NEC Laboratories Europe GmbH

Allemagne

Retour au propriétaire

1-100 de 412 pour NEC Laboratories Europe GmbH Trier par
Recheche Texte
Affiner par
Juridiction
        International 284
        États-Unis 128
Date
Nouveautés (dernières 4 semaines) 12
2025 décembre (MACJ) 2
2025 novembre 10
2025 octobre 1
2025 septembre 1
Voir plus
Classe IPC
G06N 20/00 - Apprentissage automatique 41
G06N 3/08 - Méthodes d'apprentissage 38
H04L 29/06 - Commande de la communication; Traitement de la communication caractérisés par un protocole 23
G16B 40/20 - Analyse de données supervisée 20
H04L 12/24 - Dispositions pour la maintenance ou la gestion 19
Voir plus
Statut
En Instance 123
Enregistré / En vigueur 289
Résultats pour  brevets
  1     2     3     ...     5        Prochaine page

1.

OFFLINE MACHINE LEARNING FOR AUTOMATIC ACTION DETERMINATION OR DECISION MAKING SUPPORT

      
Numéro d'application 19298228
Statut En instance
Date de dépôt 2025-08-13
Date de la première publication 2025-12-04
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s) Jacobs, Tobias

Abrégé

A machine learning method of automatic action determination includes: using a first action prediction model, determining an action selection probability under assumption of a desired outcome based on a new state as the input state; and using a second action prediction model, different than the first, determining an unconditional action selection probability based on the new state; and determining a future action from a set of possible actions that optimizes a pairwise ratio of the action selection probability under the assumption of the desired outcome over the unconditional action selection probability for the new state. The method can be practically applied to various machine learning and artificial intelligence use cases including, but not limited to, medical/healthcare, email filtering, speech recognition, and computer vision, to optimize processes or support decision making.

Classes IPC  ?

  • G06Q 10/20 - Administration de la réparation ou de la maintenance des produits
  • G06N 20/00 - Apprentissage automatique
  • G06Q 10/04 - Prévision ou optimisation spécialement adaptées à des fins administratives ou de gestion, p. ex. programmation linéaire ou "problème d’optimisation des stocks"

2.

SYSTEM AND METHOD FOR AUTONOMOUS POLICY CONFLICT DETECTION AND MITIGATION IN OPEN RADIO ACCESS NETWORK (O-RAN) DEPLOYMENTS

      
Numéro d'application 18860711
Statut En instance
Date de dépôt 2022-08-04
Date de la première publication 2025-12-04
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Zanzi, Lanfranco
  • Devoti, Francesco

Abrégé

A method for detecting and managing conflicting interactions among agents operating on a shared open radio environment includes evaluating effects of monitored actions taken by agents on one or more observed metrics, the actions taken by agents being observed by a monitoring system of the shared open radio environment. The monitored actions and information that is collected about the agents from the monitoring system is used to build a knowledge graph that represents interactions between each agent of the set of agents with the shared open radio environment and the agents. Information extracted from the knowledge graph is processed to estimate unknown and/or dynamic relationships among the agents. The estimated relationships among the agents is used to detect conflicting situations between the agents, and a predefined coordination and/or control policy is enforced according to the estimated relationships among the agents to solve the detected conflicting situations.

Classes IPC  ?

  • H04L 41/0631 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse des causes profondesGestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse de la corrélation entre les notifications, les alarmes ou les événements en fonction de critères de décision, p. ex. la hiérarchie ou l’analyse temporelle ou arborescente
  • H04L 41/042 - Architectures ou dispositions de gestion de réseau comprenant des centres de gestion distribués qui gèrent le réseau en collaboration

3.

TIME-SERIES-BASED TEXT SUMMARIZATION METHOD FOR A CONTINUOUS PROCESS

      
Numéro d'application IB2024056681
Numéro de publication 2025/238407
Statut Délivré - en vigueur
Date de dépôt 2024-07-09
Date de publication 2025-11-20
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s) Gong, Na

Abrégé

Objects from text documents are extracted the objects are associated with a time factor. The objects are transformed to an object oriented data structure that includes time-series based text pieces sorted by the time factor from the text documents. An intermediate output is generated for the objects by identifying changes in the time-series based text pieces and labeling the changes as contradictions or updates. A text summary of the text documents is generated based on a received prompt and the intermediate output. Fact-based contradictions are detected in the text summary based on comparing the text summary to the intermediate output. An updated text summary is generated based on the one or more fact-based contradictions detected in the text summary. The method has applications including, but not limited to, use cases in computational biology, medical AI and healthcare, and cyber threat security for optimizing machine learning processes or supporting decision making.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

4.

IRREDUCIBLE CARTESIAN TENSORS FOR MACHINE LEARNING PROPERTIES OF BIOLOGICAL MATTER AND MATERIALS

      
Numéro d'application IB2025052665
Numéro de publication 2025/238429
Statut Délivré - en vigueur
Date de dépôt 2025-03-13
Date de publication 2025-11-20
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Zaverkin, Viktor
  • Alesiani, Francesco
  • Maruyama, Takashi

Abrégé

A computer-implemented, machine learning method for predicting molecular properties includes embedding an atomic system of a molecule using irreducible Cartesian tensors. Interactions between rotation-equivariant features are computed using a message passing neural network trained to apply equivariant convolutions defined by an irreducible Cartesian tensor product of the irreducible Cartesian tensors. Many-body features of the molecule are computed using the message passing neural network based on the irreducible Cartesian tensor product. The molecular properties for the molecule are predicted based on the many-body features. The method has applications including, but not limited to, use cases in computational biology and medical Al and healthcare for optimizing vaccine design or supporting decision making in diagnosis and treatment of patients.

Classes IPC  ?

  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 40/20 - Analyse de données supervisée
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie

5.

RECONFIGURABLE INTELLIGENT SURFACES DETECTION USING FREQUENCY MODULATED CONTINUOUS WAVE RADAR DEVICES

      
Numéro d'application 19201980
Statut En instance
Date de dépôt 2025-05-08
Date de la première publication 2025-11-20
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Zanzi, Lanfranco
  • Devoti, Francesco
  • Encinas Lago, Guillermo

Abrégé

A computer-implemented method for detecting the presence of a reconfigurable intelligence surfaces (RIS) device using a radar device includes receiving an analog received (RX) signal using a receiver antenna of the radar device based on a transmitted (TX) signal. The method further includes mixing the TX signal and the analog RX signal to generate an intermediate frequency (IF) signal and processing the IF signal to detect a characteristic of the IF signal that indicates a presence of the RIS device. The method has applications in optimization and/or decision making associated with robots. For instance, based on performing the RIS detection, the robot can optimize its path to survey an environment (e.g., maximize exploration rate that is constrained by the battery of the robot). In some embodiments, machine learning (ML) and/or artificial intelligence (AI) techniques can be used to perform the RIS detection.

Classes IPC  ?

  • G01S 13/34 - Systèmes pour mesurer la distance uniquement utilisant la transmission d'ondes continues, soit modulées en amplitude, en fréquence ou en phase, soit non modulées utilisant la transmission d'ondes continues modulées en fréquence, tout en faisant un hétérodynage du signal reçu, ou d’un signal dérivé, avec un signal généré localement, associé au signal transmis simultanément
  • G01S 13/931 - Radar ou systèmes analogues, spécialement adaptés pour des applications spécifiques pour prévenir les collisions de véhicules terrestres
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées

6.

IN-BAND WIRELESS CONTROL OF RECONFIGURABLE INTELLIGENT SURFACES

      
Numéro d'application 19206077
Statut En instance
Date de dépôt 2025-05-13
Date de la première publication 2025-11-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Garcia Saavedra, Andres
  • Sciancalepore, Vincenzo
  • Rossanese, Marco
  • Widmer, Joerg
  • Deram, Sai Pavan

Abrégé

A computer-implemented method for enabling a base station (BS) to provide configuration commands wirelessly to a reconfigurable intelligence surface (RIS) includes establishing a new codebook for each configuration from a previous set of configurations. The method further includes generating an RIS control message based on embedding amplitude-modulated (AM) signals into Orthogonal Frequency-Division Multiplexing (OFDM) signals using the new codebook and providing the RIS control message to the RIS to control the RIS. The method can be used to optimize and/or allow enhanced decision making for controlling the RIS using the BS. For instance, the method can synchronize its radio scheduler decisions and the optimization of the RIS configuration seamlessly and/or disguise RIS control messages into New Radio OFDM symbols. In some embodiments, machine learning (ML) and/or artificial intelligence (AI) techniques (e.g., a neural network (NN)) can be used.

Classes IPC  ?

  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04B 7/0456 - Sélection de matrices de pré-codage ou de livres de codes, p. ex. utilisant des matrices pour pondérer des antennes
  • H04L 5/00 - Dispositions destinées à permettre l'usage multiple de la voie de transmission
  • H04L 27/26 - Systèmes utilisant des codes à fréquences multiples

7.

MACHINE LEARNING-DRIVEN DATA INTEGRATION FOR DATA SPACES AND DIGITAL TWINS

      
Numéro d'application 18791491
Statut En instance
Date de dépôt 2024-08-01
Date de la première publication 2025-11-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Cirillo, Flavio
  • Solmaz, Gurkan

Abrégé

A computer-implemented method for homogenizing datasets that have different ontologies to optimize performance of machine learning models that use the datasets includes mapping concepts between the different ontologies of the datasets based on ontology matching. The concepts are scored based on a relation between the concepts to identify certain ones of the concepts that are more important to improving the performance of the machine learning models. The different ontologies are merged based on the scoring to generate a merged ontology that includes the identified concepts. The datasets are transformed into a homogenized dataset according to the merged ontology. A machine learning model is generated based on the homogenized dataset. The method has applications including, but not limited to, use cases in computational biology, medical AI and healthcare, cyberthreat security, public safety and smart cities for optimizing machine learning processes or supporting decision making.

Classes IPC  ?

  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/36 - Création d’outils sémantiques, p. ex. ontologie ou thésaurus

8.

METHOD, SYSTEM AND COMPUTER PROGRAM FOR MACHINE LEARNING-BASED EVALUATION OF ISOLATED HEALTH EVALUATIONS OF A PATIENT

      
Numéro d'application EP2024067285
Numéro de publication 2025/232986
Statut Délivré - en vigueur
Date de dépôt 2024-06-20
Date de publication 2025-11-13
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Lepri, Marco
  • Nicolas, Sebastien

Abrégé

Various examples of the present disclosure relate to an artificial intelligence-based method, system, and computer program for combining multiple diagnoses and their explanations to aid in the decision-making process of healthcare professionals, such as doctors. For example, a computer-implemented method for machine learning-based evaluation of isolated health evaluations of a patient comprises obtaining (120) a plurality of sets of isolated health evaluations of the patient, with each set comprising information on an isolated outcome and a textual explanation of the isolated outcome, with the respective isolated outcome being based on the isolated health evaluation of the patient, inputting (130) at least the information on the isolated outcome of the plurality of sets of isolated evaluations into a first machine learning model, with the first machine learning model being trained to output (132) a predicted overall diagnosis based on the isolated outcomes, inputting (150) the predicted overall diagnosis and at least the textual explanation of the isolated outcome of the plurality of sets of isolated evaluations into a second machine learning model, with the second machine learning model being trained to output (155) a textual explanation of the predicted overall diagnosis based on the predicted overall diagnosis and the textual explanation of the isolated outcomes, and providing (170) the predicted overall diagnosis and the textual explanation of the predicted overall diagnosis.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G06N 3/045 - Combinaisons de réseaux

9.

MULTIMODAL EXPLAINABLE JUSTIFICATION FOR FACT-CHECKING FIELD

      
Numéro d'application IB2024056848
Numéro de publication 2025/233667
Statut Délivré - en vigueur
Date de dépôt 2024-07-15
Date de publication 2025-11-13
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Hung, Chia-Chien
  • Gong, Na

Abrégé

A computer-implemented method for multimodal fact-checking includes receiving, from an agent system, new textual data indicating a textual claim. The method further includes segmenting the evidences that are in the different modalities and/or the different data formats into trackable multi-modal unit-based pairs and transforming image-based multi-modal evidences that are in the image data formats into the non-image formats. The method also includes inputting the textual claim, the trackable multi-modal unit-based pairs, and output from a generative artificial intelligence (AI) model into a multimodal explanation generator to generate final multimodal explanation information. The method has applications including, but not limited to, use cases in machine learning and medicine / healthcare, e.g., generating final multimodal explanation information indicating the veracity of whether a patient has a medical condition and a subset of evidences that support the veracity of whether the patient has the medical condition, which can help optimize decision making.

Classes IPC  ?

10.

UNIFORM ANALYSIS OF MULTILINGUAL RECORDS VIA KNOWLEDGE GRAPH TRANSLATION AND TRANSFER LEARNING

      
Numéro d'application IB2024057506
Numéro de publication 2025/233668
Statut Délivré - en vigueur
Date de dépôt 2024-08-02
Date de publication 2025-11-13
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Nicolas, Sebastien
  • Gastinger, Julia

Abrégé

A computer-implemented method includes receiving input text documents in a majority language and training a plurality of models using the input text documents. Training the plurality of models using the input text documents includes conjunctively training a text to knowledge graph model in the majority language and a text to knowledge graph model in the minority language and conjunctively training a text translation model and a knowledge graph translation model, wherein one or more weights from the text to text translation model is shared with the knowledge graph translation model. The method has applications including, but not limited to, use cases in machine learning and medicine / healthcare, e.g., performing uniform analysis of multilingual records of a patient via knowledge graph translation and transfer learning, and improving text to knowledge graph extraction and knowledge graph translation for medical records in multiple languages, which can help optimize decision making.

Classes IPC  ?

  • G06F 40/44 - Méthodes statistiques, p. ex. modèles probabilistes
  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients

11.

METHODS, SYSTEMS AND COMPUTER PROGRAMS FOR SUPPORTING A DECISION-MAKING PROCESS OR DIAGNOSTIC PROCESS

      
Numéro d'application EP2024067096
Numéro de publication 2025/232985
Statut Délivré - en vigueur
Date de dépôt 2024-06-19
Date de publication 2025-11-13
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Alqassem, Israa
  • Friede, David
  • Hung, Chia-Chien
  • Pileggi, Giampaolo

Abrégé

Various examples of the present disclosure relate to methods for generating and using digital flow charts from manuals and/or guidelines, in order to guide a user through one or more digital flow charts to support a decision-making process of the user, e.g., a healthcare-related decision-making process of a doctor, or a decision-making process of a repair technician attempting to repair a device. The present disclosure leverages artificial intelligence, and in particular a (large) language model, to generate digital flow charts from manuals and/or guidelines, which are then used, in an interactive process, to support the decision-making process of the user e.g. in medical diagnostics/applications and in healthcare.

