Described herein are systems and methods for seizure detection. The systems may include a data module configured to obtain a plurality of electroencephalography (EEG) signals collected from a subject. The systems may also include a seizure detection module in communication with the data module configured to process and classify the data to detect various types of seizure activity using multiple classifiers. A control policy may be employed to determine a seizure burden on the aggregated seizure activity data and/or classifications. When the seizure burden is equal to or exceeds a threshold, a notification may be generated. The notification may be usable by a healthcare practitioner to assess whether the subject is having a seizure or at risk of having a seizure.
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
2.
METHODS AND APPARATUS FOR ELECTRODE PLACEMENT AND TRACKING
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
Described herein are methods and systems for the classification of seizure in a subject. The systems may include a data module configured to obtain a plurality of electroencephalography (EEG) signals collected from a subject. The systems may also include a processing module in communication with the data module. The processing module may be configured to process the data to detect and monitor seizures or related symptoms that the subject is experienced or is experiencing. The processing module may also generate indications or assessments for seizure at an individual level.
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
5.
METHODS AND SYSTEMS FOR MULTI-CLASS CLASSIFICATION OF SEIZURE
Described herein are methods and systems for the classification of seizure in a subject. The systems may include a data module configured to obtain a plurality of electroencephalography (EEG) signals collected from a subject. The systems may also include a processing module in communication with the data module. The processing module may be configured to process the data to detect and monitor seizures or related symptoms that the subject is experienced or is experiencing. The processing module may also generate indications or assessments for seizure at an individual level.
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
6.
Handheld or Wearable Device for Recording or Sonifying Brain Signals
THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY (USA)
CERIBELL (USA)
Inventeur(s)
Parvizi, Josef
Chafe, Christopher D.
Chao, Xinghuan
Eddington, Jr., Ronald C.
Abrégé
A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.
G16H 50/00 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies
11.
SYSTEMS AND METHODS FOR DETECTION OF DELIRIUM AND OTHER NEUROLOGICAL CONDITIONS
Described herein are systems and methods for the detection and monitoring of delirium in a subject. Other neurological conditions may also be detected and monitored. The systems may include a data module configured to obtain a plurality of electroencephalography (EEG) signals collected from a subject. The systems may also include a processing module in communication with the data module. The processing module may be configured to process the data to detect and monitor delirium and/or one or more other neurological conditions that the subject is experiencing or likely to experience. The processing module may also generate indications or assessments for delirium and/or for each neurological condition at an individual level, or optionally, between two or more related neurological conditions.
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
A61B 5/31 - Circuits d’entrée à cet effet spécialement adaptés à des utilisations particulières pour l’électroencéphalographie [EEG]
A61B 5/384 - Appareils d’enregistrement ou d’affichage spécialement adaptés à cet effet
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
The present disclosure provides systems, apparatuses, and methods for use of wearable electrode assemblies. The electrode assemblies improve comfort by providing increased overall surface area of their bottom surfaces, which make contact with the patient's scalp and hair. Collapse, compression, or telescoping of the bottom surface will thereby decrease the direct force and/or pressure applied by the distal member or members of the bottom surfaces to the skin. This may be advantageous in patients who have little to no hair in electrode contact areas, patient populations that are particularly skin-sensitive, and/or patients which must wear the electrode assemblies of an extended time period. The electrode assemblies further include structures to dispense and/or maintain conductive gel placed over the patient's skin, thereby maintaining electrical connection quality, and/or to facilitate the clearing of skin and/or hair prior to establishing an electrical connection.
The Board of Trustees of the Leland Stanford Junior University (USA)
Ceribell (USA)
Inventeur(s)
Parvizi, Josef
Chafe, Christopher D.
Chao, Xingjuan
Eddington, Jr., Ronald C.
Abrégé
A handheld device for sonifying electrical signals obtained from a subject is provided. The device can utilize at least one of several operations including (but not limited) digitizing signals from electrodes, adjusting the signals based on accelerometer input, filtering the signals, conditioning the signals according to conditioning parameters, modulating the signal according to sound synthesis parameters, and generating sound from the representations of the signals to accomplish sonification. The device can include an analog-to-digital (A/D) converter to digitize the one or more electrical signals and a processor that receives the one or more digitized electrical signals and produces a representation of an acoustic signal. The device further includes a speaker system that sonifies the representation of the acoustic signal.
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
A61N 1/02 - ÉlectrothérapieCircuits à cet effet Parties constitutives
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/24 - Détection, mesure ou enregistrement de signaux bioélectriques ou biomagnétiques du corps ou de parties de celui-ci
A61B 5/287 - Supports pour électrodes multiples, p. ex. cathéters à électrode pour des études électrophysiologiques [EEP]
Systems and methods for sonifying electrical signals obtained from a living subject, particularly EEG signals, are disclosed. A time-domain signal representing the activity of an organ is obtained. A voltage of the time-domain signal over a time block is determined. An acoustic signal based on the time-domain signal over the time block is produced. The acoustic signal comprises one or more audibly discernible variations representative of the activity of the organ. If the determined voltage is over a threshold voltage, the time-domain signal is squelched over at least a portion of the time-block as the acoustic signal is produced. The time-domain signal can be squelched by ramping down the signal as an input to produce the acoustic signal. The frequency spectrum of the acoustic signal can also be adjusted as it is produced, such as by flattening the signal and/or attenuating high frequencies along the frequency spectrum of the signal.
