The present invention relates to a tracker and a surveying apparatus comprising the tracker, which improve the reliability of tracking a target. The tracker comprises a first imaging region having a plurality of pixels for taking a first image of a scene including the target; a second imaging region having a plurality of pixels for taking a second image of a scene including the target; a control unit to receive a timing signal indicating a time duration during which an illumination illuminating the target in the scene is switched on and off, control the first imaging region to take the first image of the scene when the timing signal indicates that the illumination unit is switched on, and control the second imaging region to take the second image when the illumination is switched off; and a read out unit configured to read out the first image from the first imaging region and the second image from the second imaging region and to obtain a difference image.
G01S 17/66 - Systèmes de poursuite utilisant d'autres ondes électromagnétiques que les ondes radio
G01C 11/06 - Restitution des photos par comparaison de plusieurs photos de la même zone
H04N 23/74 - Circuits de compensation de la variation de luminosité dans la scène en influençant la luminosité de la scène à l'aide de moyens d'éclairage
The invention relates to optical surveying such as in building construction, road construction, landscaping and similar. A first image sensor obtains in a first wavelength range a first image of a scene within a field of view captured by an optical arrangement such as a telescope. A light emitter emits light in a second wavelength range and a second image sensor obtains a second image of the field of view in the second wavelength range. A target position of a reflecting target is found in the first image by detecting a known image pattern of the reflecting target in the first image. A region of interest in the second image is then a defined based on the identified target position in the first image, for detecting a reflector position of a reflector of the reflecting target in the region of interest. With the invention it becomes possible to improve the identification of a reflective target at reduced processing time, even if reflections from other objects than the reflective target are present.
G06T 7/521 - Récupération de la profondeur ou de la forme à partir de la télémétrie laser, p. ex. par interférométrieRécupération de la profondeur ou de la forme à partir de la projection de lumière structurée
G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques
G06T 7/246 - Analyse du mouvement utilisant des procédés basés sur les caractéristiques, p. ex. le suivi des coins ou des segments
G06V 10/60 - Extraction de caractéristiques d’images ou de vidéos relative aux propriétés luminescentes, p. ex. utilisant un modèle de réflectance ou d’éclairage
G02B 23/00 - Télescopes ou lunettes d'approche, p. ex. jumellesPériscopesInstruments pour voir à l'intérieur de corps creuxViseursPointage optique ou appareils de visée
A surveying system comprises a controller; a support; a mounting structure mounted on the support, wherein the mounting structure is rotatable about a first axis relative to the support; a first motor to rotate the mounting structure relative to the support; a first mirror mounted on the mounting structure, wherein the first mirror is rotatable relative to the mounting structure about a second axis, wherein the second axis substantially coincides with the first axis; a second motor to rotate the first mirror relative to the mounting structure; and a first light source configured to direct a light beam onto the first mirror.
A surveying system, comprises a support; a rotating mirror unit including a mounting structure, a motor mounted on the mounting structure and having a shaft rotatable about a first axis, and a mirror mounted on the shaft; a measuring unit including a mounting structure and a light source and optics mounted on the mounting structure for directing a beam of measuring light onto the mirror surface; and a window mechanically connecting the mounting structure of the measuring unit and the mounting structure of the rotating mirror unit.
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G02B 7/182 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs pour miroirs
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
6.
Surveying instrument and method of calibrating a survey instrument
A surveying instrument comprises a base; an alidade rotatable about a first axis relative to the base; and an optical measuring instrument having a measuring axis rotatable about a second axis relative to the alidade. A beam path can be provided for a light beam using components including a light source, lenses, mirrors, beam splitters, and a position-sensitive detector. The surveying can be calibrated by performing plural measurements at different orientations of the alidade relative to the base and different orientations of the measuring instrument relative to the alidade using the above components.
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
A surveying instrument comprises a base; an alidade rotatable about a first axis relative to the base; and an optical measuring instrument having a measuring axis rotatable about a second axis relative to the alidade. A beam path can be provided for a light beam using components including a light source, lenses, mirrors, beam splitters, and a position-sensitive detector. The surveying can be calibrated by performing plural measurements at different orientations of the alidade relative to the base and different orientations of the measuring instrument relative to the alidade using the above components.
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
The present invention relates to a tracker and a surveying apparatus comprising the tracker, which improve the reliability of tracking a target. The tracker comprises a first imaging region having a plurality of pixels for taking a first image of a scene including the target; a second imaging region having a plurality of pixels for taking a second image of a scene including the target; a control unit to receive a timing signal indicating a time duration during which an illumination illuminating the target in the scene is switched on and off, control the first imaging region to take the first image of the scene when the timing signal indicates that the illumination unit is switched on, and control the second imaging region to take the second image when the illumination is switched off; and a read out unit configured to read out the first image from the first imaging region and the second image from the second imaging region and to obtain a difference image.