Classes IPC  ?

  • G16H 10/20 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des essais ou des questionnaires cliniques électroniques
  • G06F 40/00 - Maniement de données en langage naturel
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
  • G16H 70/20 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des pratiques ou des directives

12.

SELF-CORRECTING PROTOTYPE-BASED LEARNING FRAMEWORK FOR DEBIASING TRAINING DATA

      
Numéro d'application 18782168
Statut En instance
Date de dépôt 2024-07-24
Date de la première publication 2025-11-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Gashteovski, Kiril
  • Saralajew, Sascha

Abrégé

A prototype-based model with one prototype per class is analyzed based on a comparison between a class-wise quality metric and a threshold for each prototype per class pair. A new prototype is added for each class in response to the class-wise quality metric for a respective prototype per class pair being below the threshold. The prototype-based model is retrained using the new prototype. A number of training samples closest to each prototype per class pair of the retrained prototype-based model is counted based on a distance measure. Sample weights for the training samples closest to each prototype per class pair is computed based on the number. A target model is trained using the computed sample weights. The method has applications including, but not limited to, use cases in computational biology, medical AI and healthcare, and cyber threat security for optimizing machine learning processes or supporting decision making.

Classes IPC  ?

13.

INDUCTIVE GRAPH MACHINE LEARNING METHOD AND SYSTEM

      
Numéro d'application 18870704
Statut En instance
Date de dépôt 2022-11-14
Date de la première publication 2025-10-23
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Errica, Federico
  • Pileggi, Giampaolo

Abrégé

A method of inductive graph machine learning uses information recorded or collected from an established network including a plurality of entities with relationships existing between the plurality of entities to generate a graph representation of the established network. The plurality of entities form nodes and the relationships existing between the plurality of entities form edges of the graph representation. A new entity is mapped to a latent space. An extended network is created by connecting the new entity to one or more of the plurality of entities of the established network according to their distance in the latent space. The extended network and a graph machine learning (ML) predictor is optimized and used to make predictions about the new entity.

Classes IPC  ?

  • G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne

14.

MACHINE LEARNING SYSTEMS AND METHODS FOR CLASSIFYING OR PREDICTING A PHENOTYPE BASED ON MICROBIOME DATA

      
Numéro d'application EP2024076930
Numéro de publication 2025/190516
Statut Délivré - en vigueur
Date de dépôt 2024-09-25
Date de publication 2025-09-18
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Machart, Pierre
  • Von Stetten, Moritz
  • Chaput, Catherine

Abrégé

The present disclosure relates to a machine learning system comprising an encoder configured to receive patient microbiome data, and associated patient bias data as input. The encoder comprises one or more processing layers, and one or more conditional normalization layers connected to the one or more processing layers, and is configured to encode the patient microbiome data, conditioned by the associated patient bias data as a latent representation in a suitable (e.g., stochastic) embedding space. The machine learning system also comprises a decoder configured to receive the encoded latent representation as input and is configured to predict or classify a phenotype of the patient based on the patient microbiome data. Related optimized training methods and optimized medical diagnosis or optimized treatment recommendation systems in healthcare are also disclosed.

Classes IPC  ?

  • G16B 20/00 - TIC spécialement adaptées à la génomique ou protéomique fonctionnelle, p. ex. corrélations génotype-phénotype
  • G16B 40/20 - Analyse de données supervisée
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

15.

MACHINE LEARNING APPROACH TO PREDICT VIRUS OR CANCER MUTATIONS FOR VACCINE PRODUCTION OR DRUG DESIGN

      
Numéro d'application IB2025050405
Numéro de publication 2025/172775
Statut Délivré - en vigueur
Date de dépôt 2025-01-14
Date de publication 2025-08-21
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Siarheyeu, Raman
  • Xu, Zhao

Abrégé

A computer-implemented, machine learning method for predicting a top-k most likely mutated molecular sequences includes encoding a molecular sequence at a first time into a first vector in a latent space. A second vector is generated, by a time-varying mutation models, in the latent space using as input the first vector. The second vector indicates a time-varying influence of the molecular sequence on a mutated version of the molecular sequence at a subsequent time. The second vector is decoded to generate a prediction of the top-k most likely mutated molecular sequences for the molecular sequence at the subsequent time. The method has applications including, but not limited to, use cases in computational biology and medical AI and healthcare for optimizing vaccine design or supporting decision making in diagnosis and treatment of patients.

Classes IPC  ?

16.

STABLE CLASSIFICATION BY COMPONENTS FOR INTERPRETABLE MACHINE LEARNING

      
Numéro d'application EP2024072755
Numéro de publication 2025/168228
Statut Délivré - en vigueur
Date de dépôt 2024-08-12
Date de publication 2025-08-14
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s) Saralajew, Sascha

Abrégé

The present disclosure relates to a stable classification by components (SCBC) data processing architecture, configured to classify input data into one or more classes, comprising: a component detection module configured to compare the input data to a set of detection components, representing data patterns relevant for the classification, and determine a detection probability for each detection component based on the comparison. The SCBC data processing architecture further comprises a probabilistic reasoning module configured to compute one or more class prediction probabilities for the one or more classes based on the determined detection probabilities, a set of class-specific prior probabilities for the determined detection probabilities, and a set of class-specific reasoning probabilities for the determined detection probabilities. Application scenarios include medical and pharmaceutical applications, as well as healthcare in general such as interpretable and secure diagnosis and treatment recommendation systems. Related SCBC data processing system, methods and computer programs are also disclosed, as well as corresponding model training methods and systems.

Classes IPC  ?

  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation
  • G06N 5/045 - Explication d’inférenceIntelligence artificielle explicable [XAI]Intelligence artificielle interprétable

17.

MODELLING MULTI-SCALE INTERACTIONS IN A GEOMETRICAL ALGEBRAIC EQUIVARIANT GRAPH NEURAL NETWORK

      
Numéro d'application IB2025050184
Numéro de publication 2025/169018
Statut Délivré - en vigueur
Date de dépôt 2025-01-08
Date de publication 2025-08-14
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Maruyama, Takashi
  • Alesiani, Francesco

Abrégé

A computer-implemented machine learning method for modelling multi-scale interactions includes determining a geometric vectorization based on a mapping of input data associated with a multi-scale system. Using a neural network and the mapped input data, one or more predicted vectors of the multi-scale system are generated. The neural network includes pooling and unpooling mechanisms that conserve equivariance to geometric primitives of the geometric vectorization by using a multi-blade projection that defines pooling or clustering of the pooling and unpooling mechanisms. The one or more predicted vectors are mapped to the multi-scale interactions of the multi-scale system. The method has applications including, but not limited to, use cases in computational biology, medical AI and healthcare, and orbiting body management for optimizing machine learning processes or supporting decision making.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

18.

NON-REAL TIME CLOUDRIC: ENERGY-EFFICIENT CONTROL OF VRAN RESOURCES IN SHARED O-RAN CLOUDS

      
Numéro d'application 18856631
Statut En instance
Date de dépôt 2022-12-06
Date de la première publication 2025-08-07
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Garcia-Saavedra, Andres
  • Li, Xi
  • Fan, Linghang

Abrégé

A method performed by an access network controller is provided. The method includes providing, to a distributed unit (DU) of an access network, at least one scheduling policy for scheduling transmission of at least one transport block (TB) by a user equipment (UE). The at least one scheduling policy is based on statistical information about a respective waiting time, associated with each queue of a plurality of queues, each queue of the plurality of queues being associated with a respective logical processing unit (LPU) representing a hardware accelerator (HA) for processing TBs.

Classes IPC  ?

  • H04W 72/50 - Critères d’affectation ou de planification des ressources sans fil
  • H04W 28/02 - Gestion du trafic, p. ex. régulation de flux ou d'encombrement
  • H04W 28/08 - Équilibrage ou répartition des charges
  • H04W 88/08 - Dispositifs formant point d'accès

19.

METHODS, SYSTEM AND COMPUTER PROGRAMS FOR TRIGGERING AN EVENT AND FOR TRAINING AT LEAST ONE MACHINE LEARNING MODEL

      
Numéro d'application EP2024070089
Numéro de publication 2025/162594
Statut Délivré - en vigueur
Date de dépôt 2024-07-16
Date de publication 2025-08-07
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Gastinger, Julia

Abrégé

Various examples relate to computer-implemented methods, systems, and computer programs for triggering an event and for training at least one machine learning model. The proposed methods, systems and computer programs provide an artificial intelligence-based approach for helping decision-making in various fields, such as healthcare fields, which may be used to help healthcare professionals in diagnosing or treating a disease or condition, or by crime specialists to solve a crime case. A computer-implemented method for triggering an event, the method comprising inputting (130) a representation of a first sequence of knowledge graphs representing a plurality of stages of a case, such as a crime case or medical case, and a representation of a second sequence of actions having been performed in the plurality of stages of the case into at least one machine learning model, wherein the at least one machine learning model is trained to output a predicted next action to perform and a corresponding predicted next stage of the case in response to the representations of the first sequence and the second sequence being input into the machine learning model, and triggering (140) an event based on at least one of the predicted next action to perform and the predicted next stage of the case, wherein the event being triggered comprises at least one of processing, using an algorithm or machine learning model, sensor data, such as camera sensor data, being related to the predicted action, and controlling a device or system, such as a controllable sensor device, medical device, autonomous vehicle, traffic control system or wearable device, based on the predicted action.

Classes IPC  ?

  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/09 - Apprentissage supervisé
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

20.

TRAINING AND GENERATING SYNTHETIC DATA USING (CONTINUOUS) NORMALIZING FLOW THAT PRESERVES PRIVACY

      
Numéro d'application IB2024062750
Numéro de publication 2025/163377
Statut Délivré - en vigueur
Date de dépôt 2024-12-17
Date de publication 2025-08-07
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Alesiani, Francesco
  • Christiansen, Henrik
  • Pileggi, Giampaolo

Abrégé

A computer-implemented method for developing a differential privacy model is provided. The method includes collecting a private and personal dataset comprising private and/or personal data and training the differential privacy model via backpropagation to optimize an expected accuracy of an adversarial loss and a privacy loss. The differential privacy model is associated with a continuous normalizing flow. The method further includes outputting the trained differential privacy model. The trained differential privacy model is configured to generate new synthetic datasets that are used to train one or more downstream tasks. The method has applications including, but not limited to, use cases in medicine / healthcare such as Electronic Health Record (EHR) generation, single and bulk cell sequencing data generation, and pre-training large multimodal language models (LLMs) associated with clinical data, and can further for example, be used to optimize machine learning tasks or to support decision making.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • H04W 12/02 - Protection de la confidentialité ou de l'anonymat, p. ex. protection des informations personnellement identifiables [PII]
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/047 - Réseaux probabilistes ou stochastiques
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G06N 20/00 - Apprentissage automatique
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients

21.

METHODS, SYSTEMS AND COMPUTER PROGRAMS FOR TRAINING AND APPLYING A MACHINE-LEARNING MODEL FOR PREDICTION OF MOLECULAR PROPERTIES OF A MOLECULE

      
Numéro d'application EP2024070085
Numéro de publication 2025/157429
Statut Délivré - en vigueur
Date de dépôt 2024-07-16
Date de publication 2025-07-31
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Takamoto, Makoto
  • Zaverkin, Viktor

Abrégé

The present invention relates to a method, system and computer program for training a machine-learning model for prediction of one or more molecular properties of a molecule, and a method, system and computer program for applying such a machine-learning model. The present invention optimizes molecular simulation. It can be used in a variety of applications including, but not limited to, several anticipated use cases in drug development, material synthesis, and in healthcare. The computer-implemented method for training the machine-learning model comprises obtaining (110) an initial training sample for training the machine-learning model, the initial training sample representing a first molecule and comprising atomic coordinate information, chemical element information, and information on one or more molecular properties of the first molecule, generating (120) spatially perturbed atomic coordinate information for a spatially perturbed variation of the first molecule, deterministically (140, 145) calculating or estimating at least one molecular property of the spatially perturbed variation of the first molecule based on the initial training sample and based on a spatial deviation between the atomic coordinate information of the first molecule and the spatially perturbed atomic coordinate information, calculating (160) a first partial loss function between the information on the one or more molecular properties of the first molecule included in the initial training sample and predicted information on the one or more molecular properties of the first molecule predicted by the machine-learning model, calculating (170) a second partial loss function between the deterministically calculated or estimated at least one molecular property of the spatially perturbed variation of the first molecule and a corresponding prediction of the at least one molecular property predicted by the machine-learning model, and adjusting (190) the machine-learning model based on a result of the first and second partial loss function.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques

22.

TEMPORAL-RELATIONAL PATH-BASED SEMI-INDUCTIVE TEMPORAL KNOWLEDGE GRAPH FORECASTING

      
Numéro d'application 18776266
Statut En instance
Date de dépôt 2024-07-18
Date de la première publication 2025-07-31
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Gastinger, Julia
  • Sztyler, Timo

Abrégé

A computer-implemented method for predicting links in a temporal knowledge graph (TKG) includes determining one or more anchor nodes and computing, from each node to each anchor node of the TKG for each time-step, relational and temporal paths, and temporal and spatial distances. An embedding is determined for each node to a closest anchor node at each time-step using a vocabulary encoder that combines information received from separate encoders configured to encode the paths and distances. The embedding includes a type of relation. Scores are predicted for each embedding at a future time-step using a scoring function. Link prediction is performed to predict how interaction of the nodes change at the future time-step based on the scores. The present disclosure has applications including, but not limited to, use cases in computational biology, medical AI and healthcare, and cyber threat security for optimizing machine learning processes or supporting decision making.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

23.

SELF-CONFIGURING SMART SURFACE

      
Numéro d'application 18697739
Statut En instance
Date de dépôt 2021-11-22
Date de la première publication 2025-07-24
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Devoti, Francesco
  • Albanese, Antonio
  • Sciancalepore, Vincenzo
  • Costa-Perez, Xavier

Abrégé

A method of self-configuration of a reconfigurable intelligent surface (RIS) for optimizing a gain of a reflected beam between a base station (BS) and a User Equipment (UE) includes acquiring, using power sensing capabilities of the RIS, a power profile through sequential activation of probing beams. An angular position of the BS and the UE is obtained by identifying power profile peaks in the acquired power profile. An optimal RIS configuration is computed locally according to the obtained angular position of the BS and U. The RIS is self-configured by setting the computed optimal RIS configuration.

Classes IPC  ?

  • H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04B 7/06 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission

24.