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
G10L 25/51 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes spécialement adaptées pour un usage particulier pour comparaison ou différentiation
H04R 3/04 - Circuits pour transducteurs pour corriger la fréquence de réponse
A61B 5/318 - Modalités électriques se rapportant au cœur, p. ex. électrocardiographie [ECG]
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
The present disclosure provides systems and methods for seizure detection. The method for seizure detection may include receiving a plurality of electroencephalography (EEG) signals over a plurality of channels for a subject, preprocessing the plurality of EEG signals by segmenting the plurality of EEG signals for each channel into a plurality of temporal data segments, extracting a plurality of features from each temporal data segment for each channel, and applying a machine learning algorithm to the plurality of features to perform a seizure binary classification for each temporal data segment for each channel. A control policy may be employed to determine a seizure burden on the aggregated seizure binary classifications. When the seizure burden is equal to or exceeds a threshold, a notification may be generated. The notification may be usable by a healthcare practitioner to assess whether the subject may be at risk of having a seizure.
The present disclosure provides systems and methods for seizure detection. The method for seizure detection may include receiving a plurality of electroencephalography (EEG) signals over a plurality of channels for a subject, preprocessing the plurality of EEG signals by segmenting the plurality of EEG signals for each channel into a plurality of temporal data segments, extracting a plurality of features from each temporal data segment for each channel, and applying a machine learning algorithm to the plurality of features to perform a seizure binary classification for each temporal data segment for each channel. A control policy may be employed to determine a seizure burden on the aggregated seizure binary classifications. When the seizure burden is equal to or exceeds a threshold, a notification may be generated. The notification may be usable by a healthcare practitioner to assess whether the subject may be at risk of having a seizure.
A61B 5/0482 - Electro-encéphalographie utilisant une rétroaction biologique
G06F 19/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des applications spécifiques (spécialement adaptés à des fonctions spécifiques G06F 17/00;systèmes ou méthodes de traitement de données spécialement adaptés à des fins administratives, commerciales, financières, de gestion, de surveillance ou de prévision G06Q;informatique médicale G16H)
G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
21.
Systems and methods for processing sonified brain signals
Systems and methods for sonifying electrical signals obtained from a living subject, particularly EEG signals, are disclosed. A time-domain signal representing the activity of an organ is obtained. A voltage of the time-domain signal over a time block is determined. An acoustic signal based on the time-domain signal over the time block is produced. The acoustic signal comprises one or more audibly discernible variations representative of the activity of the organ. If the determined voltage is over a threshold voltage, the time-domain signal is squelched over at least a portion of the time-block as the acoustic signal is produced. The time-domain signal can be squelched by ramping down the signal as an input to produce the acoustic signal. The frequency spectrum of the acoustic signal can also be adjusted as it is produced, such as by flattening the signal and/or attenuating high frequencies along the frequency spectrum of the signal.
G10L 25/51 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes spécialement adaptées pour un usage particulier pour comparaison ou différentiation
The present disclosure provides systems and methods for seizure detection. The method for seizure detection may include receiving a plurality of electroencephalography (EEG) signals over a plurality of channels for a subject, preprocessing the plurality of EEG signals by segmenting the plurality of EEG signals for each channel into a plurality of temporal data segments, extracting a plurality of features from each temporal data segment for each channel, and applying a machine learning algorithm to the plurality of features to perform a seizure binary classification for each temporal data segment for each channel. A control policy may be employed to determine a seizure burden on the aggregated seizure binary classifications. When the seizure burden is equal to or exceeds a threshold, a notification may be generated. The notification may be usable by a healthcare practitioner to assess whether the subject may be at risk of having a seizure.
Medical equipment, namely, electronic monitoring devices for translating brain activity into sound waves; medical equipment, namely, electronic monitoring devices consisting of a digital recorder and transmitter for use in connection with detecting and analyzing electroencephalogram (EEG) waveforms for the purpose of monitoring brain activity
09 - Appareils et instruments scientifiques et électriques
10 - Appareils et instruments médicaux
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Downloadable computer software, namely, artificial intelligence software for the purpose of automatically analyzing electroencephalogram (EEG) waveforms for the purpose of alerting users when seizures are detected. Computerised apparatus, namely hardware for monitoring brain activity to detect the occurrence of seizures. Providing temporary use of non-downloadable computer software for monitoring brain activity to detect the occurrence of seizures; providing temporary use of non-downloadable computer software, namely, artificial intelligence software for the purpose of automatically analyzing electroencephalogram (eeg) waveforms for the purpose of alerting users when seizures are detected.
