A turbomachine is disclosed, designed for compressing gases such as air, carbon dioxide, hydrogen, and methane, comprises an axially rotating impeller with multiple outlets for pressurizing the gas flow-path. An inlet assembly is in gas-flow communication with the impeller, consisting of an inlet for gas entry, a flow-path duct guiding the fluid towards the impeller, and inlet guide vanes directing the flow into the impeller. Additionally, a scroll collects the gas flow towards outlet process piping, complemented by diffuser guide vanes at the impeller's outlet, guiding the fluid into the scroll. The turbomachine comprises also a control unit, mechanically linked to both the inlet and diffuser guide vanes. This unit is equipped with an actuator to adjust the vanes' angular positions, allowing for optimized flow control and improve operational efficiency.
The system comprises a plurality of membrane filtration units in series. Each membrane filtration unit comprises a filtration membrane separating a concentrate side from a permeate side of the respective membrane filtration unit. Each membrane filtration unit further comprises a concentrate discharge duct, fluidly coupled to the respective concentrate side, to remove a concentrate therefrom, and a permeate discharge duct, fluidly coupled to the respective permeate side, to remove permeate therefrom. A first fluid inlet for each membrane filtration unit is fluidly coupled to the concentrate side of the membrane filtration unit. Moreover, each membrane filtration unit, except the most downstream one, further comprises a second fluid inlet, fluidly coupled to the permeate side of the membrane filtration unit.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
C02F 1/44 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par dialyse, osmose ou osmose inverse
4.
HIGH PRESSURE INTEGRATED EXPANDER AND MOTOR-COMPRESSOR UNIT
The expander and motor-compressor unit (100, 200) comprises an electric motor (10) with a stator part (11) and a rotary part (12), a compressor impeller (20) mechanically coupled to a first end the rotary part (12) of the electric motor (10) through a rotating shaft (15) and configured to compress a process gas, an expander impeller (30) mechanically coupled to a second end of the rotary part (12) of the electric motor (10) through the rotating shaft (15) and configured to expand the process gas and a casing (50) comprising a first inner wall (51) and a second inner wall (52). The first and second inner walls (51, 52) form a main chamber (60) in which the electric motor (10) is located and two secondary chambers (61, 62) in which the compressor impeller (20) and the expander impeller (30) are located respectively. The expander and motor-compressor unit (100, 200) further comprise a depressurizing element (170, 270) fluidly coupled to the main chamber (60) and configured to reduce the pressure inside the main chamber (60). The depressurizing element (170, 270) is further fluidly coupled to the compressor impeller (20) and to the expander impeller (30) so that the depressurizing element (170, 270) is configured to receive process gas from the expander impeller (30), to extract process gas from the main chamber (60) to be mixed with the received process gas and to discharge the mixed process gas to the compressor impeller (20).
The present disclosure concerns a rotary machine (10) for increasing the energy of a gas stream, in particular a reactant gas stream (S, S', S", …, Sn), characterised in that the rotary machine (10) comprises one or more stages (11), each stage (11) comprising a. a first rotor (12) comprising a plurality of rotor blades configured to convert the mechanical energy of the rotary machine (10) into kinetic energy of the gas stream (S, S', S", …, Sn) by increasing the pressure, temperature and velocity of the gas stream (S, S', S", …, Sn), b. a second rotor (13) comprising a plurality of rotor blades configured to convert the mechanical energy of the rotary machine (10) and the kinetic energy of the gas stream (S, S', S", …, Sn) into internal energy of the gas stream by reducing the pressure of the gas stream (S, S', S", …, Sn), provided downstream the first rotor (12), the first rotor (12) and the second rotor (13) of each stage (11) being fixed to a shaft (15) or part of a same radial extension (151) of the shaft (15). The disclosure also concerns a method for increasing the energy of a gas stream, in particular a reactant gas stream, the method comprising: a. providing a stream (S) of a gas to the rotary machine (10) defined above, b. providing energy to the gas stream (S, S', S", …, Sn) by alternatively i. increasing pressure, temperature and velocity of the gas stream (S, S', S", …, Sn) by means of the rotor blades of the first rotor (12), and ii. reducing pressure of the gas stream (S, S', S", …, Sn), converting the stage rothalpy to increase the temperature of the gas stream (S, S', S", …, Sn) by means of the rotor blades of the second rotor (13).
B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
B01J 4/00 - Dispositifs d'alimentationDispositifs de commande d'alimentation ou d'évacuation
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
B01J 19/00 - Procédés chimiques, physiques ou physico-chimiques en généralAppareils appropriés
F04D 17/04 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes du type à flux transversal
B01J 3/02 - Dispositifs d'alimentation ou d'évacuation appropriés
B01J 15/00 - Procédés chimiques généraux faisant réagir des milieux gazeux avec des solides non particulaires, p. ex. des matériaux en feuillesAppareillage spécialement adapté à cet effet
F04D 17/10 - Pompes centrifuges pour la compression ou l'épuisement
The innovative method serves for safe start-up operation of a gas turbine (100) and is aimed at reducing, or even eliminating, risks deriving from uncombusted fuel, particularly if the fuel is a highly reactive fuel, in a gas turbine during its "start-up" period, particularly in case of "hot-restart". As known, a gas turbine (100) comprises a compressor section (110) and a combustor section (120) and an expander section (130) and an exhaust section (140). According to the innovative method, during a start-up period of the gas turbine (100) a purging gas is flowed in at least a portion of the combustor section (120) and/or in at least a portion of the expander section (130) and/or in at least a portion of the exhaust section (140). In particular, the purging gas is flown during the ignition phase.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
An innovative compressor plant (1000) includes a compressor system (100) and a control unit (200); the compressor system (100) comprises: a compressor (10), an electric motor (20) driving in rotation the compressor (10), an anti-surge valve (30) fluidly coupling an inlet and an outlet of the compressor (10), and a measuring arrangement (40); the control unit (200) is configured to perform nonlinear model predictive control of the anti-surge valve (30) based on measurements carried out by the measuring arrangement (40); the model is based on a plurality of state variables corresponding to physical quantities of the compressor system (100) and is supplemented by a first virtual valve (300) and/or a second virtual valve (400), the opening level of the virtual valves being supplemental state variables of the model.
F04D 27/00 - Commande, p. ex. régulation, des pompes, des installations ou des systèmes de pompage spécialement adaptés aux fluides compressibles
F02C 9/18 - Commande du débit du fluide de travail par prélèvement, par bipasse ou par action sur des raccordements variables du fluide de travail entre des turbines ou des compresseurs ou entre leurs étages
The present disclosure concerns a waste heat recovery system designed to circulate a heat transfer fluid in a heat exchange relationship with a waste heat stream. The system includes a closed circuit with a waste heat recovery unit, a high pressure duct, a rotative compressor-expander assembly, an power generator, a low pressure duct, and a heat exchanger. The rotative compressor-expander assembly comprises a case containing a first and second shaft, a compression section, and an expansion section. The compression and expansion sections are designed to compress and expand a finite volume of the heat transfer fluid respectively, facilitating the conversion of heat 10 into useful work.
F01K 25/10 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant des vapeurs particulières ces vapeurs étant froides, p. ex. ammoniac, gaz carbonique, éther
F01K 7/32 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices utilisant la vapeur à la pression critique ou hypercritique
F01K 25/06 - Ensembles fonctionnels ou machines motrices caractérisés par l'emploi de fluides énergétiques particuliers non prévus ailleursEnsembles fonctionnant selon un cycle fermé, non prévus ailleurs utilisant un mélange de fluides différents
9.
A METHOD FOR OPTIMIZING THE OPERATION OF A THERMODYNAMIC SYSTEM OF A LIQUEFIED NATURAL GAS PLANT
The present disclosure relates to a computer-implemented method (100) at a processing unit (11, 203) for determining one or more optimization parameters in order to optimize the operation of a thermodynamic system (1) of a liquefied natural gas, LNG, plant. The present disclosure also relates to server (200) for providing cloud computing services that is remotely located with respect to a thermodynamic system (1) and which comprises a processing unit (203) for determining one or more optimization parameters in order to optimize the operation of a thermodynamic system (1) of the LNG plant.
The modular green ammonia plant comprises a nitrogen production module having an air inlet and a nitrogen outlet, and a hydrogen production module having a water inlet and a hydrogen outlet. The modular green ammonia plant further comprises an ammonia synthesis module comprising an ammonia synthesis reactor having an inlet adapted to receive pressurized syngas containing nitrogen and hydrogen, and an ammonia-rich gas outlet.
A low carbon emission compression station is disclosed. The compression sta¬tion is connected to a gas handling system and to an electric grid and comprises at least one electric motor driven compressor. Additionally, the compression station is con¬nected to auxiliary energy sources and energy storage devices, comprises a supervision system, and is configured to operate in dual mode, i.e. is configured to: use power from the electric grid to compress the gas in the gas handling system and/or store energy in excess into said energy storage devices; and/or exploit auxiliary energy sources and/or stored energy to compress the gas in the gas handling system and/or also to deliver energy in excess to the electric grid.
F04D 25/06 - Ensembles comprenant des pompes et leurs moyens d'entraînement la pompe étant entraînée par l'électricité
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F17D 1/07 - Aménagements pour propulser les gaz ou les vapeurs par compression
F17D 3/01 - Dispositions pour la surveillance ou la commande des opérations de fonctionnement pour commander, signaler ou surveiller le transfert d'un produit
12.