METHOD AND SYSTEM FOR INTELLIGENT DATA COLLECTION AND MANAGEMENT FOR OPEN RAN INTELLIGENT CONTROLLERS

      
Numéro d'application 18854559
Statut En instance
Date de dépôt 2023-08-11
Date de la première publication 2025-07-10
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Fan, Linghang
  • Li, Xi
  • Garcia-Saavedra, Andres

Abrégé

A method of operating an open radio access network (O-RAN) is provided. The O-RAN includes a Non-Real-Time RAN Intelligent Controller (Non-RT RIC) and a Near-Real-Time RAN Intelligent Controller (Near-RT RIC). An interface provided between the Non-RT RIC and the Near-RT RIC is used to send analytical data from the Near-RT RIC to the Non-RT RIC.

Classes IPC  ?

  • H04W 60/04 - Rattachement à un réseau, p. ex. enregistrementSuppression du rattachement à un réseau, p. ex. annulation de l'enregistrement utilisant des événements déclenchés
  • H04W 48/08 - Distribution d'informations relatives aux restrictions d'accès ou aux accès, p. ex. distribution de données d'exploration
  • H04W 48/16 - ExplorationTraitement d'informations sur les restrictions d'accès ou les accès

25.

METHOD AND SYSTEM FOR PREDICTING GENE EXPRESSION PERTURBATIONS

      
Numéro d'application 18854569
Statut En instance
Date de dépôt 2022-07-08
Date de la première publication 2025-07-10
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Siarheyeu, Raman
  • Grazioli, Filippo
  • Pileggi, Giampaolo
  • Machart, Pierre

Abrégé

A computer-implemented method for predicting gene expression perturbations includes generating a knowledge graph (KG) from domain knowledge, where the KG describes relations including associations, similarities and/or interactions between a plurality of entities, the plurality of entities including at least a number of genes and perturbation agents. A machine-learning (ML) model is trained to predict perturbed gene expression from pre-perturbed gene expression data and learned embeddings of the plurality of entities of the KG. Gene expression data obtained from a subject-derived gene sample is provided and the trained ML model is used to predict a response of the gene sample in terms of gene expression changes effected by applying one or more perturbation agents to the gene sample.

Classes IPC  ?

  • G16B 25/10 - Profilage de l’expression de gènes ou de protéinesEstimation ou normalisation de ratio d’expression
  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques
  • G16B 40/20 - Analyse de données supervisée

26.

DEBATER SYSTEM FOR COLLABORATIVE DISCUSSIONS BASED ON EXPLAINABLE PREDICTIONS

      
Numéro d'application 19090549
Statut En instance
Date de dépôt 2025-03-26
Date de la première publication 2025-07-10
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Lawrence, Carolin
  • Sztyler, Timo

Abrégé

An iterative artificial-intelligence (AI)-based prediction method includes receiving a dataset of knowledge, and processing the dataset of knowledge to produce one or more predictions, one or more explanations corresponding to the one or more predictions, and one or more output options. An output option of the one or more output options is presented to a user, the output option including a prediction and an explanation of the prediction. A reply is received including a feedback score regarding a degree of positive sentiment or negative sentiment from the user. Processing is performed, by using the feedback score, to determine a new or revised output option for presentation to the user. The method has applications including, but not limited to, use cases in computational biology and medical AI and healthcare for drug development, public safety and predictive maintenance, for optimizing outputs or supporting decision.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 18/20 - Analyse
  • G06F 18/211 - Sélection du sous-ensemble de caractéristiques le plus significatif
  • G06F 18/213 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace
  • G06N 3/047 - Réseaux probabilistes ou stochastiques
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

27.

DEBATER SYSTEM FOR COLLABORATIVE DISCUSSIONS BASED ON EXPLAINABLE PREDICTIONS

      
Numéro d'application 19090555
Statut En instance
Date de dépôt 2025-03-26
Date de la première publication 2025-07-10
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Lawrence, Carolin
  • Sztyler, Timo

Abrégé

An iterative artificial-intelligence (AI)-based prediction method includes receiving a dataset of knowledge, and processing the dataset of knowledge to produce one or more predictions, one or more explanations, and one or more output options. Using an AI algorithm, one of the output options is selected and is presented to a user, the selected output option including a prediction and an explanation of the prediction. A reply including feedback information is received from the user. Using the feedback information from the user, at least one of the dataset of knowledge, the AI algorithm, an inference module, an explanation module, or an output module is/are updated. The method has applications including, but not limited to, use cases in computational biology and medical AI and healthcare for drug development, public safety and predictive maintenance, for optimizing outputs or supporting decision.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 18/20 - Analyse
  • G06F 18/211 - Sélection du sous-ensemble de caractéristiques le plus significatif
  • G06F 18/213 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace
  • G06N 3/047 - Réseaux probabilistes ou stochastiques
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

28.

ADAPTIVE MACHINE LEARNING METHOD TO CAPTURE LONG-RANGE DEPENDENCIES IN GRAPH-STRUCTURED DATA

      
Numéro d'application EP2024066233
Numéro de publication 2025/131339
Statut Délivré - en vigueur
Date de dépôt 2024-06-12
Date de publication 2025-06-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Errica, Federico
  • Christiansen, Henrik
  • Zaverkin, Viktor
  • Maruyama, Takashi
  • Alesiani, Francesco

Abrégé

Aspects of the disclosure relate to methods, computing devices and computer programs for training a graph neural network (GNN), as well as methods for node, edge or graph classification using a GNN. According to aspects of the present disclosure, a depth of a GNN may be adapted during training by adjusting the number of message passing layers, to ensure that an optimized number of layers is used which is large enough to grasp long-term dependencies, but is not too large, such that oversmoothing can be avoided. Aspects of the present disclosure can be used in a variety of applications including, but not limited to, several use cases in drug development, material informatics, and medical/healthcare.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

29.

FRAMEWORK IDENTICAL PSEUDO RANDOM NUMBER GENERATION FOR COMPILED AI AND SCIENTIFIC TENSOR COMPUTATION GRAPHS

      
Numéro d'application IB2024054073
Numéro de publication 2025/133717
Statut Délivré - en vigueur
Date de dépôt 2024-04-26
Date de publication 2025-06-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s) Weber, Nicolas

Abrégé

A computer-implemented method for providing for artificial intelligence (AI) framework identical pseudo random number generation includes storing a generator state as a static object within a compiled library having a plurality of layers, or in a runtime library associated with the compiled library, the generator state corresponding to a random state associated with a pseudo random number generation algorithm. Random number generations are scheduled using in each case the generator state, wherein the generator state is forwarded by an amount of random numbers drawn from previous layers of the compiled library executed prior to a current layer. The method has applications including, but not limited to, use cases in machine learning, computational biology, medical AI and healthcare, chemistry, physics, electrical or mechanical engineering.

Classes IPC  ?

  • G06F 7/58 - Générateurs de nombres aléatoires ou pseudo-aléatoires

30.

INFORMATION AGGREGATION IN A MULTI-MODAL ENTITY-FEATURE GRAPH FOR INTERVENTION PREDICTION FOR A MEDICAL PATIENT

      
Numéro d'application 19075883
Statut En instance
Date de dépôt 2025-03-11
Date de la première publication 2025-06-26
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Lawrence, Carolin

Abrégé

A computer-implemented method for providing event-specific intervention recommendations includes acquiring at least two data streams of a patient by using one or more sensors. At least one entity-feature-graph is generated based on the acquired at least two data streams of the patient. At least one intervention is selected based on the generated entity-feature-graph, a trained graph classification model, and an information related to the patient. An information of the selected intervention is output to a user. The method has applications including, but not limited to, use cases in medical/healthcare for optimizing machine learning and supporting decision making.

Classes IPC  ?

  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

31.

INFORMATION AGGREGATION IN A MULTI-MODAL ENTITY-FEATURE GRAPH FOR INTERVENTION PREDICTION FOR A MEDICAL PATIENT

      
Numéro d'application 19075929
Statut En instance
Date de dépôt 2025-03-11
Date de la première publication 2025-06-26
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Lawrence, Carolin

Abrégé

A computer-implemented method for providing event-specific intervention recommendations includes acquiring at least two data streams of a patient by using one or more sensors, wherein at least one the data streams includes images. At least one entity-feature-graph is generated based on the acquired at least two data streams of the patient. At least one intervention is selected based on the generated entity-feature-graph and a trained graph classification model. An information of the selected intervention is output to a user. The method has applications including, but not limited to, use cases in medical/healthcare for optimizing machine learning and supporting decision making.

Classes IPC  ?

  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

32.

INFORMATION AGGREGATION IN A MULTI-MODAL ENTITY-FEATURE GRAPH FOR INTERVENTION PREDICTION FOR A MEDICAL PATIENT

      
Numéro d'application 19076030
Statut En instance
Date de dépôt 2025-03-11
Date de la première publication 2025-06-26
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Lawrence, Carolin

Abrégé

A computer-implemented method for providing event-specific intervention recommendations includes acquiring at least two data streams of a patient by using one or more sensors. A location of an event is determined based on the acquired at least two data streams of the patient. At least one entity-feature-graph is generated based on the acquired at least two data streams of the patient. At least one intervention is selected based on the generated entity-feature-graph, a trained graph classification model, and an information related to the determined location of the event. An information of the selected intervention is output to a user. The method has applications including, but not limited to, use cases in medical/healthcare for optimizing machine learning and supporting decision making.

Classes IPC  ?

  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

33.

MACHINE LEARNING-ASSISTED PIPELINE FOR PREDICTING PROPERTIES OF ATOMIC SYSTEMS IN THE ABSENCE OF TRAINING DATA

      
Numéro d'application IB2024054072
Numéro de publication 2025/133716
Statut Délivré - en vigueur
Date de dépôt 2024-04-26
Date de publication 2025-06-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Errica, Federico
  • Christiansen, Henrik
  • Zaverkin, Viktor

Abrégé

A computer-implemented machine learning method for using a predicted property of an atomic system to train a graph machine learning model includes obtaining a candidates pool comprising a plurality of candidates and using an uncertainty-driven active learning (UDAL) to obtain a candidate specific machine learning interatomic potential (MLIP) model for a first batch of candidates. The method further includes incorporating the MLIP model into a self-tuning Hamiltonian Monte Carlo (HMC) simulator to generate an HMC output indicating the predicted property. The method also includes training the graph machine learning model based on a dataset comprising the HMC output. The method has applications including, but not limited to, use cases in medicine / healthcare, e.g., for drug design or treatment, and discovery of new materials, to optimize predictions or support decision making.

Classes IPC  ?

  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie
  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire

34.

METHOD, APPARATUS AND COMPUTER SYSTEM FOR PATIENT-PHYSICIAN MATCHING

      
Numéro d'application EP2024053073
Numéro de publication 2025/131333
Statut Délivré - en vigueur
Date de dépôt 2024-02-07
Date de publication 2025-06-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Gastinger, Julia
  • Chaput, Catherine

Abrégé

Some aspects of the present disclosure relate to a computer-implemented method for optimizing patient-physician matching, comprising obtaining (110), for a plurality of physicians, a representation of the respective physician, wherein the representation of a physician comprises a plurality of sub-representations representing a category of properties of the respective physician, obtaining (120), for one or more patients, a representation of the respective patient, the representation of a patient comprising information on one or more symptoms of the patient, determining (140), using an ensemble of machine learning models, matching scores representing matches between the plurality of physicians and the one or more patients, wherein the ensemble of machine learning models comprises separate sub-models for different categories of properties of the respective physicians, and wherein the ensemble of machine learning models takes the representations of the physicians and the representations of the one or more patients as input, and providing (190), based on the matching scores, information on one or more recommended matches between the plurality of physicians and the one or more patients. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in decision making, medical diagnostics/applications and in healthcare.

Classes IPC  ?

  • G16H 40/20 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion ou l’administration de ressources ou d’établissements de soins de santé, p. ex. pour la gestion du personnel hospitalier ou de salles d’opération
  • G06N 3/045 - Combinaisons de réseaux
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

35.

LIFESTYLE RECOMMENDATION SYSTEM FOR CHRONIC DISEASE MITIGATION

      
Numéro d'application IB2024053780
Numéro de publication 2025/114768
Statut Délivré - en vigueur
Date de dépôt 2024-04-18
Date de publication 2025-06-05
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Sanvito, Davide
  • Siarheyeu, Raman
  • Gong, Na

Abrégé

A computer-implemented, machine learning method for generating explainable lifestyle recommendations for mitigation of a medical condition of a patient includes extracting structured information from unstructured static data. Real-time data is transformed into a homogeneous representation. A portion of data is selected based on a pre-defined time interval or frequency. A patient graph is constructed using the structured information, the homogenous representation, and the portion of data. Whether there is a current risk is determined based on analyzing the real-time data. Whether there is a potential risk is determined based on the patient graph and a classification method. Recommendation candidates are generated based on features of other patients meeting a similarity condition with the patient using the patient graph and a hierarchy search. The method has applications including, but not limited to, use cases in medical AI / healthcare, for example to optimize predictions or treatments, or to support decision-making.

Classes IPC  ?

  • G16H 20/30 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies ou des activités physiques, p. ex. la physiothérapie, l’acupression ou les exercices
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
  • G16H 20/60 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant le contrôle de l’alimentation, p. ex. les régimes
  • G16H 20/70 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mentales, p. ex. la thérapie psychologique ou le training autogène
  • G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne

36.

MULTI-MODAL REASONING SEGMENTATION TO ENHANCE LANGUAGE MODELS FOR HEALTHCARE REASONING ANALYSIS

      
Numéro d'application IB2024051422
Numéro de publication 2025/109380
Statut Délivré - en vigueur
Date de dépôt 2024-02-15
Date de publication 2025-05-30
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Hung, Chia-Chien
  • Sztyler, Timo

Abrégé

A computer-implemented method for improving language models includes tokenization processing to concatenate an obtained image and texts with designated tags. An image encoder is trained to encode image information of the image. A two token representation is generated by a multi-modal generative agent using the encoded image information and the obtained texts. A text encoder and the image encoder are trained to encode the obtained image and texts. A text decoder and an image decoder are combined for the multi-modal reasoning segmentation by training the text decoder and the image decoder to generate a segmented image and segmented textual information using the two token representation in combination with an output of the text encoder and an output of the image encoder. The method has applications including, but not limited to, use cases in medical Al / healthcare, for example, for optimizing medical diagnosis or treatment or supporting decision making.

Classes IPC  ?

  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/0475 - Réseaux génératifs
  • G06N 3/09 - Apprentissage supervisé
  • G06N 5/045 - Explication d’inférenceIntelligence artificielle explicable [XAI]Intelligence artificielle interprétable
  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield

37.