The present disclosure provides systems, apparatuses, and methods for use of wearable electrode assemblies. The electrode assemblies improve comfort by providing increased overall surface area of their bottom surfaces, which make contact with the patient's scalp and hair. Collapse, compression, or telescoping of the bottom surface will thereby decrease the direct force and/or pressure applied by the distal member or members of the bottom surfaces to the skin. This may be advantageous in patients who have little to no hair in electrode contact areas, patient populations that are particularly skin-sensitive, and/or patients which must wear the electrode assemblies of an extended time period. The electrode assemblies further include structures to dispense and/or maintain conductive gel placed over the patient's skin, thereby maintaining electrical connection quality, and/or to facilitate the clearing of skin and/or hair prior to establishing an electrical connection.
The present disclosure provides systems, apparatuses, and methods for use of wearable electrode assemblies. The electrode assemblies improve comfort by providing increased overall surface area of their bottom surfaces, which make contact with the patients scalp and hair. Collapse, compression, or telescoping of the bottom surface will thereby decrease the direct force and/or pressure applied by the distal member or members of the bottom surfaces to the skin. This may be advantageous in patients who have little to no hair in electrode contact areas, patient populations that are particularly skin-sensitive, and/or patients which must wear the electrode assemblies of an extended time period. The electrode assemblies further include structures to dispense and/or maintain conductive gel placed over the patients skin, thereby maintaining electrical connection quality, and/or to facilitate the clearing of skin and/or hair prior to establishing an electrical connection.
Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
A61N 1/02 - ÉlectrothérapieCircuits à cet effet Parties constitutives
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
A61B 5/0478 - Electrodes spécialement adaptées à cet effet
A61B 5/0492 - Electrodes spécialement adaptées à cet effet, p.ex. électrodes en forme d'aiguille
The present disclosure provides systems, apparatuses, and methods for use of wearable electrode assemblies. The electrode assemblies improve comfort by providing increased overall surface area of their bottom surfaces, which make contact with the patient's scalp and hair. Collapse, compression, or telescoping of the bottom surface will thereby decrease the direct force and/or pressure applied by the distal member or members of the bottom surfaces to the skin. This may be advantageous in patients who have little to no hair in electrode contact areas, patient populations that are particularly skin-sensitive, and/or patients which must wear the electrode assemblies of an extended time period. The electrode assemblies further include structures to dispense and/or maintain conductive gel placed over the patient's skin, thereby maintaining electrical connection quality, and/or to facilitate the clearing of skin and/or hair prior to establishing an electrical connection.
Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
Systems, devices, and methods are provided to assess connection quality between the electrodes of a bioelectrical signal measurement and/or electrical stimulation device and the tissue, typically skin, of the subject. A test signal is provided to a first electrode, voltage differences between the first electrode and additional electrodes are determined, an impedance of the first electrode is determined based on the voltages differences, and the determined impedance indicates connection quality. This process is typically repeated for all of the electrodes to determine connection quality. The user or subject can be alerted if the connection quality is poor, and the bioelectrical signal that is recorded can be provided with data points indicating connection quality during the signal recording.
A61N 1/05 - Électrodes à implanter ou à introduire dans le corps, p. ex. électrode cardiaque
A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques
Electroencephalographs; Electroencephalography kit consisting of an electrode headset, a digital recorder and transmitter, a tablet computer monitor, and instructions for use in medical settings including emergency departments, ambulances, intensive care units, and physician's offices; Medical electrodes; medical, surgical and diagnostic devices, apparatus and instruments; electromedical diagnostic equipment; electronic apparatus and instruments for medical diagnostic testing; monitoring and testing; apparatus for analysing brain waves; brain research and brain stimulation apparatus and instruments; monitors and sensors for use in assessing neurological and cognitive function and dysfunction; parts and fittings for all the aforesaid goods.
32.
Methods and apparatus for electrode placement and tracking
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
Electroencephalographs; Electroencephalography kit consisting of an electrode headset, a digital recorder and transmitter, a tablet computer monitor, and instructions for use in medical settings including emergency departments, ambulances, intensive care units, and physician's offices; Medical electrodes
34.
Methods and apparatus for electrode placement and tracking
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
An electrode carrier system includes one or more electrode assemblies having an electrode body. One or more tubular members extend from the electrode body and define a lumen terminating in a distal opening. The electrode assemblies carry a reservoir containing a conductive fluid or gel. The reservoir is in fluid communication with the lumens in the tubular members, and the electrode assemblies are typically supported on a backing which may optionally be configured as a headband. Systems are for tracking patient movement may be used in combination with the electrode carrier system.
A61B 5/053 - Mesure de l'impédance ou de la conductivité électrique d'une partie du corps
A61B 5/05 - Détection, mesure ou enregistrement pour établir un diagnostic au moyen de courants électriques ou de champs magnétiquesMesure utilisant des micro-ondes ou des ondes radio
A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus