equal to 34 J, and the -60ºC longitudinal impact energy being greater than or equal to 120 J. The manufacturing method for the H-beam steel comprises the following steps: 1) a smelting and continuous casting process: smelting using a converter, LF refining, and casting into a special-shaped continuous casting billet; and 2) a rolling process: heating; rolling; and cooling after the rolling. The low temperature-resistant H-beam steel product for marine engineering provided in the present invention has good mechanical properties, is easy to industrially manufacture, reduces the requirements for rolling equipment, and is suitable for use in an area under extreme temperature conditions.
A hot-rolled thick H-beam with a yield strength grade of 500 MPa and a preparation method therefor. The chemical composition of the hot-rolled H-beam is, in percentage by weight: C: 0.10% to 0.20%, Si: 0.15% to 0.30%, Mn: 0.8% to 1.30%, Nb: 0.02% to 0.05%, V: 0.10% to 0.16%, Ni: 0.40% to 1.0%, P: ≤ 0.015%, S: ≤ 0.01%, Mo: 0.15% to 0.35%, Al: ≤ 0.05%, O: ≤ 0.004%, and N: 0.01% to 0.02%, the balance being Fe and unavoidable impurities. The H-beam adopts a composite micro-alloy composition with a medium carbon content combined with high nickel and vanadium contents suitable for normalizing rolling, thereby obtaining a stably controlled high-strength hot-rolled H-beam of a 500 MPa grade or higher for maritime use. The final structure of the H-beam is mainly refined pearlite and pro-eutectoid ferrite, containing a small amount of a bainite structure. By means of structural refinement, phase transformation strengthening, and precipitation strengthening, the H-beam can be provided with an impact toughness of greater than 100 J at a temperature of -40°C under high strength and large thickness requirements.
A yield strength 460 MPa grade hot-rolled high-toughness low-temperatureresistant H-beam, the weight percentage of the chemical components thereof being: C: 0.03%-0.07%, Si≤0.3%, Mn: 1.20%-1.40%, Nb: 0.015%-0.030%, V: 0.10%-0.15%, Ti: 0.015%-0.025%, Ni: 0.25%-0.45%, Cr: 0.30%-0.50%, Als: 0.01%-0.06%, N: 0.010%-0.023%, P≤0.015%, S≤0.010%, and O≤0.004%, and the remainder being Fe and inevitable impurities. By using the N-containing composite micro-alloying composition design, higher strength and toughness can be obtained whilst achieving strength of 460 MPa grade and above on an ordinary hot-rolling H-beam steel-rolling machine; the H-beam product has good mechanical properties, yield strength ≥ 460 MPa, tensile strength ≥ 600 MPa, and elongation ≥ 18%; and -40°C longitudinal impact energy ≥100J, being suitable for use in extremely low temperature conditions.
04 - Huiles et graisses industrielles; lubrifiants; combustibles
06 - Métaux communs et minerais; objets en métal
Produits et services
Fuels, coal tar oil, xylol, xylene, benzene, coke. Blooms (metal-working), pig iron, bronze, metal tubes and
pipes, common metal alloys, metal building materials, braces
of metal for handling loads, rails, metal ores.