PROTECTING AND ATTESTING PROGRAM EXECUTIONS THROUGH SHADOW PROGRAMS

      
Numéro d'application 18413088
Statut En instance
Date de dépôt 2024-01-16
Date de la première publication 2025-05-29
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s) Klaedtke, Felix

Abrégé

A computer-implemented method for remotely attesting program executions includes obtaining, by a verifier computing entity, a program associated with an original program, for example a shadow program. The method further includes obtaining, by the verifier computing entity, collected information associated with control-flow operations executed by an instrumented program, wherein the instrumented program is a variation of the original program. The verifier computing entity executes the program associated with the original program based on the collected information, and checks an output of the program associated with the original program.

Classes IPC  ?

38.

MULTI-FREQUENCY RIS ARCHITECTURE

      
Numéro d'application 18838615
Statut En instance
Date de dépôt 2022-05-09
Date de la première publication 2025-05-29
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Albanese, Antonio
  • Mursia, Placido
  • Sciancalepore, Vincenzo
  • Costa-Perez, Xavier

Abrégé

A reflective device includes a control element and a reflective surface. The reflective surface includes a plurality of reflective elements, where each reflective element of the plurality of reflective elements has an antenna element and a phase shifter and is under control of the control element so as to reflect a radio-frequency (RF) signal incident on the reflective surface with an adjustable phase shift. An operating frequency of the reflective surface is configurable by at least a subset of the plurality of reflective elements being divided into a number of sub-elements that are individually switched via the control element from an activated state, in which a respective sub-element contributes to the reflection of the incident RF signal, to a deactivated state, in which the respective sub-element does not contribute to the reflection of the incident RF signal, and vice-versa.

Classes IPC  ?

  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H01Q 3/46 - Lentilles actives ou réseaux réfléchissants
  • H01Q 15/00 - Dispositifs pour la réflexion, la réfraction, la diffraction ou la polarisation des ondes rayonnées par une antenne, p. ex. dispositifs quasi optiques
  • H01Q 15/14 - Surfaces réfléchissantesStructures équivalentes

39.

FEATURE SELECTION FROM REMOTE DATA SOURCES FOR MACHINE LEARNING MODELS

      
Numéro d'application IB2024050428
Numéro de publication 2025/104504
Statut Délivré - en vigueur
Date de dépôt 2024-01-17
Date de publication 2025-05-22
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Jacobs, Tobias
  • Pang, Xin

Abrégé

A computer-implemented method for efficiently selecting features in a distributed system comprising a plurality of remote data sources and a computing system includes initializing a feature importance model and a feature redundancy model. The method further includes selecting a feature that maximizes an output from the feature importance model, accessing feature data associated with the feature and stored in one of the remote data sources, updating parameters of the feature importance model based on determining a true feature importance associated with the selected feature, and selecting one or more further features based on the feature importance model and the feature redundancy model. The method has applications including, but not limited to, use cases in medicine / healthcare, smart buildings and cities, energy distribution and management, public safety and predictive maintenance, for example, to optimize machine learning tasks or to support decision making.

Classes IPC  ?

  • G06F 18/211 - Sélection du sous-ensemble de caractéristiques le plus significatif
  • G06V 10/771 - Sélection de caractéristiques, p. ex. sélection des caractéristiques représentatives à partir d’un espace multidimensionnel de caractéristiques
  • G06V 10/778 - Apprentissage de profils actif, p. ex. apprentissage en ligne des caractéristiques d’images ou de vidéos

40.

SPARSE EXPLANATIONS OF FEATURE SELECTION FROM HIGH-DIMENSIONAL HEALTH DATA FOR BIOMEDICAL EVENTS

      
Numéro d'application IB2024051423
Numéro de publication 2025/104506
Statut Délivré - en vigueur
Date de dépôt 2024-02-15
Date de publication 2025-05-22
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Shaker, Ammar
  • Moesch, Anja

Abrégé

A machine-learning method generates sparse explanations of feature selection from high¬ dimensional data. A training phase includes: encoding training data into latent space to generate first training embeddings, which are decoded to generate first reconstructed training data; computing sparsified feature selections of the first reconstructed training data; calculating reconstruction losses; calculating negative partial likelihood losses; encoding the sparsified feature selections of the first reconstructed training data into the latent space to generate second training embeddings; calculating negative double-pass partial likelihood losses based on the second training embeddings; and updating an embedding machine learning model used for the encoding and decoding based on the reconstruction losses, negative partial likelihood losses and negative double-pass partial likelihood losses. The method has applications including, but not limited to, use cases in medicine / healthcare, treatment, diagnosis or biomedical events, to optimize predictions or support decision making.

Classes IPC  ?

  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/0495 - Réseaux quantifiésRéseaux parcimonieuxRéseaux compressés

41.

EXPLAINABLE PROTOTYPE-BASED EMBEDDED CLUSTERS HAVING APPLICATIONS TO MEDICAL EVENTS

      
Numéro d'application IB2024050885
Numéro de publication 2025/099497
Statut Délivré - en vigueur
Date de dépôt 2024-01-31
Date de publication 2025-05-15
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Shaker, Ammar
  • Moesch, Anja

Abrégé

A computer-implemented method for providing prototype-based embedded clusters includes receiving training data associated with a plurality of individuals and embedding the training data using an encoder / decoder architecture to generate an embedding output associated with the encoder / decoder architecture. The method further includes determining a clustering partial likelihood based on inter-cluster discordance associated with the embedding output from embedding the training data using the encoder / decoder architecture, and generating prototypes indicating predicted hazards for the plurality of individuals based on the clustering partial likelihood. The method has applications including, but not limited to, use cases in medicine / healthcare, predictive maintenance, and/or smart cities / buildings, for example, to optimize machine learning tasks or to support decision making.

Classes IPC  ?

  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06F 18/23 - Techniques de partitionnement
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

42.

EXPLAINING BLACK BOX NLP MODELS VIA ENSURING INTERMEDIATE HUMAN-UNDERSTANDABLE REPRESENTATIONS WITH PROTOTYPE-BASED LEARNING

      
Numéro d'application IB2024051071
Numéro de publication 2025/099498
Statut Délivré - en vigueur
Date de dépôt 2024-02-06
Date de publication 2025-05-15
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Lawrence, Carolin
  • Saralajew, Sascha
  • Gashteovski, Kiril

Abrégé

A computer-implemented, machine learning method for providing human-understandable intermediate representations using prototype-based learning includes receiving textual input and generating a rationale using the textual input, where the rationale includes an explanation for the textual input. A closest prototype is identified based on the rationale and a defined distance measure. A classification label and a set of rationales for the closest prototype is provided to a user. The method has applications including, but not limited to, use cases in medicine / healthcare (e.g., for disease classification), resource allocation and data security, data integrity, crime investigation, for example, to optimize predictions or support decision-making.

Classes IPC  ?

43.

MULTI AGENT TASK PLANNING

      
Numéro d'application IB2024051429
Numéro de publication 2025/099499
Statut Délivré - en vigueur
Date de dépôt 2024-02-15
Date de publication 2025-05-15
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Siracusano, Giuseppe
  • Lawrence, Carolin

Abrégé

A computer-implemented, machine learning method for guided programming of autonomous agents using a meta agent includes generating a first task that includes a start tag, script agents involved in the first task, and a timer associated with the first task or the script agents. A prompt is generated for each script agent of the script agents associated with the first task that includes the timer, wherein each script agent is configured to generate a script that corresponds to the prompt and includes an end tag for executing a second task associated with the prompt. An action is determined based on the script agents returning a response to the prompt or upon expiration of the timer. The method has applications including, but not limited to, use cases in medical Al / healthcare, cybersecurity, city planning, safer cities, industry 4.0 and material acquisition for optimization of actions or to support decision-making.

Classes IPC  ?

  • G06F 9/54 - Communication interprogramme
  • G05B 19/418 - Commande totale d'usine, c.-à-d. commande centralisée de plusieurs machines, p. ex. commande numérique directe ou distribuée [DNC], systèmes d'ateliers flexibles [FMS], systèmes de fabrication intégrés [IMS], productique [CIM]

44.

METHOD AND APARATUS FOR DETECTION AND PREVENTION OF ANOMALOUS ACTIVITIES IN NEW CONTEXTS

      
Numéro d'application EP2024066141
Numéro de publication 2025/098649
Statut Délivré - en vigueur
Date de dépôt 2024-06-12
Date de publication 2025-05-15
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Sharma, Lokesh
  • Gastinger, Julia
  • Cheng, Xingqi

Abrégé

The present disclosure relates to artificial intelligence systems employing machine learning that allow to predict anomalous activities and / events and to identify, optimize and decide on suitable counter measures. An aspect relates to a computer- implemented method for predicting behavior and/or relations of objects in a target region that are associated with anomalous types of behavior and / or relations, the method comprising, obtaining a plurality of data sets characterizing behavior and/or relations of the objects in the target region for a plurality of time intervals, generating, based on the obtained plurality of data sets, a first graph and, optionally, a second graph for the plurality of objects in the target region, wherein the first graph characterizes behavior and/or relations of the objects in the target region that are not associated with anomalous types of behavior and / or relations, and wherein the optional second graph characterizes behavior and/or relations of the objects in the target region that are associated with anomalous types of behavior and / or relations and predicting, using a trained neural network model, and based on the generated first graph and the optional second graph the behavior and/or relations of the objects in the target region that are associated with anomalous types of behavior and / or relations. Further aspects relate to associated methods for preventing occurrences of such anomalous types of behavior and / or relations as well as to corresponding apparatuses and computer programs. Possible applications include, crime prevention, disaster mitigation, health care interventions and industrial equipment maintenance.

Classes IPC  ?

  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/088 - Apprentissage non supervisé, p. ex. apprentissage compétitif

45.

GUIDED PROGRAMMING OF AUTONOMOUS AGENTS

      
Numéro d'application IB2024050480
Numéro de publication 2025/093936
Statut Délivré - en vigueur
Date de dépôt 2024-01-18
Date de publication 2025-05-08
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Friede, David
  • Siracusano, Giuseppe
  • Bifulco, Roberto

Abrégé

In an embodiment, the present invention provides a computer-implemented, machine learning method for guided programming of autonomous agents. A large language model (LLM) prompt is intercepted between an LLM autonomous agent and an LLM. A guiding prompt is selected from a plurality of guiding prompts to inject into the LLM prompt based on a context of the LLM prompt. A modified LLM prompt that includes the selected guiding prompt is sent to the LLM. The modified LLM prompt and answer generated by the LLM is forwarded to the LLM autonomous agent. The method has applications including, but not limited to, use cases in medicine / healthcare, Cyber Threat Intelligence and performance portability of computer code, to optimize processes or predictions or to support decision making.

Classes IPC  ?

46.

METHOD AND SYSTEM TO DETECT, PREDICT AND PREVENT OUTBREAKS OF RARE PATHOGENS

      
Numéro d'application EP2024065987
Numéro de publication 2025/093144
Statut Délivré - en vigueur
Date de dépôt 2024-06-10
Date de publication 2025-05-08
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Ben Rim, Wiem

Abrégé

The present disclosure relates to artificial intelligence systems and methods for detecting, predicting and preventing outbreaks of rare pathogens. Applications for the present disclosure include, but are not limited to, use cases in the medical sector and in healthcare as well as for decision making in such sectors. More specifically, the present disclosure relates to machine learning technologies that allow to predict infection probabilities of rare pathogens within a population of persons in a medical context. Counter measures can be identified, optimized, and executed to improve patient safety, trigger infection control, and manage medical resources. One aspect relates to a computer-implemented method comprising: obtaining time and location resolved information characterizing movement and interaction of the plurality of persons in the environment of connected locations during a first time period, obtaining one or more test results confirming infection of one or more persons with the first pathogen within the first time period, obtaining a machine learning model trained for estimating the infection probabilities based on the time and location resolved information, and the one or more test results, and estimating the infection probabilities for the first pathogen and the plurality of persons based on inputting the obtained time and location resolved information, and the obtained test results into the trained machine learning model.

Classes IPC  ?

  • G16H 50/80 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la détection, le suivi ou la modélisation d’épidémies ou des pandémies, p. ex. de la grippe
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

47.

AI-POWERED SYSTEM FOR PERSONALIZED HEALTH MANAGEMENT AND PREVENTION

      
Numéro d'application EP2024075416
Numéro de publication 2025/093173
Statut Délivré - en vigueur
Date de dépôt 2024-09-12
Date de publication 2025-05-08
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Alqassem, Israa
  • Friede, David
  • Gashteovski, Kiril

Abrégé

Aspects of the present invention relate to a computer-implemented method for generating a causal inference model, CIM, for assisting treatment of and optimal decision making for a medical condition. The CIM comprises: (i) an input layer configured to receive an input data set characterizing patient behavior within a time interval associated with the medical condition, and a presence of a therapeutic treatment within the time interval, (ii) one or more processing layers connected to the input layer, and (iii) an output layer connected to the one or more processing layers, and configured to output an output data structure comprising a patient-specific prediction of a likelihood of a presence of a symptom of the medical condition within a future time interval, information of patient behavior correlated or causally associated with the predicted likelihood, and a recommendation for an interventive treatment for the medical condition in the future time interval. The method comprises obtaining a plurality of labeled input data sets characterizing patient behavior, and presence of a therapeutic treatment for a plurality of patients and a plurality of time intervals, wherein each labeled input data set comprises a label characterizing a presence of the symptom of the medical condition for a respective patient within a respective time interval; and generating the CIM for treatment of the symptom of the medical condition by training the CIM based on the obtained plurality of labeled input data sets. The method may also comprise machine learning (e.g. a large language model), configured for generating part of the labeled input data set. The present disclosure can be used in a variety of applications including, but not limited to, several anticipated use cases in medical device development, in medical diagnostics/applications and in healthcare.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

48.

PASSIVE SELF-ANNOUNCING RECONFIGURABLE INTELLIGENT SURFACE

      
Numéro d'application 18434866
Statut En instance
Date de dépôt 2024-02-07
Date de la première publication 2025-05-01
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Devoti, Francesco
  • Zanzi, Lanfranco

Abrégé

A passive self-announcing reconfigurable intelligent surface (RIS). The passive self-announcing RIS includes reconfigurable elements configured for controllable reflections, and self-conjugating elements disposed together with the reconfigurable elements on a single passive reflective surface. The present invention can be used in a variety of applications including, but not limited to, RIS presence detection, RIS communication systems, and RIS signal propagation.

Classes IPC  ?

  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04B 7/06 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
  • H04L 25/02 - Systèmes à bande de base Détails

49.