The present invention relates to a surveying apparatus for surveying an object as well as a surveying system comprising the surveying apparatus having a simple and compact optical setup. The surveying apparatus comprises a lens arrangement including at least one movably arranged focus lens element for focusing to sight an object; an imaging unit configured to obtain an image of at least a part of the object; a distance measuring unit configured to measure a distance to the object along the optical axis of the distance measuring unit; and a beam splitter/combiner configured to combine a part of the optical imaging path of the imaging unit and a part of the optical distance measuring path of the distance measuring unit so that the optical axis of the imaging unit and the optical axis of the distance measuring unit are at least coaxially arranged with the optical axis of the lens arrangement between the lens arrangement and the beam splitter/combiner.
The present invention relates to a tracker and a surveying apparatus comprising the tracker, which improve the reliability of tracking a target. The tracker comprises a an image sensor arrangement having an imaging region composed of a plurality of pixels arranged in a matrix of columns and rows. The imaging region is arranged to take an image of a scene including the target. A controller receives or generates a timing signal indicating a time duration during which an illumination unit is switched on and off, controls the imaging region to take an image of the scene when the illumination unit is switched on, and reads out a subgroup of neighboring columns or rows constituting a stripe window of the imaging region so that an image section including the target is obtained, controls the imaging region to take another image of the scene when the illumination unit is switched off, and reads out another subgroup of neighboring columns or rows constituting another stripe window of the imaging region so that another image section including the target is obtained, and calculates a difference image section by determining a difference between the pixel values of the pixels of the image section and the other image section.
H04N 5/378 - Circuits de lecture, p.ex. circuits d’échantillonnage double corrélé [CDS], amplificateurs de sortie ou convertisseurs A/N
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
H04N 5/345 - Extraction de données de pixels provenant d'un capteur d'images en agissant sur les circuits de balayage, p.ex. en modifiant le nombre de pixels ayant été échantillonnés ou à échantillonner en lisant partiellement une matrice de capteurs SSIS
Reflective target for surveying instruments having a plurality of planar reflective sections arranged to form a shape having a target axis. Each reflective section includes a plurality of prisms, each prism constituted by a corner cube having three surfaces oriented perpendicular to one another and forming a base for receiving incident light, and each of the prisms is oriented such that a common edge formed by two of the three surfaces of the prism is oriented such that the common edge and the target axis or a line parallel to the target axis lie in a common plane.
G02B 5/124 - Réflecteurs reflex du type en sommet de cube, en trièdre ou en réflecteur triple plusieurs éléments réfléchissants faisant partie d'une plaque ou d'une feuille formant un tout
G02B 5/122 - Réflecteurs reflex du type en sommet de cube, en trièdre ou en réflecteur triple
G01C 15/02 - Moyens pour marquer les points de mesure
12.
Measuring device with a reduced share of stray light
A device for measurement by means of a light ray is equipped with a covering device for reducing stray light. The device comprises an array of lenses along an optical axis; a prism attached to one of the lenses with a slanted surface for coupling of the light ray incident from a light source placed lateral to the optical axis, onto the optical axis, so that the light ray can pass through the array of lenses along the optical axis; a receiver for receipt of a share of the light ray reflected by an object; and a covering device for at least one area of the prism that scatters a share of the light ray as stray light to the receiver.
G02B 7/18 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs
13.
Dampening device for a surveying rod and surveying rod comprising a dampening device
The dampening device comprises a first member, preferably a tubular member, which is to be positioned at the end of the surveying rod which is to be directed to the ground, a second member, preferably a post, being at least partially slidable directly or indirectly along the first member in a longitudinal direction and for being directly or indirectly connected to a tip which is to be placed on the ground, wherein the first and second members overlap at least in one position at least partially along the longitudinal direction, and at least one elastic dampening member which is directly or indirectly housed by the first and/or second member and disposed such that it is compressed by a movement of the first member and the second member relative to each other in the longitudinal direction, so that mechanical shock exerted to the surveying rod and/or the tip can be dampened by elastic deformation of the dampening member.
F16F 1/44 - Ressorts en matière plastique, p. ex. en caoutchoucRessorts faits d'un matériau à friction intérieure élevée caractérisés par le mode de travail travaillant principalement à la compression
F16F 1/373 - Ressorts en matière plastique, p. ex. en caoutchoucRessorts faits d'un matériau à friction intérieure élevée caractérisés par une forme particulière
14.
Optical guide system for guiding at least one optical lens
An optical guide system is provided for guiding an optical lens along an optical axis of the guide system. The optical guide system has a guide housing for accommodating a guide carriage, wherein an inner guide surface thereof extends along the optical axis. The guide carriage is arranged within the guide housing, movably between a start position and an end position and suitably to secure the at least one optical lens. The guide carriage also has a sliding element which is in contact with the inner guide surface of the guide housing and which enables sliding of the guide carriage. The optical guide system also has a suspension element which is connected to the guide carriage and by means of which the guide carriage is mechanically coupled to a drive. The optical guide system also has a tensioning element which is arranged outside the guide housing and which cooperates with the suspension element, causing a tensioning force which acts on the guide carriage so that the at least one sliding element lies against the inner guide surface of the guide housing.
