The present invention relates a method of manufacturing a wind turbine blade (10) part using a preform (98). A plurality of layers are arranged within a preform mould (90) to form a stack of layers, wherein one or more of the layers is formed by an elongate fabric (70) comprising a fibre material treated with a binding agent. The elongate fabric comprises an alternating pattern of first sections of fibre material free from binding agent and second sections of fibre material treated with binding agent.
A wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line and connected at the chord-wise joint line by internal joint structure. Opposite spar caps in the first blade segment include a longitudinally extending center section having a constant transverse width up to the chord-wise joint line. Wing members are disposed against opposite longitudinal sides of the center section, each wing member having a head section with a constant transverse width and a flared tail section having a decreasing transverse width, the head section aligned with an end of the center section at the chord-wise joint line. The center section is formed from a first material having a first rigidity and the wing members are formed at least partially from a second material having a second lesser rigidity such that the wings members have an overall rigidity that is less than first rigidity of the center section.
A method of manufacturing an embedding element (76) for embedment in a shell structure of a wind turbine rotor blade (10) is provided, wherein the method comprises arranging a fibre material (99) and a binding agent on the lower mould plate (93) in between the first movable core member (97) and the second movable core member (98). One or both of the core members can be pushed towards the cavity for compacting the fibre material (99), which is then heated together with the binding agent to form the embedding element (76) or a preform (90) thereof.
The present disclosure relates to a method for manufacturing a spar cap for a wind turbine blade, the spar cap comprising a stack of pultruded plates. The method comprising laying the stack of pultruded plates between a first and a second sidewall on a mold, infusing the stack of pultruded plates with resin, and unmolding the infused stack of pultruded plates from the mold. Further, at least one of the sidewalls is adjusted along the transverse direction relative to the stack of pultruded plates at least after the laying or prior to unmolding of the stack of pultruded plates. The present disclosure also relates to infused pultrusion stacks.
The present invention relates to a method of manufacturing a fibre-reinforced spar cap (45) for a wind turbine blade. A plurality of pultruded fibre plates (70) is arranged in a spar cap mould (62) to form a stacked arrangement (69) of pultruded fibre plates (70). An insert member (86) is arranged next to a lateral surface (67) of the stacked arrangement (69), wherein the first insert member (86) comprises a connecting surface (87), and wherein the first insert member (86) is arranged such that its connecting surface abuts against the first lateral surface (67) of the stacked arrangement (69). Resin is infused into the stacked arrangement (69) and the insert member (86) to form the fibre-reinforced spar cap (45) or a preform thereof, which can be trimmed to the required size.
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29C 65/00 - Assemblage d'éléments préformésAppareils à cet effet
B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
6.
Method for manufacturing a preform for a wind turbine blade
The present invention relates to a method of manufacturing a part, such as a preform, for a wind turbine blade. One or more channel members (72) are fastened to the mould surface of a preform mould, and a fibre material (85) and a binding agent is arranged on the mould surface (87). The fibre material, the binding agent and the one or more channel members are covered with a vacuum bag, and negative pressure is applied to the fibre material and binding agent via the one or more channel members for consolidating the preform. Each of the channel members (72) comprises a plurality of slits (77) extending between its inner surface and its outer surface, the slits having an orientation that is substantially transverse to the longitudinal axis of the channel member.
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
7.
WIND TURBINE BLADE HAVING AN ELECTRO-THERMAL SYSTEM
A wind turbine blade comprising:
an aerodynamic shell body with a suction side shell part and a pressure side shell part that extends in a longitudinal direction between a root and a tip and in a transverse direction between a leading edge and a trailing edge, and
an electro-thermal system for mitigating ice formation on the wind turbine blade, the electro-thermal system comprising:
a heating layer comprising electrically conductive fibres arranged to extend substantially in a longitudinal section of the aerodynamic shell body, wherein the electrically conductive fibres of the heating layer are configured for, upon receiving electrical power from a power cable, supplying resistive heating to an exterior side of the wind turbine blade so as to mitigate ice formation on the wind turbine blade;
a metallic lightning protection layer arranged exteriorly to and overlapping the heating layer; and
a down conductor being electrically connected to the metallic lightning protection layer so as to conduct a lightning strike current from the metallic lightning protection layer to the first end of the down conductor;
wherein the heating layer and the metallic lightning protection layer are embedded in and co-infused with the aerodynamic shell body.
The present invention relates to a system for assembling a wind turbine blade shell. The system comprises a first support structure comprising a stationary portion and a moveable portion, the moveable portion being adapted to support a first wind turbine blade shell half; a second support structure adapted to support a second wind turbine blade shell half; moving means attached to the moveable portion and configured to move the moveable portion between: i) a first position in which the moveable portion is positioned above the stationary structure, and ii) a second position in which the moveable portion is positioned above the second support structure, wherein when the moveable portion is in the second position, a first wind turbine blade shell half supported by the moveable portion and a second wind turbine blade shell half supported by the second support structure are assembled, forming the wind turbine blade shell.
B29C 70/36 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau et imprégnation par coulée, p. ex. coulée sous vide
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
The present invention relates to a method of manufacturing a fibre-reinforced part (50) for a wind turbine blade (10). The method comprises the steps of providing a first layer (57), the first layer comprising a thermoplastic elastomer; arranging a second layer (56) on top of the first layer (57), the second layer (56) comprising a fibre material; and heating the first layer (57) and the second layer (56) to a temperature of 35-90° C. The heated first and second layers are then contacted with a liquid epoxy resin or a liquid mixture of epoxy resins. Subsequently, the epoxy resin is cured to adhere the first layer (57) to the second layer (56) to obtain the fibre-reinforced part.
B29C 70/08 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement comprenant des combinaisons de différentes formes de renforcements fibreux incorporés dans une matrice, formant une ou plusieurs couches, avec ou sans couches non renforcées
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29C 70/86 - Incorporation dans des couches de renforcement imprégnées cohérentes
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
10.
Performing post-moulding operations on a blade segment of a wind turbine blade
The present invention relates to a method of performing at least one post-moulding operation on a blade segment (70) of a wind turbine blade. The method comprises the providing a holding device (88) for supporting the blade segment (70) at its spar structure (62), the holding device (88) comprising a coupling member (90) for engaging the spar structure (62). The blade segment (70) is held with the holding device (88) such that the spar structure (62) of the blade segment (70) is engaged by the coupling member (90), and performing at least one post-moulding operation on the shell structure (82) of the blade segment (70).
A debagging system (100) for use in a debagging process during the manufacture of a wind turbine blade is provided. The debagging system comprises: a debagging tool (110, 210), and conveying means configured to moving the debagging tool along a longitudinal direction of a mould for manufacturing a wind turbine blade part. The debagging tool (110, 210) comprises: a lifting bar (112, 212) for insertion under infusion tools (50) and lifting the infusion tools (50) during the debagging process, the lifting bar (112, 212) having a first end and a second end, and a support frame (120, 220) for carrying the lifting bar, wherein the lifting bar (112, 212) is coupled to the support frame (120, 220), and wherein the debagging tool is suspended from the conveying means so that the debagging tool during use can be arranged above the mould and be moved along the longitudinal direction of the mould.
B29C 37/00 - Éléments constitutifs, détails, accessoires ou opérations auxiliaires non couverts par le groupe ou
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
12.
A MOULDING ASSEMBLY FOR MANUFACTURING A SHELL PART OF A WIND TURBINE BLADE
The present invention relates to a moulding assembly (100) for manufacturing a shell part of a wind turbine blade, and to methods of manufacturing a shell part of a wind turbine blade using the moulding assembly. The moulding assembly (100) comprises a blade mould (96) with a moulding cavity (97), a gripping device (76) for releasably engaging a preform (98) for the shell part, and a lifting device (102). A tensionable member (112) is attached to the blade mould (96), and a tensioning unit coupled to the tensionable member is used for creating and maintaining tension on the tensionable member while arranging an engaged preform within the moulding cavity.
B29C 70/56 - Tensionnage des renforcements avant ou pendant le façonnage
B29C 70/24 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans au moins trois directions formant une structure tridimensionnelle
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29C 70/68 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts en incorporant ou en surmoulant des parties préformées, p. ex. des inserts ou des couches
The present invention relates to a method of manufacturing a wind turbine rotor blade part comprising stacking a plurality of plies (70, 71, 72) to form a stack of plies (80) such that the stack of plies has at least one stepwise tapering edge (84, 85). A plurality of plastic fasteners (90) is used to interconnect the plies (70, 71, 72) by passing the plurality of plastic fasteners (90) through the stack of plies to form a stack of interconnected plies (82). The stacks of interconnected plies (82a, 82b, 82c, 82d) are arranged within the blade mold, followed by resin infusion into the one or more stacks of interconnected plies within the blade mold, and curing and/or hardening the resin in order to form the blade part.