EXPLAINABLE AND ACTIVE MINING ARTIFICIAL INTELLIGENCE SYSTEM TO ACCELERATE THE DIAGNOSIS FOR RARE DISEASE

      
Numéro d'application IB2024050079
Numéro de publication 2025/088382
Statut Délivré - en vigueur
Date de dépôt 2024-01-04
Date de publication 2025-05-01
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Gong, Na
  • Machart, Pierre

Abrégé

In an embodiment, the present invention provides a computer-implemented, machine learning method for active mining for rare diseases. A patient disease profile is generated based on received input. Data of the patient disease profile is transformed into a representation in a feature space for comparison to representations of diseases in the feature space. One or more candidate diseases are identified based on distances in the feature space between the representation of the data and the representations of the diseases. One or more discriminative disease features are determined for one or more candidate diseases. An interview question is generated based on the one or more discriminative disease features. The method has applications including, but not limited to, use cases in medical Al / healthcare for optimization of predictions or to support decision-making.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

50.

METHOD AND SYSTEM FOR DECONVOLUTION OF BULK RNA-SEQUENCING DATA

      
Numéro d'application 18685242
Statut En instance
Date de dépôt 2022-03-10
Date de la première publication 2025-04-17
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Alesiani, Francesco
  • Pileggi, Giampaolo
  • Yu, Shujian

Abrégé

A method for deconvolution of bulk RNA sequencing data is provided. Input comprising single-cell RNA sequencing (RNA-seq) data is obtained, and diverse datasets are generated based on a principle of same generating mixture probability such that each of the diverse datasets has a same cell type mixture proportion. The generated diverse datasets are used as input datasets for training a prediction model using machine learning, including creating a causal prediction model in which virtual samples are generated from the generated diverse datasets, and performing contrastive learning on the causal prediction model, wherein a contrastive loss is used for the learning of invariant features with respect to a measurement mechanism by which the RNA-seq datasets have been generated. The trained prediction model is used to predict the mixture of cell type quantities in the bulk RNA sequencing data. It can also contribute to predictive optimization regarding patient-specific risks.

Classes IPC  ?

  • G16B 40/20 - Analyse de données supervisée
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/0464 - Réseaux convolutifs [CNN, ConvNet]
  • G06N 3/088 - Apprentissage non supervisé, p. ex. apprentissage compétitif
  • G06N 20/00 - Apprentissage automatique
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides

51.

FULLY-PASSIVE AND FAST-PROGRAMMABLE SMART SURFACE

      
Numéro d'application 18730376
Statut En instance
Date de dépôt 2022-04-29
Date de la première publication 2025-04-17
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Rossanese, Marco
  • Mursia, Placido
  • Garcia-Saavedra, Andres
  • Sciancalepore, Vincenzo
  • Costa-Perez, Xavier

Abrégé

A reflective device includes a control element, and a reflective surface with a plurality of reflective elements. Each reflective element of the plurality of reflective elements includes an antenna element and a phase shifting arrangement and is under control of the control element so as to reflect a radio-frequency (RF) signal incident on the reflective surface with an adjustable phase shift. The plurality of reflective elements are connected to the control element via a cell selection bus system that interconnects the plurality of reflective elements.

Classes IPC  ?

  • H01Q 3/46 - Lentilles actives ou réseaux réfléchissants
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées

52.

ARTIFICIAL INTELLIGENCE METHOD FOR MATERIAL PROPERTY OPTIMIZATION AND NEW MATERIAL GENERATION

      
Numéro d'application IB2024050052
Numéro de publication 2025/074162
Statut Délivré - en vigueur
Date de dépôt 2024-01-03
Date de publication 2025-04-10
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Kumagai, Misuzu
  • Onoro-Rubio, Daniel

Abrégé

A computer-implemented, machine learning method for material property optimization. A dataset for a material is obtained that includes a molecule shape description, a molecular weight, and a target material property for the material. The material is encoded to a computing format including a three dimensional (3D) graph representation of a main molecule for the material, a 3D graph representation of a side chain, the molecular weight, and a degree of substitution of the side chain. The 3D graph representations are encoded by a neural network that includes one or more graph attention layers each into a latent representation usable for the material property optimization. The method has applications including, but not limited to, use cases in medicine / healthcare (e.g., for AI assisted drug design), molecular or material design and development, and chemical engineering.

Classes IPC  ?

  • G16C 60/00 - Science informatique des matériaux, c.-à-d. TIC spécialement adaptées à la recherche des propriétés physiques ou chimiques de matériaux ou de phénomènes associés à leur conception, synthèse, traitement, caractérisation ou utilisation
  • G16C 20/30 - Prévision des propriétés des composés, des compositions ou des mélanges chimiques
  • G16C 20/70 - Apprentissage automatique, exploration de données ou chimiométrie

53.

SECURE SETUP FOR DISTRIBUTED MONOTONIC COUNTER SERVICES

      
Numéro d'application 18544476
Statut En instance
Date de dépôt 2023-12-19
Date de la première publication 2025-04-03
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Briongos, Samira
  • Soriente, Claudio
  • Wilde, Annika
  • Karame, Ghassan

Abrégé

The present invention provides a computer-implemented method for providing a service to a trusted execution environment (TEE). A data item is written by a process running in the TEE to a pre-defined cache location. The data item is monitored to determine whether it is evicted from the pre-defined cache location. A setup procedure is accepted as complete based on the data item not being evicted from the pre-defined cache location. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in cloud services, machine learning, and medical/healthcare. This invention can also provide lower access times if optimized for performance.

Classes IPC  ?

  • G06F 21/78 - Protection de composants spécifiques internes ou périphériques, où la protection d'un composant mène à la protection de tout le calculateur pour assurer la sécurité du stockage de données
  • G06F 21/60 - Protection de données

54.

ENSEMBLE-FREE, UNCERTAINTY-DRIVEN ACTIVE LEARNING FOR GENERATING CONCISE YET COMPREHENSIVE DATA SETS FOR TRAINING MACHINE LEARNED INTERATOMIC POTENTIALS

      
Numéro d'application IB2024051431
Numéro de publication 2025/068773
Statut Délivré - en vigueur
Date de dépôt 2024-02-15
Date de publication 2025-04-03
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Zaverkin, Viktor
  • Christiansen, Henrik
  • Errica, Federico
  • Alesiani, Francesco

Abrégé

A computer-implemented, machine learning method for training interatomic potentials of an atomic system includes performing uncertainty-driven active learning. The uncertainty-driven active learning includes running an atomistic simulation using ensemble-free uncertainties to generate unlabeled atomic data. The ensemble-free uncertainties are derived from gradient features and used to terminate the atomistic simulation and bias the atomistic simulation toward unexplored regions of a configurational and/or chemical space of the atomic system. The uncertainty-driven active learning further includes performing active learning to select one or more atomic configurations from the unlabeled atomic data using a trajectory of the atomistic simulation and to train a machine learning model for the interatomic potentials using the one or more atomic configurations. The method can be used in a variety of applications including, but not limited to, several anticipated use cases in medical diagnostics/applications and in healthcare for example, to optimize predictions or support decision-making.

Classes IPC  ?

  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires

55.

RECONFIGURABLE INTELLIGENT SURFACE, RIS, WITH SENSING CAPABILITIES AND METHOD FOR OPERATING THE SAME

      
Numéro d'application 18852518
Statut En instance
Date de dépôt 2022-10-20
Date de la première publication 2025-03-27
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Rossanese, Marco
  • Mursia, Placido
  • Garcia-Saavedra, Andres
  • Sciancalepore, Vincenzo
  • Costa-Perez, Xavier

Abrégé

A reflective device includes a control element and an array of reflective elements. Each reflective element of the array of reflective elements has an antenna element and a phase shifter and is under control of the control element so as to reflect a radio-frequency (RF) signal incident on the each reflective element with an adjustable phase shift, where different phase shifts are realized by the phase shifter channeling the RF signal into a specific one of a number of different delay lines. Each of the different delay lines includes an extension unit configured to extract a portion of a power of the RF signal channeled into the respective specific one delay line by the phase shifter and to measure or estimate the voltage, the current and/or the power of the extracted portion of the RF signal.

Classes IPC  ?

  • H01Q 15/14 - Surfaces réfléchissantesStructures équivalentes
  • H01Q 3/46 - Lentilles actives ou réseaux réfléchissants
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04B 7/06 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées à la station d'émission
  • H04B 17/364 - Profils de temps de propagation

56.

PREPROCESSING CODE USING LARGE LANGUAGE MODELS FOR PERFORMANCE PORTABILITY

      
Numéro d'application 18512215
Statut En instance
Date de dépôt 2023-11-17
Date de la première publication 2025-03-20
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Weber, Nicolas
  • Bifulco, Roberto
  • Betzwieser, Marc
  • Ekspenszid, Yves

Abrégé

A computer-implemented, machine learning method for preprocessing code for performance portability includes extracting performance critical code segments from an application and obtaining input data. Ground truth data is generated based on the input data and the application. Original code of the application is transpiled using a large language model (LLM) into a tensor computation language (TCL) candidate. Correctness of an implementation of the TCL candidate is verified using the ground truth data. The method has applications including, but not limited to, use cases in medicine/healthcare, and other artificial intelligence applications for preprocessing and optimizing code for performance portability.

Classes IPC  ?

57.

METHODS OF VACCINE DESIGN

      
Numéro d'application 18729517
Statut En instance
Date de dépôt 2022-01-18
Date de la première publication 2025-03-20
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Grazioli, Filippo
  • Moesch, Anja
  • Malone, Brandon

Abrégé

A method for selecting an amino acid sequence for inclusion in a neoantigen vaccine from a set of candidate neoantigen amino acid sequences is provided. A plurality of cancer cells are simulated based on a set of input data related to a patient by predicting a cell surface presentation of each cancer cell. For each candidate neoantigen amino acid sequence, a likelihood is predicted of each candidate neoantigen amino acid sequence eliciting an immune response to the plurality of cancer cells based on the predicted cell surface presentation of each cancer cell. One or more amino acid sequences is selected for inclusion in the neoantigen vaccine that maximizes a likelihood of the neoantigen vaccine eliciting an immune response to the plurality of cancer cells based on the predicted likelihood of each candidate neoantigen amino acid sequence eliciting an immune response to the plurality of cancer cells.

Classes IPC  ?

  • G16B 5/20 - Modèles probabilistes
  • G16B 15/30 - Ciblage de médicament à l’aide de données structurellesPrévision d’amarrage ou de liaison moléculaire
  • G16B 20/20 - Détection d’allèles ou de variantes, p. ex. détection de polymorphisme d’un seul nucléotide

58.

TRANSPARENT PATIENT SYMPTOM-MITIGATION CLUSTERING FROM TEXTUAL DATA

      
Numéro d'application IB2023061729
Numéro de publication 2025/056967
Statut Délivré - en vigueur
Date de dépôt 2023-11-21
Date de publication 2025-03-20
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Moesch, Anja
  • Lawrence, Carolin

Abrégé

A computer-implemented, machine learning method for determining optimized patient symptom-mitigation predictions includes receiving, from a user, profile information and user symptoms. The profile information and the user symptoms are matched to one of a plurality of profile clusters that are within one or more symptom-mitigation clusters created using textual data, the profile clusters being grouped within the one or more symptom-mitigation clusters based on profile information of authors of the textual data. A symptom-mitigation strategy is predicted based on the matching profile cluster. The method has applications including, but not limited to, use cases in medical AI / healthcare for optimization of predictions or to support decision-making.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
  • G16H 50/80 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la détection, le suivi ou la modélisation d’épidémies ou des pandémies, p. ex. de la grippe
  • G16H 70/20 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des pratiques ou des directives
  • G16H 70/40 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des médicaments, p. ex. leurs effets secondaires ou leur usage prévu
  • G16H 70/60 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des pathologies
  • G16H 10/20 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des essais ou des questionnaires cliniques électroniques
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G06N 20/00 - Apprentissage automatique
  • G16H 20/00 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients
  • G16H 15/00 - TIC spécialement adaptées aux rapports médicaux, p. ex. leur création ou leur transmission

59.

CENTRALIZED ACCELERATION ABSTRACTION LAYER FOR RAN VIRTUALIZATION

      
Numéro d'application 18727354
Statut En instance
Date de dépôt 2022-03-16
Date de la première publication 2025-03-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Garcia-Saavedra, Andres
  • Costa-Perez, Xavier

Abrégé

A method of coordinating allocation of radio processing operations associated with multiple vRAN nodes to shared computing resources is provided. The method includes receiving, by a centralized Acceleration Abstraction Layer (AAL) broker implemented on top of a shared accelerating computing infrastructure, an operation request from a virtual operation associated with a vRAN node, the operation request specifying an operation to be accelerated. The AAL broker selects, using a predefined or configurable scheduling policy, a physical hardware accelerator for accelerated execution of the operation. The AAL broker forwards the operation request to a processing queue of the selected hardware accelerator.

Classes IPC  ?

  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]

60.

INTERPRETABLE DOMAIN ADAPTATION FOR OPTIMIZING CROSS-COHORT PREDICTIONS FROM MEDICAL DATA

      
Numéro d'application 18497064
Statut En instance
Date de dépôt 2023-10-30
Date de la première publication 2025-03-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Siarheyeu, Raman
  • Xu, Zhao

Abrégé

A computer-implemented, machine learning method for cross-cohort predictions from medical data. Patients of one or more source cohorts are mapped to a feature space of a target cohort based on constraints. Patient distributions of the one or more source cohorts and the target cohort are learned. The patient distributions of the one or more source cohorts are corrected for the target cohort. The method has applications including, but not limited to medical AI, drug development, medical diagnostics/applications and in healthcare, for example, to optimize predictions or support decision making.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients

61.

METHOD TO GENERATE SAFE NATURAL LANGUAGE MEDICAL REPORTS FOR DISEASE CLASSIFICATION

      
Numéro d'application 18398328
Statut En instance
Date de dépôt 2023-12-28
Date de la première publication 2025-03-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Xu, Zhao
  • Friede, David

Abrégé

The present invention provides a computer-implemented, machine learning method for generating safe text. A first portion of a trainable prompt is generated using negative influential features and positive influential features of a predicted condition. A second portion of the trainable prompt is trained to steer a pre-trained large language model (PLLM) to generate the safe text using at least the first portion of the trainable prompt. The method has applications including, but not limited to, use cases in medicine (e.g., digital medicine, personalized healthcare, AI-assisted drug or vaccine development, diagnosis or treatment, disease prediction, etc.), and cyber security.

Classes IPC  ?

62.

SPATIOTEMPORAL TRANSFER MACHINE LEARNING

      
Numéro d'application IB2024050790
Numéro de publication 2025/046310
Statut Délivré - en vigueur
Date de dépôt 2024-01-29
Date de publication 2025-03-06
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Garrido Hidalgo, Celia
  • Solmaz, Gurkan
  • Jacobs, Tobias

Abrégé

A computer-implemented, machine learning method for spatiotemporal transfer learning. Sectors of an area are aggregated using preprocessed data from one or more data sources. The sectors are clustered based on different representations obtained for each context feature associated with each of the sectors. One or more context features that have a higher impact on a target feature to be predicted than other context features are identified from a plurality of context features and aggregated to obtain a representation of the area. Using the representation of the area, a particular sector within each of the clustered sectors is selected based on similarity to a respective centroid of the cluster to generate a set of particular sectors. A model associated with a source sector of the set of particular sectors is trained. The method has applications including, but not limited to smart cities, public safety and energy optimization.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G06N 3/096 - Apprentissage par transfert
  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation
  • G06N 3/0499 - Réseaux à propagation avant
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

63.

MECHANISM TO PREVENT LEAKAGE THROUGH SIDE CHANNELS IN CACHE MEMORY

      
Numéro d'application 18503239
Statut En instance
Date de dépôt 2023-11-07
Date de la première publication 2025-02-27
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Briongos, Samira
  • Soriente, Claudio

Abrégé

A computer-implemented method mitigates side channel attacks in cache memory. The method includes: loading data into a cache line of the cache memory, which includes marking the data as sensitive in metadata of the cache line based on the data being tagged as sensitive; tracking interactions with the data; and determining whether the interactions with the data are not normal based on a preset criteria and the tracked interactions with the data.

Classes IPC  ?

  • G06F 21/55 - Détection d’intrusion locale ou mise en œuvre de contre-mesures
  • G06F 21/54 - Contrôle des utilisateurs, des programmes ou des dispositifs de préservation de l’intégrité des plates-formes, p. ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p. ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par ajout de routines ou d’objets de sécurité aux programmes

64.

SIMULATED WHOLE EXOME SEQUENCING AND RNA SEQUENCING DATA FOR TUMOR CLONALITY

      
Numéro d'application IB2023061102
Numéro de publication 2025/040949
Statut Délivré - en vigueur
Date de dépôt 2023-11-03
Date de publication 2025-02-27
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Moesch, Anja
  • Alqassem, Israa

Abrégé

A computer-implemented, machine learning method for generating clone-specific tumor data includes obtaining a phased transcriptome file, a phased transcript file, and a clonal structure that represents a tumor clonal structure and comprises one or more nodes. For each node of the clonal structure: input mutational pools are determined for mutating the phase transcriptome file and the phased transcript file; DNA sequence reads are sampled from the phased transcript file and the sampled sequence DNA reads are mutated; RNA sequence reads are sampled from the phased transcriptome file and the sampled RNA sequence reads are mutated; a mutated genome is generated using the mutated DNA sequence reads; and a mutated transcriptome is generated using the mutated RNA sequence reads. The method has applications including, but not limited to, use cases in medical AI / healthcare for optimization of predictions or to support decision-making.

Classes IPC  ?

  • G16B 20/00 - TIC spécialement adaptées à la génomique ou protéomique fonctionnelle, p. ex. corrélations génotype-phénotype
  • C12Q 1/6886 - Produits d’acides nucléiques utilisés dans l’analyse d’acides nucléiques, p. ex. amorces ou sondes pour les maladies provoquées par des altérations du matériel génétique pour le cancer
  • G16B 20/20 - Détection d’allèles ou de variantes, p. ex. détection de polymorphisme d’un seul nucléotide
  • G16B 30/00 - TIC spécialement adaptées à l’analyse de séquences impliquant des nucléotides ou des aminoacides
  • G16B 30/10 - Alignement de séquenceRecherche d’homologie

65.

CONNECTIVITY-AWARE ROBOT OPTIMIZATION IN MEC-ENABLED SCENARIOS

      
Numéro d'application 18726133
Statut En instance
Date de dépôt 2022-03-28
Date de la première publication 2025-02-27
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Zanzi, Lanfranco
  • Albanese, Antonio
  • Li, Xi

Abrégé

A method of providing radio context map information to a Multi-Access Edge Computing (MEC) application that is deployed at a MEC host and manages a 5G or Beyond 5G (B5G)-enabled network device is provided. The method includes registering and running a Radio Context Map Service (RCMS), on an MEC platform of the MEC host. The RCMS subscribes to location and radio information from existing MEC services of the MEC platform. The RCMS creates and updates a radio context map by processing location and radio information received from the subscribed MEC services and by combining the received location and radio information with additional application related context information provided through the MEC application or any other MEC application deployed at the MEC host. The RCMS provides the radio context map to the MEC application.

Classes IPC  ?

  • H04W 4/029 - Services de gestion ou de suivi basés sur la localisation
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance
  • H04L 67/567 - Intégration de l’approvisionnement des services à partir d'une pluralité de fournisseurs de services

66.

DYNAMIC EMBEDDING-BASED MACHINE LEARNING TRAINING MECHANISM FOR EFFICIENT AND AGILE INTEGRATION OF NEW INFORMATION

      
Numéro d'application 18527441
Statut En instance
Date de dépôt 2023-12-04
Date de la première publication 2025-02-27
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Shalini, Shalini

Abrégé

A computer-implemented, machine learning method for a dynamic embedding-based machine learning training mechanism includes training, using an initial optimizer, an embedding-based neural network model based on a dataset to generate an initial computational graph having trainable variables. Based on receiving a new dataset: a new computational graph is generated, instantiated with new embedding dimensions migrated from the initial computational graph; a new optimizer is generated based on a weight matrix that fits to the trainable variables of the new computational graph; and weights of the trainable variables from the initial optimizer are migrated to the new optimizer. The embedding-based neural network model is trained with the new dataset by updating embeddings and learning new embeddings of the new dataset. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in drug development, public safety, and medical/healthcare.

Classes IPC  ?

67.

GEOSPATIAL AI METHOD AND SYSTEM FOR AREA-BASED RISK AND VALUE ASSESSMENT

      
Numéro d'application 18507134
Statut En instance
Date de dépôt 2023-11-13
Date de la première publication 2025-02-20
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Solmaz, Gurkan
  • Peng, Yi-Hsuan
  • Cirillo, Flavio

Abrégé

A computer-implemented method for artificial intelligence (AI) based risk/value assessment of a geographic area includes performing feature engineering to contextually enrich collected data. Three datasets are generated from the contextually enriched data, where a first dataset is generated by combining positive samples of the contextually enriched collected data with hard negative samples of the contextually enriched data, a second dataset is generated by combining the positive samples with soft negative samples of the contextually enriched data, and a third dataset is generated by combining the positive samples, hard negative samples, and soft negative samples. A machine learning model is trained to generate three different types of predictions for the risk/value assessment of the geographic area based on the three generated datasets.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

68.

INTEGRATION OF FACT-CHECKED SYNTHETIC DATASETS WITH EXISTING DATA FOR ENHANCING AI-BASED DECISION MAKING IN DATA-SCARCE DOMAINS

      
Numéro d'application IB2023063275
Numéro de publication 2025/037142
Statut Délivré - en vigueur
Date de dépôt 2023-12-27
Date de publication 2025-02-20
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Sztyler, Timo
  • Sharma, Lokesh

Abrégé

A computer-implemented, artificial intelligence (Al) method for integrating fact-checked synthetic datasets with existing data to support Al-based decision making includes generating synthetic data using an automated few-shot prompting mechanism with a generative Al model. The automated few-shot prompting mechanism comprises: feeding the model with a data schema of an existing database containing the existing data, feeding the model with a query language description with an instruction to generate a query for a missing feature from a database containing ground truth information, executing the generated query to obtain the ground truth information for training the model, and prompting the trained model to generate the synthetic data. The generated synthetic data is integrated with the existing data. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in public safety, crime investigation and disaster risk management and medical/healthcare.

Classes IPC  ?

69.

MACHINE LEARNING APPROACH FOR GENERATION OF EXPLAINABLE NEW ENTITIES IN A KNOWLEDGE GRAPH FOR OPTIMIZATION OR IMPROVEMENT OF TARGET PROPERTIES

      
Numéro d'application 18489024
Statut En instance
Date de dépôt 2023-10-18
Date de la première publication 2025-02-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Xu, Zhao
  • Sztyler, Timo
  • Lawrence, Carolin

Abrégé

A computer-implemented, machine learning method for incorporating a new entity in a knowledge graph for optimizing or improving a target property includes detecting counterfactual causes in a causality graph that are to be modified to achieve the target property. The causality graph is connected to the knowledge graph by links representing semantic relations. The new entity is generated in the knowledge graph by embedding the new entity in a latent space of the knowledge graph relative to existing entities. A change of causes in the causality graph resulting from generating the new entity in the knowledge graph is simulated. The method can be applied, for example, to use cases in medical/healthcare, smart cities or smart agriculture, for example, to support decision making using Artificial Intelligence (AI).

Classes IPC  ?

  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 3/08 - Méthodes d'apprentissage

70.

PREDICTING VALUES FOR A MULTITUDE OF TIME SERIES WITH TARGET AND INPUT VARIABLES CONNECTED IN A GRAPH

      
Numéro d'application 18507203
Statut En instance
Date de dépôt 2023-11-13
Date de la première publication 2025-02-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Jacobs, Tobias
  • Shaker, Ammar

Abrégé

A computer-implemented method for training a machine learning—artificial intelligence model for multiple prediction tasks includes inputting data for tasks and additional data sources through a common trainable task representation function to obtain a data representation for each. Each resulting data representation is input through two individual trainable linear functions to obtain a corresponding prediction and adversarial prediction. A prediction error for the tasks, an adversarial error across edges of a graph, an auxiliary error for the additional data sources, and a graph error are determined. Parameters of the common trainable task representation function and the trainable linear functions are trained based on a comparison against a weighted sum of the errors. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in drug development, material synthesis, and medical/healthcare.

Classes IPC  ?

71.

MACHINE-LEARNING EXTRACTION OF BIOMEDICAL INFORMATION AND OPTIMIZED CHARACTERIZATION OF A TUMOR MICRO ENVIRONMENT OF A PATIENT

      
Numéro d'application 18509364
Statut En instance
Date de dépôt 2023-11-15
Date de la première publication 2025-02-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Pileggi, Giampaolo
  • Moesch, Anja
  • Chaput, Catherine
  • Lawrence, Carolin

Abrégé

A computer-implemented machine-learning method characterizes a tumor micro environment. The method includes: using a trained natural language processing machine learning model (NLP-model), extracting facts from biomedical text indicating relationship information between cell types and found gene names; using a reference database having gene names and aliases, grouping the extracted facts according to associated genes to generate extracted and grouped information; and generating a matrix from the extracted and grouped information with a first axis representing cell types and second axis representing genes. Each value of the matrix is calculated based on an importance of an associated gene taken and an associated weight. The associated weight is based associated publication meta information and/or an associated detection method's robustness and reliability. The method has applications including, but not limited to, use cases in drug development, medical artificial intelligence (AI)/healthcare for optimization of predictions or to support decision making.

Classes IPC  ?

  • G16B 5/00 - TIC spécialement adaptées à la modélisation ou aux simulations dans la biologie des systèmes, p. ex. réseaux de régulation génétique, réseaux d’interaction entre protéines ou réseaux métaboliques
  • G16B 25/10 - Profilage de l’expression de gènes ou de protéinesEstimation ou normalisation de ratio d’expression
  • G16B 40/20 - Analyse de données supervisée
  • G16H 50/50 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la simulation ou la modélisation des troubles médicaux
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

72.

UE LOCATION METHOD AND SYSTEM

      
Numéro d'application EP2023086483
Numéro de publication 2025/031610
Statut Délivré - en vigueur
Date de dépôt 2023-12-18
Date de publication 2025-02-13
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Devoti, Francesco
  • Encinas Lago, Guillermo
  • Pérez Costa, Xavier

Abrégé

The present disclosure relates to methods for determining a UE location within a cellular radio network. The UE (110) is associated with a base station, BS (112), of the network and the network includes at least one reconfigurable intelligent surface, RIS (114), wherein the RIS (114) has a RIS configuration set to serve the UE (110), the RIS configuration including a BS component and a UE component. In an embodiment, the method comprises obtaining, by a location estimation module (120) a current RIS configuration of the RIS (114); determining, by the location estimation module (120) the UE component of the current RIS configuration by using position information about the position of the BS (112) to compute and remove the BS component from the RIS configuration; and using, by the location estimation module (120) the UE component of the RIS configuration to infer an estimation of the location of the UE (110).

Classes IPC  ?

  • G01S 5/02 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant les ondes radioélectriques
  • H01Q 15/00 - Dispositifs pour la réflexion, la réfraction, la diffraction ou la polarisation des ondes rayonnées par une antenne, p. ex. dispositifs quasi optiques
  • H01Q 15/14 - Surfaces réfléchissantesStructures équivalentes

73.

USING LEVELED HOMOMORPHIC ENCRYPTION IN A CLIENT-SERVER SETTING FOR EVALUATING AN ARTIFICIAL NEURAL NETWORK OVER AN ENCRYPTED INPUT

      
Numéro d'application 18718442
Statut En instance
Date de dépôt 2022-04-08
Date de la première publication 2025-02-13
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Soriente, Claudio
  • Fiore, Dario
  • Edalatnejadkhamene, Kasra

Abrégé

A computer-implemented method for performing at least one computational operation on an encrypted input by at least one processor of a server in a client-server setting, where parameters of the computational operation are private to the server and the input is private to the client is provided. The method includes receiving, by the server, a ciphertext c of a leveled homomorphic encryption (LHE) scheme as encrypted input. Randomness is homomorphically added by the server to the ciphertext c and the resulting ciphertext b is transmitted to the client. The server receives a refreshed ciphertext b′ obtained by the client in a ciphertext refresh procedure including decrypting and re-encrypting the ciphertext b. The server homomorphically removes the previously added randomness from the received refreshed ciphertext b′ to obtain a refreshed ciphertext c′. The server performs the at least one computational operation on the refreshed ciphertext c′.

Classes IPC  ?

  • H04L 9/00 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité
  • H04L 9/06 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p. ex. système DES

74.

SYSTEM AND METHOD FOR INDUCTIVE LEARNING ON GRAPHS WITH KNOWLEDGE FROM LANGUAGE MODELS

      
Numéro d'application 18704945
Statut En instance
Date de dépôt 2021-12-22
Date de la première publication 2025-02-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Grazioli, Filippo
  • Cassara, Giulia
  • Lawrence, Carolin

Abrégé

A computer-implemented method for inductive learning on graphs is provided. The graph includes a plurality of entities, where relationships exist between the plurality of entities, and where the plurality of entities and relationships have a name string. The method comprises creating for each entity of the plurality of entities of the graph a related text corpus, based on a respective name string of each entity. A pretrained language model is used to compute, from the related text corpus of each entity, a respective contextual entity embedding for each entity of the graph. A graph-based machine-learning (ML) model is trained, for each entity of the graph, the computed entity embeddings. These steps are repeated for unseen entities and the trained ML model is used to perform inductive predictions for the unseen entities.

Classes IPC  ?

  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G16C 20/50 - Conception moléculaire, p. ex. de médicaments

75.

ACTIVE LEARNING SYSTEM USING GENERATIVE WEAK SUPERVISION FOR KNOWLEDGE EXTRACTION

      
Numéro d'application 18712715
Statut En instance
Date de dépôt 2021-11-26
Date de la première publication 2025-02-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Solmaz, Guerkan
  • Cirillo, Flavio

Abrégé

A computer-implemented machine learning (ML) method is provided. The method includes computing a labeling matrix by applying a set of labeling functions (LFs) to data points of an unlabeled dataset. A projected labels matrix is generated by computing, based on the labeling matrix, LFs labels projections to undefined labels. An uncertainty of a respective label of the each labeled data point is estimated for each labeled data point based on an output of the LFs and the LFs labels projections. Data points are selected depending on the uncertainty estimated for the respective label of the each data point, and a labeling request for the selected data points is submitted to an oracle and updating the labeling matrix according to responses of the oracle.

Classes IPC  ?

76.

DYNAMIC PATHWAYS FOR ARTIFICIAL INTELLIGENCE AND TENSOR COMPUTATION GRAPHS

      
Numéro d'application 18476349
Statut En instance
Date de dépôt 2023-09-28
Date de la première publication 2025-02-06
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s) Weber, Nicolas

Abrégé

A method for optimizing control flow in compiled computation graphs includes defining an intermediate representation (IR) of a computation graph, the computation graph IR including a main computation graph having at least one control flow primitive layer node pointing to one or more control flow sub-graph nodes. Fusable layer nodes of the main computation graph are identified and removed from the main computation graph, and the removed fusable layer nodes are duplicated into each of the one or more control flow sub-graph nodes. The method can be applied to machine learning frameworks, for example, for scientific computations such as in medical AI.

Classes IPC  ?

77.

ACCELERATED PHASE SPACE EXPLORATION OF MOLECULAR SYSTEMS USING NEURAL NETWORKS

      
Numéro d'application IB2023061688
Numéro de publication 2025/027381
Statut Délivré - en vigueur
Date de dépôt 2023-11-20
Date de publication 2025-02-06
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Christiansen, Henrik
  • Errica, Federico
  • Alesiani, Francesco

Abrégé

A computer-implemented method for accelerating the simulation of a molecular system is provided. The method includes learning a first set of parameters by executing a Hamiltonian Monte Carlo method on the molecular system based on a set of initial conditions. A simulation of the molecular system is executed based on the first set of parameters. Thermodynamics expectation values of the molecular system are predicted based on the executed simulation. The predicted thermodynamics expectation values are provided for a downstream machine learning task. The method has applications including, but not limited to, medical AI, drug development, medical diagnostics/applications, healthcare, material design catalyst design and high performance computing.

Classes IPC  ?

  • G16C 10/00 - Chimie théorique computationnelle, c.-à-d. TIC spécialement adaptées aux aspects théoriques de la chimie quantique, de la mécanique moléculaire, de la dynamique moléculaire ou similaires

78.

METHOD AND SYSTEM FOR TEMPORAL KNOWLEDGE GRAPH FORECASTING BASED ON PATTERN RECOGNITION

      
Numéro d'application 18712253
Statut En instance
Date de dépôt 2022-02-17
Date de la première publication 2025-01-09
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Gastinger, Julia
  • Sztyler, Timo

Abrégé

A predictive policing system includes a database of crime related scenarios in a number of past timesteps represented as temporal knowledge graphs (TKGs). Crime prediction devices generate relationship vectors that describe relations for each node of the TKGs for each available timestep. A dataset is created including vector sequences sets for each node of the TKGs, which are used as sequential inputs for training a pattern model to predict future relations for each node of the TKGs. A forecasting model is trained to predict nodes of the TKGs associated with each of the predicted future relations. Predicted future TKGs are assembled describing a crime scenario in an area of interest per future time steps of interest. A forecasting-based action recommendation system computes actions to steer the predicted scenario towards a desired scenario. Monitoring and/or surveillance devices deployed in the area of interest are adapted based on the computed actions.

Classes IPC  ?

  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06Q 50/26 - Services gouvernementaux ou services publics

79.

REFLECTIVE INTELLIGENT SURFACE WITH SELF-DIAGNOSIS CAPABILITIES AND METHOD FOR OPERATING THE SAME

      
Numéro d'application EP2023082734
Numéro de publication 2024/260573
Statut Délivré - en vigueur
Date de dépôt 2023-11-22
Date de publication 2024-12-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Mursia, Placido
  • Rossanese, Marco
  • Garcia-Saavedra, Andres
  • Sciancalepore, Vincenzo
  • Costa-Pérez, Xavier

Abrégé

The present application discloses a reflective device comprising an array of reflective elements (14) under control of a control element (20). Each reflective element (14) includes an antenna element (16) configured to receive a radio- frequency, RF, signal incident on the reflective element (14). Further, each reflective element (14) is configured to be operable in a functional operating state, in which an RF signal received by the antenna element (16) of the reflective element (14) is, at least partly, provided to be retransmitted by the antenna element (16) of the reflective element (14), and in a diagnostic operating state, in which an RF signal received by the antenna element (16) of the reflective element (14) is, at least partly, provided as an RF signal usable for analysis purposes. Furthermore, the present application discloses a method for operating such reflective device.

Classes IPC  ?

  • H01Q 3/26 - Dispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la phase relative ou l’amplitude relative et l’énergie d’excitation entre plusieurs éléments rayonnants actifsDispositifs pour changer ou faire varier l'orientation ou la forme du diagramme de directivité des ondes rayonnées par une antenne ou un système d'antenne faisant varier la distribution de l’énergie à travers une ouverture rayonnante
  • H01Q 3/46 - Lentilles actives ou réseaux réfléchissants
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04B 7/145 - Systèmes relais passifs
  • H04B 17/17 - Détection de contre-performance ou d’exécution défectueuse, p. ex. déviations de réponse
  • H04B 17/19 - Dispositions d’autotest
  • H04B 17/29 - Tests de performance
  • H04B 17/40 - SurveillanceTests de systèmes de relais

80.

SECURE AND PRIVACY PRESERVING QUERYING OF LARGE LANGUAGE MODELS

      
Numéro d'application IB2023058212
Numéro de publication 2024/261525
Statut Délivré - en vigueur
Date de dépôt 2023-08-16
Date de publication 2024-12-26
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Gonzalez Sanchez, Roberto
  • Bifulco, Roberto
  • Siracusano, Giuseppe
  • Sanvito, Davide

Abrégé

A computer-implemented method operates a large language model (LLM) in a secure and privacy preserving manner. The method includes: identifying an entity in a query, the query being configured to be processed by the LLM; generating a modified query by substituting the identified entity with a semantically similar entity; and submitting the modified query to the LLM. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in customer service, cybersecurity, finance, and medical and healthcare.

Classes IPC  ?

81.

ALLOCATION SYSTEM IN HOSPITAL BY USING GRAPH DATA OF DOCTOR AND PATIENT

      
Numéro d'application 18815926
Statut En instance
Date de dépôt 2024-08-27
Date de la première publication 2024-12-19
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Xu, Zhao
  • Serra, Giuseppe

Abrégé

An allocation system includes a memory storing instructions, and a processor. The processor is configured to access the memory and execute the instructions to: obtain data that includes profiles of doctors and clinical initial information of a patient that arrives at a hospital; preprocess the obtained data, wherein preprocessing includes a text preprocessing pipeline and word embedding; allocate a doctor to the patient that arrives at the hospital by using a neural network, wherein the neural network is machine-learned by using graph data of clinical narratives composed by doctors about patients, historical profiles of the patients and the profiles of doctors; and output information indicating the allocated doctor.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage

82.

A CONCEPT FOR TRAINING A MACHINE-LEARNING MODEL FOR USE IN A RAN CONTROLLER

      
Numéro d'application EP2023081049
Numéro de publication 2024/256032
Statut Délivré - en vigueur
Date de dépôt 2023-11-07
Date de publication 2024-12-19
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Zanzi, Lanfranco
  • Devoti, Francesco
  • Garcia-Saavedra, Andres
  • Li, Xi
  • Fan, Linghang

Abrégé

A method for training a machine-learning model for use in a Radio Access Network (RAN) controller of a wireless communication network comprises providing, by the RAN controller, a request for training a machine-learning model to a brokering entity. The method comprises triggering, by the brokering entity, an assignment of computational resources of a shared hardware accelerator device being separate from the RAN controller for a training application to be used for training the machine-learning model. The method comprises training, by the training application and using the assigned computational resources, the machine-learning model. The method comprises providing the trained machine-learning model to the RAN controller.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 3/08 - Méthodes d'apprentissage
  • H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement

83.

EXTRACTING INFORMATION FROM REPORTS USING LARGE LANGUAGE MODELS

      
Numéro d'application 18457381
Statut En instance
Date de dépôt 2023-08-29
Date de la première publication 2024-12-12
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Siracusano, Giuseppe
  • Sanvito, Davide
  • Gonzalez Sanchez, Roberto
  • Bifulco, Roberto

Abrégé

A computer-implemented method for extracting and mapping structured information to a data model includes obtaining text data from one or more unstructured data sources. Rephrased text data is determined using a Large Language Model (LLM), a preprocessing prompt, and the text data. Extracted data is determined using the LLM, an extraction prompt, the data model, and the rephrased text data. The extracted data is mapped to the data model. The method can be applied, for example, to medical use cases or cyberthreat detection, among others, to improve the data models and support decision making.

Classes IPC  ?

84.

SARS-COV-2 VACCINES

      
Numéro d'application 17996608
Statut En instance
Date de dépôt 2021-04-20
Date de la première publication 2024-12-12
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Stratford, Richard
  • Clancy, Trevor
  • Moliné, Clément
  • Simovski, Boris
  • Malone, Brandon
  • Cheng, Jun

Abrégé

The present invention relates to a coronavirus vaccine composition, comprising one or more epitopes suitable for stimulating a broad adaptive immune response across a plurality of human leukocyte antigen (HLA) populations, for either MHC Class I and/or MHC Class II immunogenicity. The selection of such epitopes is made possible by the generation of predictive data by an artificial intelligence (AI)-driven platform, through the analysis of large scale epitope mapping of the SARS-CoV-2 proteome and epitope scoring based upon predicted immunogenicity, followed by robust statistical analysis and Monte Carlo-based simulation. The vaccine compositions of the present invention are suitable for use in the therapeutic or prophylactic treatment of SARS-CoV-2 infections. The invention also describes methods for using said compositions.

Classes IPC  ?

  • A61K 39/215 - Coronaviridae, p. ex. virus de la bronchite infectieuse aviaire
  • G01N 33/569 - Tests immunologiquesTests faisant intervenir la formation de liaisons biospécifiquesMatériaux à cet effet pour micro-organismes, p. ex. protozoaires, bactéries, virus

85.

SECURE AGGREGATION WITH INTEGRITY VERIFICATION

      
Numéro d'application 18481263
Statut En instance
Date de dépôt 2023-10-05
Date de la première publication 2024-11-28
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Soriente, Claudio
  • Marson, Giorgia

Abrégé

A method for secure aggregation, by a server, of client-provided inputs includes receiving, from each of a plurality of clients, a respective client input, for which a commitment is published. The commitments were computed using randomness and are aggregated by at least two super-clients and a sum of the aggregated commitments is published by each super-client. A sum of the received client inputs is published such that validity of the sum is checkable, by the clients, by comparing the sum of the received client inputs to a verification algorithm result that uses a sum of additive shares computed by the clients using the randomness, and by verifying that the published sum of the aggregated commitments is the same for each super-client. The method can be applied to use cases, for example, in digital medicine using medical data or smartcity applications to support decision-making.

Classes IPC  ?

  • H04L 9/08 - Répartition de clés
  • H04L 9/00 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients

86.

PREASSEMBLED WEAKLY SUPERVISED MACHINE LEARNING

      
Numéro d'application IB2023058211
Numéro de publication 2024/241085
Statut Délivré - en vigueur
Date de dépôt 2023-08-16
Date de publication 2024-11-28
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Solmaz, Gurkan
  • Cirillo, Flavio

Abrégé

A computer-implemented method for generation of a machine learning model using weak supervision includes generating a labeling matrix of labeling function outputs by applying labeling functions to data features, and preassembling the labeling function outputs together with the data features for each data point to generate a training dataset. The machine learning model is trained using the training dataset. The invention can be applied to a number of use cases including, but not limited to use cases in digital medicine and automated or personalized healthcare, AI-assisted drug development (AIDD) or vaccine development, material or composition development, smart factories, smart industry, smart districts, market segmentation, recommender systems, predictive maintenance and energy control.

Classes IPC  ?

87.

A COMPUTER-IMPLEMENTED METHOD AND SYSTEM FOR OPERATING AT LEAST ONE APPLICATION IN A TRUSTED COMPUTING ENABLED PLATFORM AND A CORRESPONDING APPLICATION

      
Numéro d'application EP2023087914
Numéro de publication 2024/235480
Statut Délivré - en vigueur
Date de dépôt 2023-12-28
Date de publication 2024-11-21
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Yilma, Girma Mamuye
  • Liebsch, Marco
  • Briongos, Samira

Abrégé

For providing an efficient operation of at least one application by simple means a computer-implemented method for operating at least one application in a trusted computing enabled platform is provided, wherein the platform comprises a trusted environment and an un-trusted environment, wherein the at least one application comprises multiple micro-services, and wherein at least one of the multiple micro- services is designed as a flexible micro-service, which can be deployed either in the trusted environment or in the un-trusted environment, comprising the steps: deciding on a deployment of the flexible micro-service in the trusted environment or in the un-trusted environment depending on at least one parameter of a requested security level of the at least one application and/or of a requested performance level of the at least one application and/or of a present or available platform characteristic or feature; and deploying the flexible micro-service in the trusted environment or in the un-trusted environment according to a result of the deciding step. Further, a corresponding system and a corresponding application are provided.

Classes IPC  ?

  • G06F 21/10 - Protection de programmes ou contenus distribués, p. ex. vente ou concession de licence de matériel soumis à droit de reproduction
  • G06F 8/60 - Déploiement de logiciel
  • G06F 21/57 - Certification ou préservation de plates-formes informatiques fiables, p. ex. démarrages ou arrêts sécurisés, suivis de version, contrôles de logiciel système, mises à jour sécurisées ou évaluation de vulnérabilité

88.

CONSTRUCTION OF NEAREST NEIGHBOR STRUCTURES FOR GRAPH MACHINE LEARNING TECHNOLOGIES

      
Numéro d'application 18347598
Statut En instance
Date de dépôt 2023-07-06
Date de la première publication 2024-11-14
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s) Errica, Federico

Abrégé

A method for construction of nearest neighbor structures includes determining a set of cross-class neighborhood similarities based on a set of distributions of data obtained by applying a model to data present in a dataset. The method selects a first cross-class neighborhood similarity from the set of cross-class neighborhood similarities based on one or more inter-class cross-class neighborhood similarities and one or more intra-class cross-class neighborhood similarities, and builds a nearest neighbor graph based on the first cross-class neighborhood similarity. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in drug development, material synthesis, and medical/healthcare.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients

89.

MITIGATION OF THE NOISY NEIGHBOR PROBLEM IN VRAN DEPLOYMENTS

      
Numéro d'application IB2023057107
Numéro de publication 2024/228049
Statut Délivré - en vigueur
Date de dépôt 2023-07-11
Date de publication 2024-11-07
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Salvat Lozano, Josep Xavier
  • Garcia-Saavedra, Andres
  • Li, Xi
  • Costa Perez, Xavier

Abrégé

A computer-implemented method configures virtual base stations in a network having an edge server and a platform server. The edge server and the platform server host the virtual base stations. Each respective virtual base station of the virtual base stations has a respective central unit and a respective distributed unit. The method includes: for each of the virtual base stations, jointly determining a respective distributed unit computing configuration and functional split and a respective central unit placement configuration to minimize a noisy neighbor problem based on a set of metrics collected from the virtual base stations.

Classes IPC  ?

  • H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
  • H04W 88/08 - Dispositifs formant point d'accès

90.

FAST POST-QUANTUM CRYPTOGRAPHIC SORTITION

      
Numéro d'application 18291257
Statut En instance
Date de dépôt 2021-08-20
Date de la première publication 2024-10-31
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Soriente, Claudio
  • Fiore, Dario

Abrégé

The present invention relates to a computer-implemented method for execution of a cryptographic sortition among a group of parties (210, 220). According to an embodiment of the invention, the method comprises committing, by a first party (210) of the group, to a set of n party-specific secret keys k1, . . . , kn for a block cipher E; obtaining, by the first party (210) and at least a second party (220) of the group, a common input x and an index r; encrypting, by the first party (210), the input x with the r-th key kr of the committed keys k1, . . . , kn, thereby generating an output y1 of the block-cipher E, and publishing the output y1 together with the key kr used for encryption; and encrypting, by the second party (220), the common input x with the key kr published by the first party (210), thereby generating an output y1′ of the block-cipher E, and comparing the generated output y1′ with the output y1 published by the first party (210).

Classes IPC  ?

91.

A COMPUTER IMPLEMENTED METHOD FOR USING A FEDERATED LEARNING SCHEME WITHIN AN OPEN RADIO ACCESS NETWORK, O-RAN, AND A CORRESPONDING SYSTEM

      
Numéro d'application EP2023079018
Numéro de publication 2024/217710
Statut Délivré - en vigueur
Date de dépôt 2023-10-18
Date de publication 2024-10-24
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Zanzi, Lanfranco
  • Devoti, Francesco
  • Fan, Linghang
  • Li, Xi

Abrégé

A computer-implemented method for using a federated learning scheme within an Open Radio Access Network, O-RAN, is provided. The method comprising the following steps: providing an O-RAN; deploying a federated learning manager, FLM, in an O-RAN Non-Real-Time RAN Intelligent Controller, Non-RT RIC; coordinating by the FLM an involvement of the Non-RT RIC and an O-RAN Near-Real-Time RAN Intelligent Controller, Near-RT RIC, in at least one federated learning scheme; and executing the at least one federated learning scheme. Further, a corresponding system is provided.

Classes IPC  ?

  • H04L 41/042 - Architectures ou dispositions de gestion de réseau comprenant des centres de gestion distribués qui gèrent le réseau en collaboration
  • H04L 41/044 - Architectures ou dispositions de gestion de réseau comprenant des structures de gestion hiérarchisées
  • H04L 41/16 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets en utilisant l'apprentissage automatique ou l'intelligence artificielle

92.

METHOD FOR OPERATING A VIRTUALIZED RADIO ACCESS NETWORK, VRAN, AND CONTROL SYSTEM IN A VRAN

      
Numéro d'application EP2023087863
Numéro de publication 2024/217718
Statut Délivré - en vigueur
Date de dépôt 2023-12-27
Date de publication 2024-10-24
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Salvat Lozano, Josep Xavier
  • Encinas Lago, Guillermo
  • Costa-Pérez, Xavier

Abrégé

The disclosure relates to a method of operating a virtualized radio access network, vRAN, wherein a radio cell (302) of the vRAN comprises one or multiple virtualized base stations, vBSs (304), serving a number of users (314) located within the coverage area of the radio cell (302), and at least one reconfigurable intelligent surface, RIS (316), and wherein the vBSs (304) include radio units, RUs (306), and distributed units, DUs (308), wherein each RU (306) is associated with at least on DU (308) and wherein the DUs (308) are deployed in an edge computing device (310) sharing the device's (310) available computing resources (311). According to embodiments, the method comprises using a controlling device (410) to determine configuration parameters of the at least one RIS (316) in terms of gain and/or phase of the reflective elements (317) of the RIS (316) that minimize the computing overhead of the DUs (308) deployed in the edge computing device (310).

Classes IPC  ?

  • H04W 24/02 - Dispositions pour optimiser l'état de fonctionnement
  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées
  • H04W 88/08 - Dispositifs formant point d'accès

93.

ARTIFICIAL INTELLIGENCE-BASED METHOD AND SYSTEM FOR PREDICTING MUTATION TRAJECTORIES OF PATHOGEN EVOLUTION

      
Numéro d'application IB2023056919
Numéro de publication 2024/218557
Statut Délivré - en vigueur
Date de dépôt 2023-07-04
Date de publication 2024-10-24
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Onoro-Rubio, Daniel
  • Siarheyeu, Raman

Abrégé

A computer-implemented method for predicting pathogen evolution includes computing a mutation trajectory of an input sample of a pathogen to be simulated by iteratively determining an update to a vector of changes based on a gradient that is computed with respect to the input sample using a loss associated with a prediction output of a trained differentiable surrogate model. Then, the method includes reconstructing changes to the input sample based on the iterative updates to obtain a predicted pathway of the pathogen evolution. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in medical diagnostics/applications and in healthcare.

Classes IPC  ?

  • G16H 50/80 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour la détection, le suivi ou la modélisation d’épidémies ou des pandémies, p. ex. de la grippe
  • G16B 10/00 - TIC spécialement adaptées à la bio-informatique évolutive, p. ex. construction ou analyse d’arbre phylogénétique
  • G16B 20/40 - Génétique de populationDéséquilibre de liaison
  • G16B 20/50 - Mutagénèse
  • G16B 40/20 - Analyse de données supervisée

94.

CONSTRUCTION OF TASK RELEVANT KNOWLEDGE GRAPHS

      
Numéro d'application IB2023057062
Numéro de publication 2024/218558
Statut Délivré - en vigueur
Date de dépôt 2023-07-10
Date de publication 2024-10-24
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Onoro Rubio, Daniel
  • Saralajew, Sascha
  • Nicolas, Sebastien
  • Gashteovski, Kiril

Abrégé

A computer-implemented method for generating task-relevant knowledge graphs from natural language text data includes performing triple distillation to generate a first distilled knowledge graph (KG) based on a first set of raw text and a first set of extractions. Performing triple distillation includes iteratively performing the following steps until a stop criteria is satisfied: mask the first set of raw text according to the first set of extractions to generate masked text, score the masked text to generate masked-text scores; score the first set of raw text to generate raw-text scores, compute importance scores for the first set of extractions based on the raw-text scores and the masked-text scores, select a subset of the first set of extractions, and based on determining that the stop criteria is satisfied, outputting the first set of extractions as the set of extractions for the first distilled KG. The present invention can be used in a variety of applications including, but not limited to, several anticipated use cases in drug development, material synthesis, inventory of items, detection of suspects from textual messages, and medical/healthcare.

Classes IPC  ?

95.

VIRTUALIZED RADIO ACCESS POINT, VRAP, AND METHOD OF OPERATING THE SAME

      
Numéro d'application 18574818
Statut En instance
Date de dépôt 2021-06-30
Date de la première publication 2024-10-24
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Garcia Saavedra, Andres
  • Costa-Perez, Xavier

Abrégé

A method of operating a virtualized radio access point (vRAP) is provided. Transport blocks (TBs) are encoded/decoded by using iterative codes that exchange extrinsic information in each iteration. The exchanged extrinsic information is exploited to infer information about decodability of the data of the TBs.

Classes IPC  ?

  • H03M 13/00 - Codage, décodage ou conversion de code pour détecter ou corriger des erreursHypothèses de base sur la théorie du codageLimites de codageMéthodes d'évaluation de la probabilité d'erreurModèles de canauxSimulation ou test des codes
  • H03M 13/11 - Détection d'erreurs ou correction d'erreurs transmises par redondance dans la représentation des données, c.-à-d. mots de code contenant plus de chiffres que les mots source utilisant un codage par blocs, c.-à-d. un nombre prédéterminé de bits de contrôle ajouté à un nombre prédéterminé de bits d'information utilisant plusieurs bits de parité
  • H03M 13/29 - Codage, décodage ou conversion de code pour détecter ou corriger des erreursHypothèses de base sur la théorie du codageLimites de codageMéthodes d'évaluation de la probabilité d'erreurModèles de canauxSimulation ou test des codes combinant plusieurs codes ou structures de codes, p. ex. codes de produits, codes de produits généralisés, codes concaténés, codes interne et externe
  • H03M 13/35 - Protection inégale ou adaptative contre les erreurs, p. ex. en fournissant un niveau différent de protection selon le poids de l'information d'origine ou en adaptant le codage selon le changement des caractéristiques de la voie de transmission

96.

GRAPH-BASED MULTIVARIATE TIME-SERIES FORECASTING FOR MULTI-SEASONALITY WITH META-LEARNING

      
Numéro d'application IB2023056204
Numéro de publication 2024/213924
Statut Délivré - en vigueur
Date de dépôt 2023-06-15
Date de publication 2024-10-17
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Nicolas, Sebastien
  • Gastinger, Julia

Abrégé

A method for graph-based multivariate time-series forecasting with meta-learning that forecasts time-series with different properties includes meta-learning to select one or more forecasting models to use for one or more individual time-series based on a graph structure associated with the one or more individual time-series. The method further includes training a graph-neural network to determine node embeddings that act as exogenous variables for the one or more selected forecasting models.

Classes IPC  ?

97.

OPTIMIZATION OF KNOWLEDGE GRAPH EMBEDDINGS WITH FACT SEMANTICS

      
Numéro d'application IB2023056676
Numéro de publication 2024/213926
Statut Délivré - en vigueur
Date de dépôt 2023-06-28
Date de publication 2024-10-17
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Gong, Na
  • Nicolas, Sebastien

Abrégé

A method for optimizing knowledge graph embeddings includes receiving textual data from an agent and generating a semantically clear knowledge graph based on resolving ambiguities within triples associated with the textual data. A prediction output is generated based on determining semantic-aware knowledge graph embeddings from the semantically clear knowledge graph. The prediction output is provided to the agent.

Classes IPC  ?

  • G06F 40/30 - Analyse sémantique
  • G06F 16/36 - Création d’outils sémantiques, p. ex. ontologie ou thésaurus
  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06N 3/02 - Réseaux neuronaux

98.

ENERGY SELF-SUFFICIENT AUTONOMOUS RECONFIGURABLE INTELLIGENT SURFACES, RIS, AND METHOD FOR OPERATING THE SAME

      
Numéro d'application EP2023080569
Numéro de publication 2024/208441
Statut Délivré - en vigueur
Date de dépôt 2023-11-02
Date de publication 2024-10-10
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s)
  • Devoti, Francesco
  • Albanese, Antonio
  • Sciancalepore, Vincenzo
  • Costa-Pérez, Xavier

Abrégé

The invention provides a reflective device (10) as well as a method of operating a reflective device (10) comprising an array of reflective elements (14), each reflective element (14) being under control of a control element (28). According to an embodiment, the method comprises dividing, for each of the reflective elements (14), an incident RF signal into at least a first portion and at least a second portion; providing the first portion of the RF signal as reflection signal of the respective reflective element (14); and selectively setting either a first operational state, in which the second portion of the RF signal is provided as probing signal for performing an analysis of the incident RF signal, or a second operational state, in which the second portion of the RF signal is fed into an energy harvester (42) configured to collect the RF-energy of the RF signal.

Classes IPC  ?

  • H04B 7/04 - Systèmes de diversitéSystèmes à plusieurs antennes, c.-à-d. émission ou réception utilisant plusieurs antennes utilisant plusieurs antennes indépendantes espacées

99.

AUTOMATED DATA SHARING AND ANALYTICS USING A PRIVACY-PRESERVING DATA SPACE PLATFORM

      
Numéro d'application 18326050
Statut En instance
Date de dépôt 2023-05-31
Date de la première publication 2024-10-03
Propriétaire NEC Laboratories Europe GmbH (Allemagne)
Inventeur(s)
  • Solmaz, Gurkan
  • Jacobs, Tobias

Abrégé

A computer-implemented method for performing automated sharing of data and analytics across a data space platform includes receiving a request for a data analytics service from a first data stakeholder and providing an initial analysis to the first data stakeholder based on determining a portion of semantic data of the data space platform that is accessible to the first data stakeholder. The initial analysis is updated based on comparing the portion of semantic data with another portion of semantic data of the data space platform that is accessible to a second data stakeholder. The updated analysis is provided to the first data stakeholder. The method can be applied to machine learning and regression problems (continuous values) including, but not limited to, providing improvements to various technical fields such as medical diagnosis and treatment, operation system design and optimization, material design and optimization, telecommunication network design and optimization.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06N 20/00 - Apprentissage automatique

100.

GRAPH-BASED SPATIAL PATTERN ANALYSIS ARTIFICIAL INTELLIGENCE SYSTEM

      
Numéro d'application IB2023056503
Numéro de publication 2024/201123
Statut Délivré - en vigueur
Date de dépôt 2023-06-23
Date de publication 2024-10-03
Propriétaire NEC LABORATORIES EUROPE GMBH (Allemagne)
Inventeur(s) Sztyler, Timo

Abrégé

A computer-implemented method for combining different logical data models in a knowledge graph database and using the knowledge graph database for a machine learning prediction task includes building the knowledge graph database comprising sub-graphs each describing a different dimension of data. Node embeddings are learned for each of the different dimensions to obtain an artificial intelligence (AI) model comprising layers, wherein each layer is responsible for one of the different dimensions. One or more potential worlds or states represented by the sub-graphs are computed by performing link and/or node prediction in the knowledge graph database using the AI model.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  1     2     3     ...     5        Prochaine page