G02B 7/00 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques
G02B 7/04 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles avec mécanisme de mise au point ou pour faire varier le grossissement
G02B 7/10 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles avec mécanisme de mise au point ou pour faire varier le grossissement par déplacement axial relatif de plusieurs lentilles, p. ex. lentilles d'objectif à distance focale variable
G02B 7/02 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles
Optical system for tracking and visually examining a target, comprising an image sensor and a lens arrangement having a variable position relative to the image sensor to project an image of the target onto the image sensor, a light source for emitting light in a predetermined wavelength range in the direction of the target and a filter switch for switching an optical filter for selectively allowing the light in the predetermined wavelength range to pass through to the image sensor into and out of the optical path to optionally perform a visual examination and monitoring of the tracking. A tracking device is provided to perform the tracking of the target using the reflected light in the predetermined wavelength range in a sequence of images held by the image sensor when the first optical filter is switched into the optical path.
G01S 17/66 - Systèmes de poursuite utilisant d'autres ondes électromagnétiques que les ondes radio
G01S 17/08 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01S 3/786 - Systèmes pour déterminer une direction ou une déviation par rapport à une direction prédéterminée utilisant le réglage d'une orientation des caractéristiques de directivité d'un détecteur ou d'un système de détecteurs afin d'obtenir une valeur désirée du signal provenant de ce détecteur ou de ce système de détecteurs la valeur désirée étant maintenue automatiquement
An optical measurement system comprises a first housing body and a second housing body which can be rotated relative to the first housing body about a second axis of rotation, wherein the second housing body contains a measurement telescope, an inner roller bearing support fixed to the second housing body and protruding into the first housing body; an outer roller bearing support fixed to the first housing body; a drive disc fixed to the inner roller bearing support; wherein a motor having a motor shaft is attached to the first housing body in such a way that the motor shaft or a wheel fixed to the motor shaft is positioned on the drive disc and is pressed against said disc by a spring force orientated transversely to the second axis of rotation, and wherein the motor shaft or the wheel is coupled to the drive disc in a frictional fit.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
G02B 23/16 - LogementsCouverclesMonturesSupports, p. ex. avec contrepoids
The dampening device comprises a first member, preferably a tubular member, which is to be positioned at the end of the surveying rod which is to be directed to the ground, a second member, preferably a post, being at least partially slidable directly or indirectly along the first member in a longitudinal direction and for being directly or indirectly connected to a tip which is to be placed on the ground, wherein the first and second members overlap at least in one position at least partially along the longitudinal direction, and at least one elastic dampening member which is directly or indirectly housed by the first and/or second member and disposed such that it is compressed by a movement of the first member and the second member relative to each other in the longitudinal direction, so that mechanical shock exerted to the surveying rod and/or the tip can be dampened by elastic deformation of the dampening member.
For swift and secure determination of a measurement error a first digital image is obtained using an image sensor, wherein a line of sight of an optical arrangement is oriented in a first face direction. A characteristic image area in the first digital image on an image sensor is determined. A second digital image is then taken with a line of sight of the image sensor oriented in a second face and the characteristic image area defined in the first image is searched in the second digital image, the first or the second digital image is rotated in the image plane by 180° . Then in the second digital image the position of the characteristic image area is determined. And offset between the characteristic image area in the first digital image and the characteristic image area in the second digital image is determined.
G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
G01B 11/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques
A geodetic device comprises three device components, two axes of rotation, and two angle sensors such that the device components are rotatable with respect to each other and their rotational positions are determinable, and an inclination sensor system. A method for determining a characteristic of the device comprises an alignment of the second device component with respect to the first device component into a plurality of different rotational positions, whereby in each rotational position of the plurality of rotational positions a measurement value is determined from the first angle sensor, a measurement value is determined from the second angle sensor, and a measurement value is determined for the orientation of the inclination sensor system.
G01B 11/27 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes pour tester l'alignement des axes
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
20.
Method and apparatus for assigning measuring points to a set of fixed points
Assigning measuring points to fixed points includes calculating fixed point distances between fixed points in a fixed point coordinate system; determining coordinates of measuring points in a measuring point coordinate system; calculating measuring point distances between the measuring points; comparing at least two measuring point distances with the fixed point distances and identifying at least two pairs each consisting of a measuring point distance and a fixed point distance; determining a reference point in the measuring point coordinate system or in the fixed point coordinate system; determining first and second reference point parameters of the measuring points or fixed points corresponding to the pairs; determining second reference point parameters of the fixed points corresponding to the pairs in the fixed point coordinate system; identifying correspondences between the first reference point parameters and the second reference point parameters and assigning the corresponding measuring points to the corresponding fixed points.