B29C 70/24 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans au moins trois directions formant une structure tridimensionnelle
B29C 65/56 - Assemblage d'éléments préformésAppareils à cet effet en utilisant des moyens mécaniques
B29C 70/42 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
A spar cap for a wind turbine blade, comprising a load-carrying structure including a primary laminate and a secondary laminate arranged with an overlap in a longitudinal axis of the spar cap, wherein the width of the secondary laminate being at least 1.1 times greater than the width of the primary laminate.
B29C 70/00 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts
B29C 70/42 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
Embodiments of present disclosure relates to efficient control system and method for controlling operation of at least one machine in an industrial environment. The control system comprises a target path correction unit and a position correction unit. The target path correction unit is configured to modify a target path fed to the at least one machine, based on real-time spatial position of the at least one machine. The position correction unit is configured to correct real-time operating position of the at least one machine. The position correction unit corrects the real-time operating position by sensing one or more parameters related to the at least one machine and displacing operating tool of the at least one machine, based on the one or more parameters. The control system achieves tight tolerance in manufacturing of large structures inexpensively and eliminates the need of high skilled operator to operate the machine.
A method of manufacturing a wind turbine blade shell component (38) is provided, the method comprising arranging a plurality of pultrusion plates (64) on a blade shell material (89) in a mould (77) for the blade shell component. The pultrusion plates (64) are bonded with the blade shell material to form the blade shell component, wherein each pultrusion plate (64) is formed of a pultrusion fibre material comprising a glass fibre material (70) and a carbon fibre material (68), wherein carbon fibre material is provided along the entire lateral surfaces (83, 84) of the pultrusion plate. The glass fibre material is selected from a glass fibre fabric, a glass fibre preform comprising a consolidated arrangement of glass fibres and a binding agent, and a plurality of glass fibres encapsulated by a veil or a foil.
A mandrel device (50) for manufacturing a hollow spar beam (30) for a segmented wind turbine blade (10) in a mould (100), the mandrel device comprising:
a plurality of mandrel elements (52, 53, 54, 55, 56, 57, 58, 59) each comprising a substantially rigid material, and
a plurality of attachment devices (60) configured for detachably attaching adjacent mandrel elements,
wherein the mandrel device has an assembled configuration and a detached configuration, wherein:
in the assembled configuration, the plurality of attachment devices is engaged so that the plurality of mandrel elements is detachably attached to each other, and the plurality of mandrel elements extends along a longitudinal axis of the mandrel device so that the mandrel device has a substantially box shaped cross-section that varies along the longitudinal axis, and
in the detached configuration, the plurality of attachment devices is disengaged so that the plurality of mandrel elements is detached from each other, and the plurality of mandrel elements is inwardly collapsible.
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29C 33/48 - Moules ou noyauxLeurs détails ou accessoires comportant des moyens ou conçus spécialement pour faciliter le démoulage d'objets, p. ex. des objets à contre-dépouille avec des moyens rétractables ou démontables
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
18.
SYSTEM AND METHOD FOR ESTIMATING ENERGY PRODUCTION FROM A WIND TURBINE
The present invention relates to method for estimating energy production (107) from a wind turbine (101) with plurality of blades (102). The method comprises obtaining one or more infrared images (103) of each blade (102) of the wind turbine (101). Further, identifying one or more cross-sectional regions (302) of each of the blade (102) using the one or more infrared images (103) based on a boundary region (301), wherein the boundary region (301) is indicating a transition from a laminar air flow to a turbulent air flow. Furthermore, determining plurality of polar values indicative of an aerodynamic profile for each of the one or more cross-sectional regions (302) based on one or more panel method based techniques and the boundary region (301). Finally, estimating the energy production (107) for the wind turbine (101) based on one or more blade (102)-element momentum (BEM) based techniques using the plurality of polar values.
A method of masking a mould for moulding a wind turbine blade shell part, the method comprising the steps of: arranging a masking device in a mould so that the masking device covers the non-coating zone of the mould surface, spraying a coating onto a mould surface of the mould so that the coating is applied to a coating zone of the mould surface and prevented from being applied to a non-coating zone of the mould surface by the arrangement of the masking device, and removing the masking device from the mould so that the non-coating zone is exposed. The masking device is configured so that, upon terminating spraying of the coating at the first longitudinal boundary of the coating zone, a lip portion of the masking device is separated from the coating applied on the coating zone by a gap.
A component platform lock for holding a wind turbine blade component during attachment of the wind turbine blade component to a wind turbine blade shell part, the component platform lock comprising a first and second moving pin, first and second inner cone stud and first and second collets surrounding the inner cone stud, the collets expanding based on the movement of the inner cone stud relative to the collets.
A wind turbine blade (10) comprising a pressure side (24) and a suction side (26), a leading edge (18) and a trailing edge (20). At least a portion of the blade (10) located in a trailing edge region (142) at or adjacent to the trailing edge (20) is a noise reducing portion defining an exposed surface and comprising a plurality of sound reducing or sound absorbing acoustic resonators (58), each of the resonators (58) comprising an opening (55) in the exposed surface and a cavity (56) having a length L between the opening (55) and a bottom (57) of the cavity opposite the opening (55).
The present disclosure relates to devices for wind turbine blades and methods for reducing vibrations in wind turbines with a rotor in standstill. A device comprises a portion configured to protrude beyond a leading edge of the wind turbine blade. A device comprising a portion configured to protrude beyond the leading edge of the wind turbine may be releasably attached around a wind turbine blade substantially along a chordwise direction. The device may be detached from the blade before the wind turbine starts to operate.
The present disclosure relates to devices for wind turbine blades and methods for reducing vibrations in wind turbines with a rotor in standstill. A device comprises a portion configured to protrude beyond a leading edge of a wind turbine blade in a local chordwise direction. The portion configured to protrude beyond the leading edge is configured to at least partially form an air channel in front of the leading edge.
The present disclosure relates to a method for manufacturing a blade segment for a segmented wind turbine blade, and a resulting segment for a segmented wind turbine blade as well as the segmented wind turbine blade. In particular, the blade segment comprises a female spar part defining an inner cavity and having a longitudinal inner end and an opposite longitudinal open end towards an end face of the blade segment, a first spar cap connected to an inner surface of a first shell portion and comprising a first primary spar cap portion. The blade segment further comprises a first secondary spar cap portion affixed to a first outer surface of the female spar part. The first secondary spar cap portion is glued to the inner surface of the first shell portion and/or to the first primary spar cap portion forming a glue interface between the first secondary spar cap portion and the inner surface of the first shell portion and/or the first primary spar cap portion.
A rotor blade assembly of a wind turbine includes a first blade component and a second blade component arranged together at an interface. The interface includes a gap between the blade components. The rotor blade assembly also includes a re-closeable fastening assembly having first and second fastening members. The first fastening member is arranged with a surface of the first blade component or the second blade component. The rotor blade assembly further includes a flexible sealing member arranged so as to cover the gap. The second fastening member is arranged with a surface of the flexible sealing member to align with the first fastening member on the surface of the first blade component or the second blade component. Thus, the flexible sealing member is secured at the interface to each of the first and second blade components via the first and second fastening members.
The present disclosure is directed to a rotor blade having a passive airflow modifying assembly to create an airflow feature along the blade, based on the instant pressure gradient around the blade during operation. The present disclosure also is directed to a rotor blade that passively channels airflow through the passive airflow modifying assembly to create an air feature that decreases the aerodynamic load, at times when the aerodynamic load experienced by the blade is bearing on the rotatable hub, and one the passively channels airflow through the passive airflow modifying assembly to create an air feature that increases the aerodynamic load, at times when the aerodynamic load is not bearing on the rotatable hub, and one that passively operates to not create an air feature, at times when the requisite pressure gradient is not met and/or when the load conditions are not an issue.
F03D 7/02 - Commande des mécanismes moteurs à vent les mécanismes moteurs à vent ayant l'axe de rotation sensiblement parallèle au flux d'air pénétrant dans le rotor
27.
A GUIDE MEMBER FOR GUIDING A SHEAR WEB OF WIND TURBINE BLADE
The present invention relates to method of manufacturing a wind turbine blade (10) the method comprising the steps of providing a first shell half (61) and a second shell half (62), providing a shear web (64) having a first edge (65) and an opposing second edge (66), and attaching the first edge (65) of the shear web (64) to an inner surface (67) of the first shell half (61). One or more guide members (70) are mounted onto an inner surface (68) of the second shell half (62) for guiding the shear web, each guide member comprising a hollow body (71) and a guiding surface (72).
B29C 70/68 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts en incorporant ou en surmoulant des parties préformées, p. ex. des inserts ou des couches
B29C 33/12 - Moules ou noyauxLeurs détails ou accessoires comportant des moyens incorporés pour positionner des inserts, p. ex. marquages
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
The present invention relates to a pre-manufactured spar cap for a wind turbine blade comprising a spar cap structure comprising a plurality of fibre-reinforced composite elements arranged in stacked rows and separated by interlayers and a first and/or second damage tolerant cover sheet. The first and/or second damage tolerant cover sheets each comprises a first damage tolerant fibre layer and a second damage tolerant fibre layer attached to each other in attachment areas, wherein the attachments areas are separated from each other by a distance between 1-5 cm. Furthermore, the spar cap structure and the first and/or second damager tolerant cover sheet are embedded in a first cured resin. The present invention also relates to a damage tolerant cover sheet as such, as well as a wind turbine comprising a first and/or second damage tolerant cover sheet. Also, the present invention relates to methods of manufacturing a premanufactured spar cap, a wind turbine shell member and a wind turbine blade comprising the first and/or second damage tolerant cover sheet.
The present invention relates to a root end assembly (100) for incorporating a plurality of fastening members (74) into the root end of a wind turbine blade shell part during a moulding operation. The root end assembly (100) comprises a mounting plate (70) with a plurality of apertures (72) and a plurality of sheath members (83), each sheath member being disposed in a respective aperture of the plurality of apertures (72). Connection members (78) are received in the sheath members (83), and a plurality of said fastening members (74) are releasably attached to a respective connection member of the plurality of connection members (78) such that the fastening members (74) extend substantially normal to a first surface (77) of the mounting plate (70). The apertures (72) are dimensioned for allowing translational movement of the sheath members (83) in the respective apertures (72).
B29C 70/68 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts en incorporant ou en surmoulant des parties préformées, p. ex. des inserts ou des couches
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
30.
DEVICES AND METHODS FOR MITIGATING VIBRATIONS IN WIND TURBINE BLADES
The present disclosure relates to devices for wind turbine blades and methods for reducing vibrations in wind turbines. More particularly, the present disclosure relates to devices for mitigating vortex induced vibrations and stall induced vibrations, wind turbine blades comprising such devices, and methods for reducing wind turbine vibrations when the wind turbine is parked, especially during wind turbine installation and/or maintenance. A method for mitigating vibrations of a parked wind turbine comprises arranging a device in an inactive state with a wind turbine blade; and causing the device to transition to an active state in which the device grips the wind turbine blade more strongly than in the inactive state.
The present invention relates to a method of manufacturing a wind turbine blade comprising the steps of manufacturing a pressure shell halves and arranging a spar structure (62) within one of the shell halves. The spar structure (62) comprises two parts releasably coupled to each other. The method results in a segmented wind turbine blade for easy transportation and re-assembly.
A leading-edge protector element for protecting a leading-edge of a wind turbine blade is provided. The leading-edge protector element includes a film layer and a rubber layer, and is provided on a coiled-up roll. The leading-edge protector element has a thickness between a first edge, a second edge, a third edge, and a fourth edge. The thickness decreases along a transverse direction towards the third edge and towards the fourth edge. The leading-edge protector element for protecting a leading-edge of a wind turbine blade may alternatively only include a rubber layer and also be provided on a coiled-up roll.
A wind turbine blade includes: an aerodynamic shell body with a suction side shell part and a pressure side shell part that extends in a longitudinal direction between a root and a tip and in a transverse direction between a leading edge and a trailing edge, and a de-icing system. The de-icing system includes: a number of heating layers each having electrically conductive fibres extending substantially in the longitudinal direction of the wind turbine blade along a longitudinal section of the aerodynamic shell body to provide resistive heating to the longitudinal section of the aerodynamic shell body; a number of metallic patches including a first metallic patch, the number of metallic patches being arranged to contact at least the number of heating layers; and a conductor cable that is electrically connected to the number of metallic patches and further is configured for electrically connecting to a power source.
The present invention relates to a spar cap for a wind turbine blade and a method for manufacturing said spar cap. The spar cap comprises: a plurality of reinforcing fibre layers comprising unidirectionally oriented reinforcement fibres, wherein the plurality of reinforcing fibre layers are arranged such that the spar cap tapers in thickness towards a first longitudinal end, and a number of first fibre skin layers arranged on a first surface of the plurality of reinforcing fibre layers, and a number of second fibre skin layers arranged on a second surface of the plurality of reinforcing fibre layers, such that the plurality of reinforcing fibre layers are arranged between the number of first fibre skin layers and the number of second fibre skin layers. The number of first fibre skin layers and the number of second fibre skin layers extend beyond the plurality of reinforcing fibre layers towards the first longitudinal end of the spar cap, and the first longitudinal end of the spar cap is serrated along a transverse direction, forming a first serrated section.
B29C 70/08 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement comprenant des combinaisons de différentes formes de renforcements fibreux incorporés dans une matrice, formant une ou plusieurs couches, avec ou sans couches non renforcées
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29K 31/00 - Utilisation de poly(esters de vinyle) comme matière de moulage
B29K 63/00 - Utilisation de résines époxy comme matière de moulage
B29K 67/00 - Utilisation de polyesters comme matière de moulage
B29K 105/08 - Présentation, forme ou état de la matière moulée contenant des agents de renforcement, charges ou inserts de grande longueur, p. ex. ficelles, mèches, mats, tissus ou fils
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
B32B 3/26 - Produits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche continue dont le périmètre de la section droite a une allure particulièreProduits stratifiés comprenant une couche ayant des discontinuités ou des rugosités externes ou internes, ou une couche de forme non planeProduits stratifiés comprenant une couche ayant des particularités au niveau de sa forme caractérisés par une couche comportant des cavités ou des vides internes
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 5/26 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches étant fibreuse ou filamenteuse un autre couche également étant fibreuse ou filamenteuse
35.
MANUFACTURE OF A LEADING-EDGE PROTECTION ELEMENT BY TRIMMING
The present invention provides a method for trimming a side portion of a pre-manufactured leading-edge protection element for a wind turbine blade. The element comprises a first side portion and a second side portion, the first side portion, when mounted to the wind turbine blade, extending from the leading edge and along a part of a pressure side of the wind turbine blade, and the second side portion, when mounted to the wind turbine blade, extending from the leading edge and along a part of a suction side of the wind turbine blade, or vice versa. The method comprises steps of: providing a support structure and a first cutting tool; arranging element on the support structure and fixating the element to the support structure, and cutting along a predetermined cutting path, whereby the leading-edge protection element is trimmed to a predetermined length. A corresponding system is also provided.
B26D 1/157 - Coupe d'une pièce caractérisée par la nature ou par le mouvement de l'élément coupantAppareils ou machines à cet effetÉléments coupants à cet effet comportant un élément qui ne suit pas le mouvement de la pièce ayant un élément coupant se déplaçant autour d'un axe avec un élément circulaire, p. ex. un disque tournant autour d'un axe mobile
A rotor blade for a wind turbine is disclosed. The rotor blade is comprising a first shell and a second shell, forming a first aerodynamic surface, a second aerodynamic surface, a trailing edge, and a leading edge. Furthermore, the rotor blade has at least one connective element having at least a first shell support portion, a second shell support portion, and an element support portion, wherein the first shell support portion is connected to the element support portion by a first arm, wherein the second shell support portion is connected to the element support portion by a second arm. The connective element is arranged, mounted, and/or attached between the first shell and the second shell by a first shell connection being effective between the first shell support portion and the first shell, by a second shell connection being effective between the second shell support portion and the first shell, and by an element connection being effective between the element support portion and the second shell.
The present invention relates to a leading edge protection for a wind turbine blade, wherein a leading edge axis of the leading edge protection is configured to be fitted on at least part of a leading edge of a wind turbine blade and the leading edge protection is configured to extend between the leading edge and a first edge downstream a first side of the wind turbine blade as well as between the leading edge and a second edge downstream a second side of the wind turbine blade, wherein the leading edge protection comprises a first part and wherein the first edge is configured to be non-parallel with the leading edge of the wind turbine blade along the first part of the leading edge protection. The present invention further relates to a wind turbine blade comprising the leading edge protection and a wind turbine comprising the wind turbine blade. Finally, the present invention relates to a method for protecting a leading edge of a wind turbine blade arranged on a wind turbine and a leading edge protection obtainable by that method.
A method of manufacturing a shell of a wind turbine blade is disclosed. The method of manufacturing includes laying one or more layers of fiber on a surface of mould to form the shell. A spar element is positioned at a pre-defined position on the one or more layers of fiber, and a vacuum bag is positioned or covered around the one or more layers of fiber and the spar element. The method further includes step of infusion of resin through the one or more layers of fiber and the spar element. The resin is subsequently allowed to cure to obtain the shell of the wind turbine blade. The spar element is thus adhered to the shell through resin infusion process.
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29K 63/00 - Utilisation de résines époxy comme matière de moulage
A method of forming a rotor blade includes positioning first dry skin layer(s) in a first mold. The method also includes placing a wedge-shaped core material having a mounting surface atop the first dry skin(s) in the first mold at a trailing edge end of the rotor blade. The method further includes infusing the first dry skin layer(s) and the core material together via a resin material to form a first shell member. The method includes applying an adhesive onto the mounting surface and then placing a second mold with a second shell member arranged therein atop the first mold containing the first shell member to form the rotor blade such that a portion of the second shell member rests atop the mounting surface. Thus, the method includes securing the shell members together via the adhesive, wherein the core material supports the trailing edge end of the rotor blade.
A system (50) for handling a structural member (44) of a blade (10) of a wind turbine (2), comprising a member support (52) configured for supporting the structural member (44), the member support (52) being configured to be mounted to a base (51), and a plurality of member turning devices (60) positioned along a longitudinal axis (54) of the member support (52), the plurality of member turning devices (60) being connected to the member support (52) and configured for turning the structural member (44).
A method for manufacturing an article includes providing a plurality of flat sheets of fiber-reinforced polymer material. The method also includes forming the plurality of flat sheets of the fiber-reinforced polymer material into a plurality of curved sheets of the fiber-reinforced polymer material. Further, the method includes assembling the plurality of curved sheets of the fiber-reinforced polymer material in a tooling device to form an outer shape of the article. Moreover, the method includes securing each of the plurality of curved sheets of the fiber-reinforced polymer material together to form the article.
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29B 17/00 - Récupération de matières plastiques ou d'autres constituants des déchets contenant des matières plastiques
B29C 70/06 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement
B29C 70/46 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs"
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29L 31/08 - Pales pour rotors, stators, ventilateurs, turbines ou dispositifs analogues, p. ex. hélices
A method for joining rotor blade segments of a rotor blade includes placing a first blade segment in an assembly fixture. The assembly fixture has an outer carrier and at least one bladder arranged with the outer carrier. The first blade segment has an adhesive applied at one or more locations. The method also includes arranging the first blade segment with a second blade segment at at least one joint using the assembly fixture with the adhesive positioned at the at least one joint. Further, the method includes inflating the at least one bladder to provide pressure to the at least one joint, wherein the pressure causes the adhesive to displace between the first and second blade segments at the at least one joint, thereby securing the first and second blade segments together at the at least one joint. Moreover, the method includes maintaining the pressure via the at least one inflated bladder to allow the adhesive to cure, thereby securing the first and second blade segments together.
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
A method of manufacturing a wind turbine blade (10) is provided, the method comprising the steps of providing a first shell half (38) and a second shell half (36), providing at least one shear web (50) having a web body (61) arranged between a first mounting flange (62) and an opposing second mounting flange (63), and providing a lifting assembly (65). The lifting assembly comprising at least one crane device (68), a lifting rail (69) suspended from the at least one crane device (68), and a plurality of lifting clamps (70, 72), each lifting clamp being connected to the lifting rail (69). The method further comprises the steps of attaching the lifting clamps (70, 72) to the shear web (50), lifting the shear web (50) with the lifting assembly (65), lowering the shear web (50) into the first shell half (38) with the lifting assembly (65), bonding the first mounting flange (62) of the shear web (50) to an inner surface (66) of the first shell half (38), detaching the lifting clamps (70, 72) from the shear web (50), bringing the first and second shell halves (38, 36) together, and bonding the second mounting flange (63) of the shear web to the second shell half (36).
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B66C 1/44 - Organes de saisie engageant uniquement les faces externes ou internes des objets et leur appliquant des forces de friction
B66C 1/48 - Organes de saisie engageant uniquement les faces externes ou internes des objets et leur appliquant des forces de friction sur les bords verticaux des plaques, tubes ou objets similaires ou à parois minces
F03D 13/10 - Assemblage de mécanismes moteurs à ventDispositions pour l’érection de mécanismes moteurs à vent
44.
STRUCTURAL TILES CONSTRUCTED OF RECYCLED FIBER REINFORCED POLYMER MATERIALS FOR USE IN COMPOSITE PANELS
A method for forming a structural tile for use in a composite panel includes providing a base plate of a compression mold assembly. The method also includes placing a grid structure mold of the compression mold assembly atop the base plate. The grid structure mold defines a cavity having a desired shape for a grid structure. Further, the method includes filling the cavity of the grid structure mold with a plurality of fragments of recycled fiber reinforced polymer material. Moreover, the method includes placing a cover plate of the compression mold assembly atop the grid structure mold to apply pressure to the grid structure mold. The method also includes applying heat to the cover plate to heat the plurality of fragments of recycled fiber reinforced polymer material such that the recycled fiber reinforced polymer material melts within the cavity. In addition, the method includes allowing the melted recycled fiber reinforced polymer material to cure to form the structural tile.
A prefabricated fairing for a wind turbine blade, the fairing extending along a fairing profile terminating at fairing lips and comprising exterior and interior fairing surfaces and a plurality of layers including fibre-reinforced layers and an exterior erosion-resistant elastomer layer forming a portion of the exterior fairing surface and being configured for defining the leading edge of the wind turbine blade, the fairing further comprises a cured first resin binding the erosion-resistant elastomer layer and the one or more fibre-reinforced layers together.
The present invention relates to a method of manufacturing a wind turbine blade (10). The method comprises arranging one or more shear webs (50, 55, 70) within a first shell half, adhesively joining the one or more shear webs to the first shell half, and adhesively joining the second shell half to the first shell half and to the one or more shear webs. The step of arranging the one or more shear webs within the first shell half comprises arranging at least one telescopic support member (80) between the inside surface (38b) of the first shell half (38) and the lateral surface (62) of at least one of the shear webs (70), wherein the telescopic support member (80) comprises an actuator (82) for adjusting the length of the telescopic support member.
A main laminate for a wind turbine blade, a wind turbine blade, and methods for manufacturing such components are disclosed. The main laminate extends along a longitudinal direction and comprising a connector element comprising a conductive mesh portion and an elongated connector part, wherein a connector part length is longer than an edge distance between the conductive mesh portion and a first edge, and wherein a secondary connector portion of the elongated connector part is bendable around a bend axis substantially parallel to the longitudinal direction.
The present invention relates to a method of manufacturing a wind turbine blade shell component (38), the method comprising the steps of providing a plurality of abraded pultrusion plates (64) having abraded edges, arranging the abraded pultrusion plates (64) in layers on blade shell material (89) in a mould (77) for the blade shell component, the layers being separated by electrically conductive interlayers, and bonding the abraded pultrusion plates (64) with the blade shell material to form the blade shell component, wherein each pultrusion plate (64) is formed of a pultrusion fibre material comprising glass fibres and carbon fibres. The invention also relates to a reinforcing structure for a wind turbine blade, the reinforcing structure comprising a plurality of pultrusion plates according to the present invention.
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
The present invention provides a to method for reinforcing a wind turbine blade, such as a root end. The root end comprises a first and a second bushing for attaching the wind turbine blade to a wind turbine hub, the bushings being located between an inner sidewall of the root end and an outer sidewall of the root end, the bushings being separated by retaining material, the method comprising forming a first injection channel in the retaining material; forming a first pressure release channel in the first retaining material, wherein the first pressure release channel is formed to be in fluid communication with the first injection channel in a region between the inner sidewall and the outer sidewall; and injecting adhesive material into the first injection channel at least until adhesive material enters the formed first pressure release channel. The invention also provides a wind turbine blade having a root end that has been reinforced using such a method. Further aspects are provided.
The present invention relates to a mould assembly (100) for manufacturing a wind turbine blade shell part, and to a method of manufacturing a wind turbine blade shell part using the mould assembly (100). The mould assembly (100) comprises a lowering device (85), which is adapted to carry and lower a root end insert onto the moulding surface of the mould, the lowering device (85) being attached to the mould and comprising a frame (86) for carrying the root end insert. Two synchronized hydraulic cylinders (91, 92) are used as driving means for lowering the frame, each hydraulic cylinder comprising a piston chamber and a rod chamber, wherein the piston chamber and the rod chamber of each cylinder are connected to each other via a respective valve assembly (110) comprising a fluid line (96) and a valve (97).
A prefabricated fairing for a wind turbine blade comprising fairing lips and exterior and interior fairing surfaces, wherein the fairing has a first fairing state in which the fairing is adapted to be mounted to a blade body of the wind turbine blade and a second fairing state in which the fairing is adapted to be fixed to the blade body, the fairing lips being compressed towards each other in the second fairing state relative to the first fairing state, wherein the fairing is brought from the first fairing state to the second fairing state upon application of a compression force onto the exterior fairing surface at fairing lips, wherein a difference between a first fairing lip distance in the first fairing state and a second fairing lip distance in the second fairing state is equal to or greater than 5 mm.
A method of joining first and second blade components of a rotor blade of a wind turbine includes providing corresponding first and second positioning elements at an interface of the first and second blade components. The method also includes aligning and securing the first positioning element of the first blade component with the second positioning element of the second blade component so as to temporarily secure the first and second blade components together. Further, the corresponding first and second positioning elements maintain a desired spacing between the first and second blade components. Moreover, the method includes permanently securing the first and second blade components together such that the desired spacing is maintained between the first and second blade components.
An apparatus 100 for determining orientation of a segment 32 and 30 of a wind turbine blade 28 is disclosed. The apparatus includes an elongated member 1 and a support plate 2 provided at one end of the elongated member 1. The support plate 2 is defined with one or more provisions 4 to facilitate connection with the segment 32 and 30 of the wind turbine blade 28. Further, a measuring plate 3 is provided at another end opposite to the one end of the elongated member 1, where the measuring plate 3 is defined with a substantially airfoil profile 35. The measuring plate 3 includes a plurality of markers 18 disposed along an airfoil region 34 where, each of the plurality of markers 18 is indicative of one or more of multiple parameters to determine the orientation of the segment 32 and 30.
An apparatus 100 for determining orientation of a segment 32 and 30 of a wind turbine blade 28 is disclosed. The apparatus includes an elongated member 1 and a support plate 2 provided at one end of the elongated member 1. The support plate 2 is defined with one or more provisions 4 to facilitate connection with the segment 32 and 30 of the wind turbine blade 28. Further, a measuring plate 3 is provided at another end opposite to the one end of the elongated member 1, where the measuring plate 3 is defined with a substantially airfoil profile 35. The measuring plate 3 includes a plurality of markers 18 disposed along an airfoil region 34 where, each of the plurality of markers 18 is indicative of one or more of multiple parameters to determine the orientation of the segment 32 and 30.
FIG. 6 is the representative figure.
Disclosed is a mould system for moulding a blade shell of a wind turbine blade comprising a first mould for manufacturing a first blade shell part of the wind turbine blade; a second mould for manufacturing a second blade shell part of the wind turbine blade; a turning device configured to reposition the first mould between an open mould position and a closed mould position comprising a turning mechanism and a first primary beam connecting the turning mechanism and the first mould; a first scaffold arranged between the first mould and the second mould in the open mould position and comprising a first primary scaffold part and a first secondary scaffold part spaced apart by a first primary scaffold opening, the first primary scaffold allowing the first primary beam to move therethrough during repositioning of the first mould; a first primary movable platform attached to the first mould and being configured to move between an extended platform position and a stored platform position and covering the first primary scaffold opening in the extended position and arranged to expose the first primary scaffold opening in the stored platform position.
A wind turbine blade part includes a plurality of precured fibrous elements each having a width defined between a first side and an opposite second side, a thickness defined between an upper surface and an opposite lower surface, a length defined by a first longitudinal end and a second longitudinal end, and a longitudinal direction extending between the first longitudinal end and the second longitudinal end. Each precured fibrous element includes a plurality of unidirectional fiber bundles extending substantially in the longitudinal direction of the precured fibrous element and at least one non-woven fiber strip. The plurality of unidirectional fiber bundles and the at least one non-woven fiber strip are embedded in a polymer matrix. The non-woven fiber strip is arranged between a plurality of first unidirectional fiber bundles and a plurality of second unidirectional fiber bundles of the plurality of unidirectional fiber bundles.
The disclosure relates to a fibre reinforcement fabric for a wind turbine component, the fabric comprising a first plurality of fibre bundles arranged in parallel in a warp direction and stitched together, the fabric having a first outermost fibre bundle defining a first fabric edge parallel to the warp direction and a second outermost fibre bundle defining a second fabric edge opposite the first fabric edge, the fabric having a first tapered portion including the first outermost fibre bundle, wherein a thickness of the fabric in the first tapered portion is tapering from a first fabric thickness to a second fabric thickness in a direction towards the first fabric edge. The disclosure also relates to a spar cap and a wind turbine blade shell part comprising such fabric or fabrics.
B29C 70/22 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans au moins deux directions formant une structure bidimensionnelle
B29C 70/30 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau
57.
DAMPING SYSTEM FOR WIND TURBINE BLADE EDGE VIBRATION STABILIZATION
A wind turbine blade extending in a longitudinal direction between a root end and a tip end and comprising a shell having an outer surface defining a pressure side and a suction side, a leading edge and a trailing edge, a chord having a chord length extending between the leading edge and the trailing edge and a load-bearing structure extending in the longitudinal direction, the wind turbine blade further comprises a dampening system comprising a blade dampening body attached exteriorly to the load-bearing structure or exteriorly to the outer surface of the shell, at least a first dampener located within the blade dampening body and positioned with a component in the chordwise direction of the blade and adapted to absorb vibrational forces the wind turbine blade is subjected to.
A wind turbine blade inspection system for inspecting a wind turbine blade part, such as a wind turbine blade shell part or a wind turbine blade spar cap, for defects, is described. The wind turbine blade shell part extends in a longitudinal direction, and wherein the system comprises: at least a first image capturing device; conveying means for moving the at least first image capturing device along the wind turbine blade part and configured so as to capture a plurality of acquired images comprising first images of parts of the wind turbine blade part along the wind turbine blade part; and an image processing unit configured to identify an anomaly in the plurality of acquired images and identify whether the anomaly relates to a defect in the wind turbine blade part.
G01N 21/95 - Recherche de la présence de criques, de défauts ou de souillures caractérisée par le matériau ou la forme de l'objet à analyser
G06T 5/20 - Amélioration ou restauration d'image utilisant des opérateurs locaux
G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
The present invention relates to a method of manufacturing a wind turbine blade shell component (38), the method comprising the steps of providing a plurality of pultrusion plates (64), arranging the pultrusion plates (64) on blade shell material (89) in a mould (77) for the blade shell component, and bonding the pultrusion plates (64) with the blade shell material to form the blade shell component, wherein each pultrusion plate (64) is formed of a pultrusion fibre material comprising glass fibres and carbon fibres. The invention also relates to a reinforcing structure for a wind turbine blade, the reinforcing structure comprising a plurality of pultrusion plates according to the present invention.
B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
The present invention relates to a protective cap for protecting a leading edge of a wind turbine blade. The protective cap comprises first and second attachment portions for attaching the protective cap to a suction side and a pressure side of the wind turbine blade and comprises a first metal layer and a second metal layer, the first and second metal layers extending between the first and the second attachment portions, and the first metal layer and the second metal layer are at least partly spaced apart. A wind turbine blade with a protective cap is also provided. Methods for manufacturing a protective cap and a wind turbine blade with a protective cap are also provided.
The present invention relates to a pre-impregnated fibre sheet extending in a longitudinal direction and in a transverse direction and comprising a first fibre layer forming part of an upper surface of the pre-impregnated fibre sheet and a second fibre layer forming part of a lower surface of the pre-impregnated fibre sheet, wherein the first fibre layer is pre-impregnated with an adhesion promotor. The present invention further relates to methods of manufacturing a blade shell member or wind turbine blade comprising a pre-manufactured spar cap and a number of pre-impregnated fibre sheets arranged to obtain an improved adherence between the blade shell and pre-manufactured spar cap, particularly when the pre-manufactured spar cap is resin infused with vinyl ester or epoxy resin and the blade mould is resin infused with polyester.
The present disclosure relates to dampening of predominantly edgewise vibrations in a wind turbine blade. This is achieved by a wind turbine blade comprising one or more bump airfoil sections, each bump airfoil section being characterised in that for any airfoil within the bump airfoil section, the airfoil's pressure side profile yp has particular geometric properties near the trailing edge of the airfoil. Furthermore, a total length of all bump airfoil sections in the blade is at most 30% of the length of the blade, and at least half of the total length of all bump airfoil sections in the wind turbine blade is provided by one or more bump airfoil sections located spanwise in the outermost 30% of the blade.
A scarfing machine includes a base and a pair of platens adjustably positioned on the base. The pair of platens are configured as an upper platen and a lower platen such that the upper platen is fixed to the base and the lower platen is adjustably positioned on the base, to receive and support a member for scarfing. Also, at least one platen of the pair of platens is hollow and is defined with an inlet port and an outlet port. The scarfing machine further includes a scarfing tool, extending from either side and along a length of at least one of the pair of platens, to scarf the member supported between the pair of platens. The scarfing machine also includes a cooling circuit, fluidly connectable to the inlet port and the outlet port of the at least one platen of the pair of platens.
B24B 55/03 - Équipement pour refroidir les surfaces abrasives, p. ex. dispositifs d'alimentation en agent de refroidissement conçus comme équipement complet d'alimentation en agent de refroidissement ou de clarification de celui-ci
B24B 21/00 - Machines ou dispositifs utilisant des bandes de meulage ou de polissageAccessoires à cet effet
64.
WIND TURBINE BLADE HAVING BUCKLING-RESISTANT SPAR CAPS
A wind turbine blade comprising a shell, a carbon fibre-reinforced suction-side spar cap, a carbon fibre-reinforced pressure-side spar cap, at least a first shear web connected to the spar caps, one or more suction-side buckling reinforcement elements each being formed of a material different from the suction-side spar cap and being positioned on the interior surface of the suction-side spar cap and at a distance from the suction-side end of the first shear web, and one or more pressure-side buckling reinforcement elements each being formed of a material different from the pressure-side spar cap and being positioned on the interior surface of the pressure-side spar cap and at a distance from the pressure-side end of the first shear web.
The present invention relates to methods and devices for post mould processing of a composite structure, wherein the composite structure extends along a longitudinal direction and comprising a main composite part, and a flange section extending around a perimeter of the main composite part. The flange section comprises an upper surface having a first mating part with a specific shape in a cross-sectional plane perpendicular to the longitudinal direction, the first mating part being located at a fixed position relative to the main composite part. The method may comprise attaching a guiding device to the outer surface of the composite structure and inspecting and/or processing the surface area with a tool fitted to the guiding device.
The present invention relates to a method of manufacturing a fibre-reinforced spar cap (41) for a wind turbine. The method comprises the steps of providing a mould (62), and fastening a first guide member (64) and a second guide member (66) to the mould for providing a moulding cavity (68) in between the first and second guide members. A fibre material can be arranged within the moulding cavity, such that a first gap (72) is provided between the fibre material and the first guide member, and a second gap (74) is provided between the fibre material and second guide member. First and second inserts (78, 80) are inserted into the gap prior to resin infusion.
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
Method for manufacturing a wind turbine blade comprising an aerodynamic shell forming an outer surface of the blade and at least one main laminate, the method comprising; providing a mould 13, forming a main laminate 18 in the mould by providing a fibre lay-up comprising a plurality of fibre plies placed on top of each other in the mould 13, dividing the fibre lay-up into at least two segments as seen in the longitudinal direction of the mould by at least one transverse flow barrier 54,55 in the lay-up preventing longitudinal resin flow through the fibre lay-up past the flow barrier 54,55.
B29C 70/34 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau et façonnage ou imprégnation par compression
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
69.
Method of manufacturing wind turbine blade with core member and wind turbine blade with structural member
The present invention relates to a method of manufacturing a wind turbine blade (10), comprising the steps of placing a fibre lay-up including one or more fibre layers on the mould surface of a blade mould (60), arranging a load-bearing structure (45) and a core member (62) on the fibre lay-up such that the core member (62) is arranged between the load-bearing structure (45) and the leading edge (18) and/or between the load-bearing structure (45) and the trailing edge (20), and infusing resin into the blade mould to impregnate the fibre lay-up. The core member (62) comprises a first hole (64) with a circular cross section, a first cylindrical insert (70) rotatably arranged within the first hole (64) of the core member (62), the first cylindrical insert (70) having a central axis (71). A recess (80) is formed in the first cylindrical insert (70), wherein the recess (80) is arranged eccentrically with respect to the central axis (71) of the first cylindrical insert (70).
B29C 70/30 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau
B29C 70/86 - Incorporation dans des couches de renforcement imprégnées cohérentes
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
The present invention relates to a wind turbine blade comprising a lightning protection system with at least one tip end lightning receptor arranged at an outer surface of the blade and a down conductor extending within the blade. The blade comprises carbon fibre reinforced spar caps, wherein electrically conductive meshes are connected between the respective tip end of each spar cap to the tip end lightning conductor.
B29C 70/30 - Façonnage par empilage, c.-à-d. application de fibres, de bandes ou de feuilles larges sur un moule, un gabarit ou un noyauFaçonnage par pistolage, c.-à-d. pulvérisation de fibres sur un moule, un gabarit ou un noyau
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
B29K 105/10 - Présentation, forme ou état de la matière moulée contenant des agents de renforcement, charges ou inserts de grande longueur, p. ex. ficelles, mèches, mats, tissus ou fils orientés
A flow-enhancing fabric extends in a longitudinal direction and in a transverse direction. The fabric includes a plurality of fibre layers including a first fibre layer and a second fibre layer arranged upon each other, the first fibre layer has a first plurality of fibre bundles oriented in parallel in a first fibre direction and has a plurality of first glass fibre bundles and a number of first carbon fibre bundles. The second fibre layer has a second plurality of fibre bundles oriented in parallel in a second fibre direction different from the first direction and has a plurality of second glass fibre bundles and a number of second carbon fibre bundles. At least a number of first carbon fibre bundles intersect and contact a number of second carbon fibre bundles. The fabric has a plurality of monofilaments arranged between the first and second fibre layer along the transverse direction.
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/08 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement comprenant des combinaisons de différentes formes de renforcements fibreux incorporés dans une matrice, formant une ou plusieurs couches, avec ou sans couches non renforcées
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
B29C 70/22 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans au moins deux directions formant une structure bidimensionnelle
A wind turbine blade comprising a plurality of spar components extending along the longitudinal axis and providing the main bending stiffness of the wind turbine blade a major principal axis defining a structural pitch angle of at least 1° with respect to a chord line, and including: one or more suction-side spar caps each having a centre line; one or more pressure-side spar caps each having a centre line; and one or more shear webs distributed around a central shear web line and at least one of which being connected to first spar caps, wherein at least one suction-side spar cap centre lines is arranged with a first chordwise distance to the central shear web line, and at least one pressure-side spar cap centre lines is arranged with a second, different, chordwise distance to the central shear web line.
The present invention relates to a method of manufacturing a wind turbine blade shell component (38), the method comprising the steps of providing a plurality of pultrusion plates (64), arranging the pultrusion plates (64) on blade shell material (89) in a mould (77) for the blade shell component, and bonding the pultrusion plates (64) with the blade shell material to form the blade shell component, wherein each pultrusion plate (64) is formed of a pultrusion fibre material comprising glass fibres and carbon fibres. The invention also relates to a reinforcing structure for a wind turbine blade, the reinforcing structure comprising a plurality of pultrusion plates according to the present invention.
B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
B29C 70/88 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts caractérisées principalement par des propriétés spécifiques, p. ex. électriquement conductrices ou renforcées localement
74.
A MECHANISM FOR RESTRAINING MOVEMENT OF A LOCKING PIN
A mechanism for restraining movement of a locking pin is disclosed. The mechanism includes a plurality of bushings 1. At least one of the plurality of bushings is provided in an aperture 76, 78 and on either ends of the locking pin 74. Further, at least one primary restraining mechanism 7 is configured in the at least one bushing 1 at one end of the locking pin 74, where the primary restraining mechanism 7 is fixedly connected to the at least one bushing 1 and is configured to restrain at least one of sliding and rotary movement of the locking pin 74.
A method of manufacturing a wind turbine blade part, such as a spar cap, by means of resin transfer moulding, preferably vacuum assisted resin transfer moulding, where fibre reinforcement material is impregnated with liquid resin in a mould cavity, wherein the mould cavity includes a rigid mould part having a mould surface defining a surface of the wind turbine blade part is described. The method includes the steps of: a) stacking a plurality of fibre reinforcement layers on the rigid mould part forming a fibre reinforcement stack, b) providing at least one flow-enhancing mat in the fibre reinforcement stack, c) sealing a second mould part, against the rigid mould part to form the mould cavity, d) optionally evacuating the mould cavity, e) supplying a resin to the mould cavity, and f) curing or hardening the resin in order to form the wind turbine blade part.