G01B 21/04 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative pour mesurer la longueur, la largeur ou l'épaisseur en mesurant les coordonnées de points
G01B 5/008 - Dispositions pour la mesure caractérisées par l'utilisation de techniques mécaniques pour mesurer les coordonnées de points en utilisant des machines de mesure de coordonnées
A geodetic target 1 for use in geodesy comprises an orienting device 10 with a bearing direction P, a first inclinometer 20 with a first axis of inclination 20A, a reflector 30 reflecting incident measurement beams S, an imaging optics 40 that focuses the incident measurement beams S, a matrix sensor 50, whose receiving surface 51 is situated in an image plane of the imaging optics 40, and an interface 60, which is connected to the first inclinometer 20 and the matrix sensor 50. The spatial arrangement and orientation of the optical axis and/or axis of symmetry 30A of the reflector 30 relative to the bearing direction P of the orienting device 10 is predetermined here. The first axis of inclination 20A makes an angle α other than zero with an optical axis 40A of the imaging optics 40. The optical axis 40A of the imaging optics 40 coincides with an optical axis 30A and/or axis of symmetry of the reflector 30 or is parallel to it or make an angle with it. The interface 60 is designed to put out the signals received from the first inclinometer 20 and the matrix sensor 50 for determining a spatial orientation of the reflector 30 reflecting the measurement beams relative to the target point Z.
Moreover, a position determining system comprising this target and a method which uses this target is disclosed.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
A distance-measuring system includes a light source, a light detector, and measuring optics for projecting light emitted by the light source to a target and for guiding light reflected from said target towards the light detector. The distance-measuring system also includes reference optics for guiding light emitted by the light source within the system towards the light detector as internal reference light and a variable attenuator for adjusting intensity of light incident on the light detector. The variable attenuator includes an attenuating filter arranged in a beam path between the measuring optics and the light detector and an actuator coupled to the attenuating filter for moving the attenuating filter. The distance-measuring system further includes an optical selector coupled to at least one of the actuator or the attenuating filter and moved by the actuator together with the attenuating filter.
A geodetic surveying system, comprising: a first measurement unit and a second measurement unit. Each of the first and the second measurement unit is configured to perform a measurement for acquiring positioning data of the respective measurement unit. The system further comprises a first inclinometer for acquiring inclination data of the first inclinometer which represent a vertical inclination measured at the first measurement unit; and a second inclinometer for acquiring inclination data of the second inclinometer, which represent a vertical inclination measured at the second measuring unit. The geodetic surveying system is configured to determine a relative orientation angle between the first inclinometer and the second inclinometer in a horizontal plane relative to a vertical adjustment of the geodetic surveying system, depending on the inclination data of the first inclinometer and the second inclinometer.
A method and an apparatus for determining the quality of a gearing system is described. The method includes the steps of setting a sequence of target angles of rotation of a first gear wheel, measuring for each of the target angles of rotation an output angle of rotation of a second gear wheel, and calculating a plurality of theoretical output angles of rotation. The method also includes obtaining angle of rotation differences between the plurality of output angles of rotation and the plurality of theoretical output angles of rotation, forming a sequence of cumulative values, and determining, based on the sequence, a first amplitude value, a second amplitude value or a third amplitude value.
An optical plummet for use in geodesy includes an eyepiece, a target mark, and an objective. The target mark is positioned in the beam path between the eyepiece and the objective and the target mark and the eyepiece are supported by a first body and the objective is supported by a second body. Either the first body or second body has two annular recesses spaced apart from each other along the beam path and disposed coaxially with respect to the beam path. Each of the annular recesses accommodates a ring. The other body has at least sectionally a cylindrical outer surface extending coaxially through the two annular recesses and rings along the beam path and is guided by the ring such that the distance between the eyepiece and the objective is adjustable by moving the first body and the second body relative to one other along the beam path.
G02B 23/00 - Télescopes ou lunettes d'approche, p. ex. jumellesPériscopesInstruments pour voir à l'intérieur de corps creuxViseursPointage optique ou appareils de visée
A geodetic target for use in geodesy includes a support, a measuring target supported by the support, an identifier supported by the support, and a controller. The identifier includes at least one identification element that is configured to be switchable between at least two optical states and has a first predetermined optical property in one optical state and does not have the first predetermined optical property in a further optical state. The controller is configured to change the state of the at least one identification element. A geodetic measurement instrument includes an identifier detection unit, a measuring unit, and a transmitter configured to address a receiver of the geodetic target and to transmit control commands to the same which effect the change of the optical state of the at least one identification element of the identifier of the geodetic target. A system includes the geodetic measurement instrument and geodetic target.
A distance-measuring system includes a light source, a light detector, and measuring optics for projecting light emitted by the light source to a target and for guiding light reflected from said target towards the light detector. The distance-measuring system also includes reference optics for guiding light emitted by the light source within the system towards the light detector as internal reference light and a variable attenuator for adjusting intensity of light incident on the light detector. The variable attenuator includes an attenuating filter arranged in a beam path between the measuring optics and the light detector and an actuator coupled to the attenuating filter for moving the attenuating filter. The distance-measuring system further includes an optical selector coupled to at least one of the actuator or the attenuating filter and moved by the actuator together with the attenuating filter.
An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned and measurement pixels of an object in the image, wherein the measurement pixels are converted into an approximation of coordinates of positions to be measured assuming a default distance to the positions, and the optical axis of the lens arrangement is adjusted sequentially onto the positions to be measured. After measuring the distances to the positions, the coordinates are recalculated increasing the accuracy of the coordinates.
A geodetic apparatus for performing measurements using a target and a method for controlling the geodetic apparatus is disclosed. The apparatus comprises a detector for measuring a position of the target relative to a sighting axis of the apparatus, a light emitter for outputting to an outside of the geodetic apparatus a first cone of light having a first wavelength and a second cone of light having a second wavelength different from the first wavelength, and a controller connected to both the detector and the light emitter. The first cone of light overlaps with the second cone of light at the distance of one meter from the apparatus by at least 30%. The controller is configured to control the light emitter based on the detected position of the target to output at least one of the first cone of light and the second cone of light.
H04N 7/18 - Systèmes de télévision en circuit fermé [CCTV], c.-à-d. systèmes dans lesquels le signal vidéo n'est pas diffusé
G01J 1/20 - Photométrie, p. ex. posemètres photographiques par comparaison avec une lumière de référence ou avec une valeur électrique de référence l'intensité de la valeur mesurée ou de référence étant modifiée jusqu' à égalisation de leurs effets au niveau du détecteur, p. ex. en faisant varier l'angle d'incidence
30.
Measuring device with a reduced share of stray light
A device for measurement by means of a light ray is equipped with a covering device for reducing stray light. The device comprises an array of lenses along an optical axis; a prism attached to one of the lenses with a slanted surface for coupling of the light ray incident from a light source placed lateral to the optical axis, onto the optical axis, so that the light ray can pass through the array of lenses along the optical axis; a receiver for receipt of a share of the light ray reflected by an object; and a covering device for at least one area of the prism that scatters a share of the light ray as stray light to the receiver.
A surveying instrument includes a measuring system having a component, a support, and a mounting unit that is arranged at the support. The component is mounted on the mounting unit and the support and the mounting unit are configured such that the mounting unit is adjustable relative to the support. The instrument also includes a fine inclination sensor that is arranged at the component and is configured to measure an inclination angle of the component and to output fine inclination data. The instrument further includes a coarse inclination sensor that is arranged at the component, is configured to measure the inclination angle and to output coarse inclination data, and includes an electronic acceleration sensor. The instrument additionally includes an evaluation unit that is configured to select inclination data from the coarse inclination data and the fine inclination data and an output unit that is configured to output the inclination data.
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01C 9/08 - Moyens de compensation des forces d'accélération produites par le mouvement de l'instrument
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
32.
Surveying apparatus for tracking and surveying an object
A surveying apparatus and method for surveying and tracking a moving object is disclosed to improve the tracking so that a moving object may be tracked reliably and automatically. The surveying apparatus comprises an optical arrangement to sight an object, and a tracking unit to track the sighted object. The tracking unit obtains an object parameter of the object, wherein the object parameter is associated with a movement of the object. Further, the tracking unit issues an instruction to the optical arrangement to change between a close range setting and a long range setting according to the obtained object parameter, the close range setting corresponding to a wide field of view and the long range setting to a narrow field of view.
A motor drive apparatus for a surveying instrument and a control method for controlling a surveying instrument enables a fast rotation of an instrument axis with high angular resolution. The motor drive apparatus for a surveying instrument includes a first motor for rotating an instrument axis. The first motor includes a stator and a rotor having a rotation axis and a plurality of step positions relative to the stator. The motor drive apparatus also includes a mounting unit for mounting the first motor so as to be pivotable around the rotation axis and an adjusting unit for rotating the stator of the first motor around the rotation axis.
A feature detection apparatus and method for obtaining in a defined area of interest a parametric shape based on a selected combination of parameter values, constituting an approximation to an object feature. The feature detection apparatus includes an input unit for receiving at least two area indicator lines for defining in a digital image an area of interest, a parameter range defining unit for defining ranges of at least two parameters of a parametric shape, for which the parametric shape intersects at least one of the area indicator lines; a parameter selection unit for selecting a combination of parameter values from the parameter ranges, for which the parametric shape constitutes an approximation to an object feature of the object in the area of interest; and an output unit for providing the parametric shape based on said combination of parameter values for a display in the digital image.
A leveling apparatus for optically detecting a height difference relative to a leveling staff includes an objective, a two-dimensional detector, a mount for rotating both the objective and the detector about a fixed vertical axis of the apparatus, and a processor. The detector is arranged such that its rows are inclined to an image of a vertical axis of the object by an acute angle. A method of detecting a height difference of an apparatus relative to a leveling staff includes imaging the leveling staff onto an array of detectors such that the image of a vertical axis of the staff is inclined to detector rows at an acute angle.