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29C 70/12 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres courtes, p. ex. sous forme d'un mat
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 71/00 - Post-traitement d'objets sans modification de leur formeAppareils à cet effet
76.
METHOD OF MANUFACTURING A SPAR CAP FOR A WIND TURBINE BLADE PART
A method of manufacturing a spar cap for a wind turbine blade part, comprise the steps of:
providing a plurality of precured elongated fibre reinforced resin elements
stacking the plurality of fibre reinforced elements, an interlayer of an elongated non-cured fibre material being arranged between successive fibre reinforced elements, thereby forming a stack of precured fibre reinforced elements,
moving the stack of fibre reinforced elements to a spar cap mould comprising a mould bottom and mould side walls,
arranging the stack of fibre reinforced elements in the cavity of the spar cap mould
infusing resin into the stack of fibre reinforced elements in the mould
allow the resin to cure and demould the stack
B29D 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
B29C 70/06 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
B29C 70/86 - Incorporation dans des couches de renforcement imprégnées cohérentes
77.
A Precured Fibrous Strip for a Load-Carrying Structure for a Wind Turbine Blade
A precured fibrous composite strip for a load-carrying structure for a wind turbine blade has a first longitudinal end and a second longitudinal end, a first side and a second side with a width defined as the distance between the first side and the second side, and an upper surface and a lower surface with a thickness defined as the distance between the upper surface and the lower surface. The strip includes a taper region with a taper length at the first longitudinal end. The taper region tapers in thickness towards the first longitudinal end. The taper region includes a first taper section proximal to the first longitudinal end and having a first average taper angle, a third taper section distal to the first longitudinal end and having a third average taper angle, and a second taper section between the first taper section and the third taper section.
B29C 70/86 - Incorporation dans des couches de renforcement imprégnées cohérentes
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/20 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans une seule direction, p. ex. mèches ou autres fibres parallèles
78.
JOINTED WIND TURBINE ROTOR BLADE HAVING IMPROVED TRANSITIONS BETWEEN VARYING MATERIAL COMBINATIONS
A method of joining first and second blade components of a rotor blade of a wind turbine includes arranging the first blade component and the second blade component together at an interface. The first and second blade components are formed of different materials having different stiffnesses. The method further includes providing at least one gap at the interface of the blade components. Further, the method includes securing the blade components together by at least partially filling the gap with at least one filler material. Moreover, the method includes further securing the blade components together via an infusion process, wherein, during the infusion process, additional filler material further fills the gap or covers at least a portion of the at least one filler material. In addition, the method includes allowing the filler material(s) to cure. Thus, upon curing, the filler material(s) is configured to smoothly transition a load between the different materials of the blade components, thereby limiting an associated stress at the interface.
The present invention relates to a moulding assembly (100) for manufacturing a shell part of a wind turbine blade, and to methods of manufacturing a shell part of a wind turbine blade using the moulding assembly. The moulding assembly (100) comprises a blade mould (96) with a moulding cavity (97), a gripping device (76) for releasably engaging a preform (98) for the shell part, and a lifting device (102). The lifting device comprises a first hoisting device (104a) and a second hoisting device (104b), each of the first and second hoisting devices comprising a respective load engaging member (110a, 110b) for connecting the first and the second hoisting devices (104a, 104b) to the gripping device.
The present invention relates to a spar cap for a wind turbine blade comprising a plurality of pre-cured fibre-reinforced elements and a plurality of interlayers. The plurality of pre-cured fibre-reinforced elements include a first pre-cured fibre-reinforced element and a second pre-cured fibre-reinforced element and the plurality of interlayers include a first interlayer comprising a first plurality of fibres embedded in a first cured resin. The first interlayer is being arranged between the first pre-cured fibre-reinforced element and the second pre-cured fibre-reinforced element. The first plurality of fibres have a first elastic modulus, the first cured resin has a second elastic modulus, the first and/or second pre-cured fibre-reinforced elements have a third elastic modulus, and the first interlayer has a fourth elastic modulus. The ratio between the first elastic modulus and the second elastic modulus is between 1:4 and 4:1 and/or the ratio between the third elastic modulus and the fourth elastic modulus is between 1:4 and 4:1.
B32B 5/26 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par la présence de plusieurs couches qui comportent des fibres, filaments, grains ou poudre, ou qui sont sous forme de mousse ou essentiellement poreuses une des couches étant fibreuse ou filamenteuse un autre couche également étant fibreuse ou filamenteuse
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 5/12 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par la disposition relative des fibres ou filaments des couches adjacentes
B32B 5/06 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par une couche fibreuse imbriquée ou cousue avec une autre couche, p. ex. de fibres, de papier
B32B 37/18 - Procédés ou dispositifs pour la stratification, p. ex. par polymérisation ou par liaison à l'aide d'ultrasons caractérisés par les propriétés des couches toutes les couches existant et présentant une cohésion avant la stratification impliquant uniquement l'assemblage de feuilles ou de panneaux individualisés
The present disclosure relates to fastener assemblies (400) for a wind turbine blade (22) to rotor hub (20) connection, wherein the fastener assembly (400) comprises a fastener (401) and one or more sleeves (410) configured to absorb the ingress of liquid into a blade root insert (220). The present disclosure also relates to wind turbine hub assemblies (1000) and associated methods (700).
A rotor blade assembly for mitigating stall-induced vibrations of a wind turbine during standstill includes at least one protrusion secured to the leading-edge of a rotor blade and defining an extended leading edge. The protrusion(s) wraps around a portion of the rotor blade from the suction side to the pressure side of the rotor blade. The protrusion(s) has a root-side face and a tip-side face disposed opposite thereof. The root-side face is arranged at an angle relative to a chordwise reference line. The angle is greater than zero degrees and less than or equal to 45 degrees with respect to the chordwise reference line. The protrusion(s) is configured to affect a chordwise airflow and thereby mitigate a stall-induced vibration.
A trailing edge panel is configured to be attached to a trailing edge of a wind turbine blade and includes a base element and a number of protruding aerodynamic elements. The base element has an attachment part configured to be attached to and extend from the trailing edge of the wind turbine blade and to an upstream position on a first blade side of the wind turbine blade. The base element further has a serrated part extending from the second side of the attachment part and configured to project out from the trailing edge of the wind turbine blade, wherein the serrated part comprises a number of serrations, including a first serration and a second serration. The number of protruding aerodynamic elements, including a first protruding aerodynamic element, includes a first protruding part attached to the serrated part of the base element.
A vortex generator tape for installation on an outer surface of a wind turbine blade, the vortex generator comprising an elongate base part comprising an inner side configured for being adhered to the outer surface of the wind turbine blade, and an outer side arranged opposite to the inner side; and a plurality of protrusions each for generating vortices during the operation of the wind turbine blade, wherein each protrusion protrudes from the outer side of the base part and is spaced apart from every other protrusion along the base part; wherein the plurality of protrusions is formed integrally with the base part.
Disclosed is a wind turbine blade extending from a root end to a tip end, the wind turbine blade comprising a root region, and an airfoil region comprising the tip, a pressure side, a suction side and a chord extending between a leading edge and a trailing edge. The wind turbine blade comprises a leading edge protection element at the leading edge of the wind turbine blade. The leading edge protection element extends in a longitudinal direction between an outboard end and an inboard end and comprises a first section extending from the outboard end to a first section position, wherein the first section is made of a first erosion protection material having a first erosion resistance, and a second section extending from the first section position to a second section position, wherein the second section is made of a second erosion protective material having a second erosion resistance. The first erosion resistance is larger than the second erosion resistance.
The present invention relates to a system and method for attaching a wind turbine blade component to a surface of a wind turbine blade shell part at a component attachment position. The system comprises a blade shell part support for supporting the blade shell part, a jig comprising a jig base and a component platform for receiving and holding the wind turbine blade component in a first position above at least a part of the blade shell part, the component platform being arranged on the jig base and being at least vertically displaceable relative to the jig base by displacement means to allow the wind turbine blade component to be lowered from the first position to the component attachment position.
A method of manufacturing a shell (36 and 38) of a wind turbine blade (10) is disclosed. The method comprises providing a mould (9) having a marker (11) at pre-determined locations. One or more layers of fiber fabrics are provided on surface of the mould (9) to form a shell half structure (36 and 38). Resin is infused through the one or more layers of fiber fabrics and subsequently cured to obtain the shell half structure (36 and 38). A reference portion (19) is marked on the shell half structure (36 and 38) to assemble one or more components on the shell half structure (36 and 38), by detecting a location of the marker (11) in the mould (9) by a detection device (13). The above method facilitates accurate positioning of component such as shear webs (7).