According to embodiments a distance-measuring system comprises a light source (2a), a light detector (4a), measuring optics (3), reference optics (5, 5a, 5b, 5c), a variable attenuator (6a, 6b, 6c, 6d, 6f) and an optical selector (7). The measuring optics (3) are configured to project light emitted by the light source (2a) to a target (200) to be measured and for guiding light reflected from said target (200) towards the light detector (4a). The reference optics (5, 5a, 5b, 5c) are configured to direct light emitted by the light source (2a) within the system towards the light detector (4a) as internal reference light. The variable attenuator (6a, 6b, 6c, 6d, 6f) is configured to adjust intensity of light incident on the light detector (4a) and comprises an attenuating filter (6a) arranged in the beam path between the measuring optics (3) and the light detector (4a), and an actuator (6c) coupled to the attenuating filter (6a) for moving the attenuating filter (6a). The optical selector (7) is configured to selectively direct light guided by either the measuring optics (3) or the reference optics (5, 5a, 5b, 5c) to the light detector (4a). According to embodiments, the optical selector (7) is coupled to at least one of the actuator (6c) and the attenuating filter (6a), and moved by the actuator (6c) together with the attenuating filter (6a). According to embodiments, along the same direction of movement (M, M1) of the attenuating filter (6a) caused by the actuator (6c) the attenuating filter (6a) has first and second sections (6a1, 6a1 1) of varying transmissivity, a first section (6a1) in which the transmissivity varies from higher transparency to lower transparency and a second section (6a1 1) in which the transmissivity varies from higher transparency to lower transparency. According to embodiments, the variable attenuator (6a, 6b, 6c, 6d, 6f) further comprises a carrier (6b) supporting both the attenuating filter (6a) and the optical selector (7), wherein the carrier (6b) has a circular shape rotatable about a rotational shaft (6d), and wherein the attenuating filter (6a) is part of a circumferential surface when supported by the carrier (6b)
An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned as well as an object feature of the object, wherein measurement pixels corresponding to positions on the object may be defined in the area with an increased density of measurement pixels at the object feature. Subsequently, the distances to the object at the selected positions of interest are measured.
An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned and measurement pixels of an object in the image, wherein the measurement pixels are converted into an approximation of coordinates of positions to be measured assuming a default distance to the positions, and the optical axis of the lens arrangement is adjusted sequentially onto the positions to be measured. After measuring the distances to the positions, the coordinates are recalculated increasing the accuracy of the coordinates.
An angle measurement device includes a light source configured to emit light along an optical path and a patterned member positioned along the optical path and configured to rotate about an axis of rotation. The patterned member includes a periodic optical variation. Light passing through the patterned member provides a spatially modulated optical waveform. The angle measurement device also includes an imaging device positioned along the optical path and including a plurality of photosensitive elements disposed in an array configuration. The imaging device is configured to receive the spatially modulated optical waveform and provide a signal associated with light intensity at each of the plurality of photosensitive elements. The angle measurement device further includes an angle determination unit coupled to the imaging device and configured to compute a rotation angle of the patterned member based on a reference waveform and the provided signal.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
A geodetic apparatus (1) for performing measurements using a target (2) and a method for controlling the geodetic apparatus is disclosed. The apparatus (1) comprises a detector (3) for measuring a position of the target (2) relative to a sighting axis (31) of the apparatus (1), a light emitter (4) for outputting to an outside of the geodetic apparatus (1) a first cone of light (41) having a first wavelength and a second cone of light (42) having a second wavelength different from the first wavelength, and a controller (5) connected to both the detector (3) and the light emitter (4). The first cone of light (41) overlaps with the second cone of light (42) at the distance of one meter from the apparatus (1) by at least 30%. The controller (5) is configured to control said light emitter (4) based on the detected position of the target (2) to output at least one of the first cone of light (41) and the second cone of light (42).
A calibration error correction device for an optical instrument includes a detector operable to detect a position of a focusing lens of an optical instrument along a mechanical path of the focusing lens. A line of sight through an image plane of the optical instrument and the focusing lens at a present position defines an actual viewing direction. The device also includes a memory configured to store viewing direction errors specifying a deviation between a known theoretical viewing direction and the actual viewing direction associated with a plurality of different positions of the focusing lens along the mechanical path and an indicator of at least one value indicative of the actual viewing direction based on the theoretical viewing direction and the viewing direction errors at each of the different positions of the focusing lens along the mechanical path.
H04N 17/00 - Diagnostic, test ou mesure, ou leurs détails, pour les systèmes de télévision
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
G01C 5/00 - Mesure des hauteursMesure des distances transversales par rapport à la ligne de viséeNivellement entre des points séparésNiveaux à lunette
G01P 21/00 - Essai ou étalonnage d'appareils ou de dispositifs couverts par les autres groupes de la présente sous-classe
An angle measurement device and an angle measurement method for determining a rotation angle with high accuracy are αescribed. The angle measurement device comprises an imaging unit of a plurality of photosensitive pixels, an illumination unit, a pattern member facing the imaging unit and having a periodic pattern of different optical properties, the pattern member being positioned to be illuminated by the illumination unit to project an image of the pattern member onto the imaging unit, and an angle determination unit to determine a rotation angle of the pattern member with respect to a reference position on the imaging unit based on a phase shift between a phase of a waveform resulting from the projected image and a reference phase value corresponding to the reference position, wherein the waveform is constituted by measurement values of the photosensitive pixels.
G01D 5/24 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens électriques ou magnétiques influençant la valeur d'un courant ou d'une tension en faisant varier la capacité
An electronic leveling apparatus for optically measuring a height difference relative to a leveling staff comprises a telescope, a camera fixed to the telescope, a first actuator for rotating both said telescope and said camera in a horizontal plane about a fixed vertical axis of the apparatus, and a controller. The camera has a depth of focus that is at least twice a depth of focus of the telescope. The controller uses a first output signal from said telescope to output a leveling signal representing a detected height difference. The controller uses a second output signal from said camera to identify a representation of a leveling staff and to control the first actuator based on the identified representation of the leveling staff. Furthermore a method for optically measuring a height difference of an electronic leveling apparatus relative to a leveling staff is provided.
A surveying instrument (11) comprises a telescope unit having imaging optics and an array of optical detector elements, orientation sensors detecting an orientation of the telescope unit, rotation drives for rotating the telescope unit about a horizontal and a vertical axis, a controllable distance-measuring unit, and a processing unit. The processing unit comprises a memory storing instructions and calibration data for relating the location of each optical detector element to a sighting direction and a processor for: obtaining target region data; obtaining projection surface data (133) representing a projection surface (135), acquiring a set of pixel data representing a two-dimensional image of a target region, transforming the set of pixel data to a set of projected image data representing a projection of the image to the projection surface using the calibration data, and storing the projected image data as surveying data.
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
A surveying method using a the video total station comprises placing the video total station on a first platform, recording a first image of scenery, placing the video total solution on a second platform disposed at a distance from the first platform, measuring the distance from the first platform and recording a second image of the scenery. Three-dimensional coordinates of objects contained in the images are determined by a photogrammetric analysis of the images based on the measured distance. Further, orientations of the video total station can be recorded when taking the images and when measuring the distance.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes
46.
SURVEYING APPARATUS FOR TRACKING AND SURVEYING AN OBJECT
A surveying apparatus and method for surveying and tracking a moving object is disclosed to improve the tracking so that a moving object may be tracked reliably and automatically. The surveying apparatus comprises an optical arrangement to sight an object, and a tracking unit to track the sighted object. The tracking unit obtains an object parameter of the object, wherein the object parameter is associated with a movement of the object. Further, the tracking unit issues an instruction to the optical arrangement to change between a close range setting and a long range setting according to the obtained object parameter, the close range setting corresponding to a wide field of view and the long range setting to a narrow field of view.
A geodetic apparatus, in particular tacheometer or theodolite, comprises an optical device for sighting objects, a first support on which the optical device is supported such that the optical device may turn around a first axis, and a first gear unit for transmitting a drive torque on the optical device so as to turn the optical device around the first axis. In thegeodetic apparatus, the first gear unit comprises a worm and a worm gear meshing with each other, wherein the worm has a plate-like body and a spirally extending worm thread is formed on a first side face of the body, and the worm gear has a plurality of teeth evenly distributed along a circle.
G12B 5/00 - Réglage de la position ou de l'attitude, p. ex. niveau d'instruments ou d'autres appareils, ou de leurs parties constitutivesCompensation des effets d'inclinaison ou d'accélération, p. ex. pour appareils d'optique
48.
FEATURE DETECTION APPARATUS AND METOD FOR MEASURING OBJECT DISTANCES
A feature detection apparatus and method for obtaining in a defined area of interest a parametric shape based on a selected combination of parameter values, constituting an approximation to an object feature, are disclosed minimizing an input and processing time needed. The feature detection apparatus comprises an input unit for receiving at least two area indicator lines for defining in a digital image an area of interest, a parameter range defining unit for defining ranges of at least two parameters of a parametric shape, for which the parametric shape intersects at least one of the area indicator lines; a parameter selection unit for selecting a combination of parameter values from the parameter ranges, for which the parametric shape constitutes an approximation to an object feature of the object in the area of interest; and an output unit for providing the parametric shape based on said combination of parameter values for a display in the digital image.
G06K 9/03 - Détection ou correction d'erreurs, p.ex. par une seconde exploration
G01C 11/02 - Dispositions de prises de vues spécialement adaptées pour la photogrammétrie ou les levers photographiques, p. ex. pour commander le recouvrement des photos
Apparatus and methods for detecting inclination employ a point source of light from which light is emitted through a lens toward a reflective surface of a liquid contained in a vessel. Light reflected from the surface passes through the lens to form a defocused image of the point source on a two-dimensional array of detector elements. Data acquired from the array represents intensity of the light incident on each of the detector elements. A center of gravity representing inclination of the vessel is determined from the data.
The invention relates to a leveling apparatus for optically detecting a height difference relative to a leveling staff and includes an objective (22a), a two-dimensional detector (21), a mount (13) for rotating both said objective (22a) and said detector (21) about a fixed vertical axis (5) of the apparatus, and a processor. The detector (21) is arranged such that its rows are inclined to an image of a vertical axis of the object by an acute angle. The invention also relates to a method of detecting a height difference of an Apparatus relative to a leveling staff including imaging the leveling staff onto an array (21) of detectors such that the image of a vertical axis of the staff is inclined to detector rows at an acute angle.
An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned and measurement pixels of an object in the image, wherein the measurement pixels are converted into an approximation of coordinates of positions to be measured assuming a default distance to the positions, and the optical axis of the lens arrangement is adjusted sequentially onto the positions to be measured. After measuring the distances to the positions, the coordinates are recalculated increasing the accuracy of the coordinates.
G01C 11/02 - Dispositions de prises de vues spécialement adaptées pour la photogrammétrie ou les levers photographiques, p. ex. pour commander le recouvrement des photos
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
52.
OPTICAL INSTRUMENT AND METHOD FOR OBTAINING DISTANCE AND IMAGE INFORMATION
An optical instrument and a method for obtaining distance and image information of an object is disclosed to improve the speed and accuracy of data acquisition. The instrument comprises a camera, positioning unit, distance measuring unit, lens arrangement and control unit. The camera acquires images of an object and the control unit defines an area to be scanned as well as an object feature of the object, wherein measurement pixels corresponding to positions on the object may be defined in the area with an increased density of measurement pixels at the object feature. Subsequently, the distances to the object at the selected positions of interest are measured.
A positioning device comprises a frame (60); a motor (61) having a drive shaft; a spindle (63) having a first end (71) and a second end (76) and being rotatable in relation to the frame (60); a coupling (62) resiliently connecting said drive shaft to said first end (71) of said spindle (63) such that the spindle (63) rotates when the drive shaft of the motor (61) rotates; and a support assembly (72, 74, 75) elastically supporting at the frame (60) at least one of the second end (76) of the spindle (63) and the motor (61).
The application relates to a calibration of optical instruments to improve an accuracy of positional measurements using the optical instrument. Viewing direction errors of a direction measured by the optical instrument are recorded (120) at different positions of a focussing lens (220) along a mechanical path of the focussing lens such as in a telescope (151) of the optical instrument. With the viewing direction errors known at different positions of the focussing lens corresponding to different distances of target objects to be measured, positional measurements over a distance range can be made more accurate.
G01C 15/00 - Instruments de géodésie ou accessoires non prévus dans les groupes
G01C 25/00 - Fabrication, étalonnage, nettoyage ou réparation des instruments ou des dispositifs mentionnés dans les autres groupes de la présente sous-classe
G02B 7/10 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour lentilles avec mécanisme de mise au point ou pour faire varier le grossissement par déplacement axial relatif de plusieurs lentilles, p. ex. lentilles d'objectif à distance focale variable
An electronic leveling apparatus for optically measuring a height difference relative to a leveling staff comprises a telescope, a camera fixed to the telescope, a first actuator for rotating both said telescope and said camera in a horizontal plane about a fixed vertical axis of the apparatus, and a controller. The camera has a depth of focus that is at least twice a depth of focus of the telescope. The controller uses a first output signal from said telescope to output a leveling signal representing a detected height difference. The controller uses a second output signal from said camera to identify a representation of a leveling staff and to control the first actuator based on the identified representation of the leveling staff . Furthermore, a method for optically measuring a height difference of an electronic leveling apparatus relative to a leveling staff is provided.
A surveying method using a the video total station comprises placing the video total station on a first platform, recording a fist image of a scenery, placing the video total station on a second platform disposed at a distance from the fist platform, measuring a distance from the fist platform and recording a second image of the scenery. Three-dimensional coordinates of objects contained in the images are determined by a photogrammetric analysis of the images based on the measured distance. Further, orientations of the video total station can be recorded when taking the images and when measuring the distance.
A surveying instrument (11) comprises a telescope unit having imaging optics and an array of optical detector elements, orientation sensors detecting an orientation of the telescope unit, rotation drives for rotating the telescope unit about a horizontal and a vertical axis, a controllable distance-measuring unit, and a processing unit. The processing unit comprises a memory storing instructions and calibration data for relating the location of each optical detector element to a sighting direction and a processor for: obtaining target region data; obtaining projection surface data (133) representing a projection surface (135), acquiring a set of pixel data representing a two-dimensional image of a target region, transforming the set of pixel data to a set of projected image data representing a projection of the image to the projection surface using the calibration data, and storing the projected image data as surveying data.
Apparatus and methods for detecting inclination employ a point source of light from which light is emitted through a lens toward a reflective surface of a liquid contained in a vessel. Light reflected from the surface passes through the lens to form a defocused image of the point source on a two-dimensional array of detector elements. Data acquired from the array represents intensity of the light incident on each of the detector elements. A center of gravity representing inclination of the vessel is determined from the data.
G01B 11/26 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des angles ou des cônesDispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour tester l'alignement des axes