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B29C 65/78 - Moyens pour la manipulation des éléments à assembler, p. ex. pour la fabrication de récipients ou d'objets creux
B29C 70/44 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant une pression isostatique, p. ex. moulage par différence de pression, avec un sac à vide, dans un autoclave ou avec un caoutchouc expansible
88.
Method for assembling a wind turbine blade, wind turbine blade cleat for assembling a wind turbine blade shell and clamp tool for clamping a separately manufactured glue flange during assembly of a wind turbine blade
Disclosed is a method and a system for manufacturing a composite structure, such as a wind turbine blade. The system comprises: a first mould; a second mould; a monorail arranged between the first mould and the second mould; and a primary mobile unit configured to mount the monorail and comprising: a first distributor configured to distribute first fibre material in the first mould; and a first cover handler configured to arrange a first cover material over the distributed first fibre material in the first mould, to lock the first fibre material in the first mould.
GENERAL ELECTRIC RENOVABLES ESPANA, S.L. (Espagne)
LM WIND POWER (HOLLAND) B.V. (Pays‑Bas)
Inventeur(s)
Behmer, Harald
Bulacio, Horacio
Vila, Marc Canal
Haag, Michael Drachmann
Herrig, Andreas
Van Kalken, Jordy Hertel Nilsson
Minnee, Hans
Abrégé
A wind turbine blade includes a leading edge protection element attached to the leading edge of the wind turbine blade. The leading edge protection element extends in a longitudinal direction between an outboard end and an inboard end and includes an attachment surface mounted to an exterior surface of the blade, an exterior surface opposite the attachment surface, a first section extending from the leading edge and along a part of the pressure side of the wind turbine blade to a first transverse end at a first position on the pressure side of the blade, and a second section extending from the leading edge and along a part of the suction side of the wind turbine blade to a second transverse end at a second position on the suction side of the blade.
A pultruded fibre-reinforced strip (50) configured to be stacked with one or more similar strips (50) to form a spar cap of a wind turbine blade (10), comprising—a core (51) comprising a plurality of first fibres embedded in a resin matrix, the plurality of first fibres being carbon fibres and/or glass fibres, and—a surface layer (52) enclosing and covering the core (51) and comprising a plurality of second fibres imbedded in the resin matrix, the majority of the plurality of second fibres having an elastic modulus less than 10 GPa.
B29C 70/08 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts comprenant uniquement des renforcements, p. ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement comprenant des combinaisons de différentes formes de renforcements fibreux incorporés dans une matrice, formant une ou plusieurs couches, avec ou sans couches non renforcées
B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
A method of manufacturing a wind turbine blade, comprising the steps of:
placing one or more shell fibre layers on a mould surface of a blade mould,
placing a plurality of separately provided preforms directly on the one or more shell fibre layers in a stacked arrangement,
infusing and curing the stacked preform arrangement, the one or more shell fibre layers together via a resin in mould cavity of the blade mould to form a wind turbine blade part with a spar cap integrated in a shell part providing part of the aerodynamic shape of the wind turbine blade.
B29C 70/48 - Façonnage ou imprégnation par compression pour la fabrication d'objets de longueur définie, c.-à-d. d'objets distincts utilisant des moules opposables, p. ex. pour déformer des préimprégnés [SMC] ou des "prepregs" avec une imprégnation des renforcements dans le moule fermé, p. ex. moulage par transfert de résine [RTM]
B29C 70/86 - Incorporation dans des couches de renforcement imprégnées cohérentes
93.
Blade shell section and a wind turbine blade comprising a blade shell section
Disclosed is a blade shell section of a wind turbine blade, such as wind turbine blade with a flatback section. The blade shell section extends in a longitudinal direction from a first shell section position to a second shell section position. The blade shell section comprises a first laminate layer forming the outer surface of the blade shell section and a second laminate layer forming the inner surface of the blade shell section. The blade shell section further comprising a first shell section and a corner shell section between the contour shell section and the flatback shell section.
A method for manufacturing a wind turbine blade, comprising the steps of:
providing one or more individual pultrusions including a first tapering end with a tapering end face terminating in a taper tip, and
arranging the one or more pultrusions in one layer or more stacked layers including at least a bottom layer on a first assembly surface at a first assembly station to provide a pultrusion arrangement extending in a longitudinal direction between a pultrusion root end and a pultrusion tip end, wherein the first tapering end of the one or more pultrusions form the pultrusion root end or the pultrusion tip end of the pultrusion arrangement.
The present invention relates to a wind turbine blade with an access window extending through the blade. A cover member for covering the access window is provided, such that a first end of the cover member is pivotally connected to the outer surface of the blade and a second end of the cover member is releasably fastened to the outer surface of the blade.
A system for manufacturing a blade component of a rotor blade of a wind turbine includes a blade mold of the rotor blade, at least one blade skin arranged atop the blade mold, and a computer numeric control (CNC) device comprising a printer head and a scanning device. The printer head is configured for printing and depositing a material onto the at least one blade skin to form the blade component. The scanning device includes a processor and a scanner communicatively coupled to the processor. The scanning device is for determining a profile of the at least one blade skin atop the blade mold as the blade component is being printed and deposited layer by layer such that the printer head is automatically adjusted to compensate for changes in the profile in at least one of a horizontal direction or a vertical direction due to at least one of thermal expansion of the blade mold, thickness variations of fibers of the at least one blade skin, movement of the at least one blade skin atop the blade mold, or material shrinkages on previous printed layers.
Disclosed is a test rig and a method for mechanical load testing of a specimen extending along a longitudinal axis from a first specimen end to a second specimen end and comprising a composite material extending along the longitudinal axis from a first composite end to a second composite end and a primary elongate component extending along the longitudinal axis from a first primary component end to a second primary component end, the first primary component end being the first specimen end, and wherein the composite material encapsulates the primary elongate component along a first interface region extending along the longitudinal axis from the second primary component end to the first composite end. The method comprises applying a load to the specimen resulting in an axial load component and a bending moment being imposed to the specimen.
G01N 3/20 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique en appliquant des efforts permanents de flexion
G01N 3/08 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique par application d'efforts permanents de traction ou de compression
G01M 5/00 - Examen de l'élasticité des structures ou ouvrages, p. ex. fléchissement de ponts ou d'ailes d'avions
Disclosed are processes and systems for degassing liquid resin. Resin is provided at a resin inlet and pumped into a first duct using a resin pump to achieve a first absolute pressure of at least 1.6 bar in the first duct; the resin pump and/or a flow control valve are configured to achieve a first pressure drop across the flow control valve of at least 1.5 bar; a second duct communicates the resin from the flow control valve to a storage tank; a gas evacuation system maintains a pressure in the storage tank below 100 mbar at least partly concurrently with pumping resin into the first duct.
A wind turbine blade measurement system for optically determining a torsion of a wind turbine blade is disclosed. The wind turbine blade measurement system comprises: a wind turbine blade, which is configured to be mounted to a hub of a wind turbine, a first camera, and an auxiliary camera. The first camera is mounted in a fixed position on a support structure on an exterior surface of the root section of the wind turbine blade and arranged so as to measure along the spanwise direction of the wind turbine blade. The auxiliary camera is arranged at a position outside of the wind turbine blade, the auxiliary camera being arranged so as to being able to carry out measurements of a plurality of sets of markers arranged on the surface of the wind turbine blade and an orientation of at least one of the support structure and the first camera.
a), comprising a second number of interlayer sheets (34) comprising a second plurality of fibres (36), wherein the first number of interlayer sheets (33) is of a different characteristic than the second number of interlayer sheets (34).
B29C 70/00 - Façonnage de matières composites, c.-à-d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p. ex. des inserts
B29C 70/52 - Pultrusion, c.-à-d. façonnage et compression par traction continue à travers une matrice
B29C 70/54 - Parties constitutives, détails ou accessoiresOpérations auxiliaires
B32B 5/06 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments caractérisés par une couche fibreuse imbriquée ou cousue avec une autre couche, p. ex. de fibres, de papier
B32B 27/08 - Produits stratifiés composés essentiellement de résine synthétique comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique d'une résine synthétique d'une sorte différente
B32B 27/20 - Produits stratifiés composés essentiellement de résine synthétique caractérisée par l'emploi d'additifs particuliers utilisant des charges, des pigments, des agents thixotropiques