COMPRESSOR FOR CO2 CYCLE WITH AT LEAST TWO CASCADE COMPRESSION STAGES FOR ASSURING SUPERCRITICAL CONDITIONS
The compressor is used for processing a CO2 flow; a first compressor stage has a first row of blades with a first number of blades and a second compressor stage, downstream the first compressor stage, has a second row of blades with a second number of blades; the number of blades of the first compressor stage is less than the number of blades of the second compressor stage; there is an annular gap between the first row of blades and the second row of blades; the first compression stage is designed so to assure that the CO2 flow is in supercritical condition, preferably close to CO2 critical point, at its outlet, and so that the second compressor stage process CO2 in supercritical condition.
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
F25J 3/06 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification par condensation partielle
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
14.
PERISCOPIC OPTICAL PROBES FOR TURBOMACHINES AND METHODS FOR MONITORING TURBOMACHINES
An optical device (1000) is disclosed for mapping and monitoring a thermal status of rotating components (600) of a turbomachine; the device comprises: a tubular element (100) having an internal cavity that extends from a first end to a second end of the tubular element (100) and that embodies an optical path (500), a cooler (200) located in the tubular element (100) and configured to cool the internal cavity of the tubular element (100) through a plurality of channels located in the cavity of the tubular element (100); an optical arrangement, with periscopic approach, located in the tubular element (100) and configured to produce the optical path (500) in said tubular element (100).
G01J 5/0806 - Éléments de focalisation ou collimateurs, p. ex. lentilles ou miroirs concaves
G02B 23/24 - Instruments pour regarder l'intérieur de corps creux, p. ex. endoscopes à fibres
F01D 21/00 - Arrêt des "machines" ou machines motrices, p. ex. dispositifs d'urgenceDispositifs de régulation, de commande ou de sécurité non prévus ailleurs
A compression system comprising a centrifugal dual impeller configured to rotate around a rotating axis, the centrifugal dual impeller comprising a hub, a plurality of first blades having a blade root mechanically coupled to the hub and defining a plurality of first flow paths, a shroud mechanically coupled to a blade tip of the plurality of first blades, and a plurality of second blades having a blade root mechanically coupled to the shroud and defining a plurality of second flow paths. The plurality of first flow paths is configured to compress a first fluid flow and the plurality of second flow paths is configured to compress a second fluid flow, which may be the same fluid of the first fluid flow or a different fluid. The compression system further comprises a stator potion comprising a first volute developing around the rotating axis, the first volute being fluidly coupled to the plurality of first flow paths and configured to receive the first fluid flow discharged by the plurality of first flow paths, and a second volute developing around the rotating axis, the second volute being fluidly coupled to the plurality of second flow paths and configured to receive the second fluid flow discharged by the plurality of second flow paths.
A system for producing energy and methane includes a waste-to-energy unit configured to produce energy and a flue gas by combusting waste and an oxidizing agent having oxygen and a carbon dioxide (CO2) separation unit configured to separate CO2 from the flue gas to provide separated CO2. The system also includes a bio-methanation unit configured to generate methane (CH4), heat, and water using the separated CO2 received from the CO2 separation unit and received hydrogen (H2) gas. The system further includes an electrolyzer coupled to a source of water (H2O) and an electric power source supplying electricity and configured to split the H2O to generate the oxygen used in the oxidizing agent and the H2 gas used in the bio-methanation unit.
C07C 1/12 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir d'oxydes de carbone à partir d'anhydride carbonique avec de l'hydrogène
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
H02K 7/18 - Association structurelle de génératrices électriques à des moteurs mécaniques d'entraînement, p. ex. à des turbines
18.
TRAILER DOWNLOAD SYSTEM FOR GAS REFUELING STATIONS, PARTICULARLY FOR HYDROGEN, AND OPERATING METHOD THEREOF
A trailer download system designed for increasing the pressure of a gas, especially hydrogen gas. The system comprises a gas compressing unit with an input connecting pipe for attachment to a trailer and an output connecting pipe for connection to a refueling station. The compressing unit features multiple compressing stages, each equipped with a compressor, a gas inlet for gas entry, and a gas outlet for the release of compressed gas. The stages are arranged in series. The system is distribution assembly, comprising a distribution pipeline that fluid-dynamically connects the input and output pipes with the inlets of each compressing stage. This connection is selectable to distribute gas from the trailer to one or more compressing stages, varying the gas pressure as needed before it enters the refueling station. The operation of this system involves a computer-implemented method.
F17C 5/06 - Procédés ou appareils pour remplir des récipients sous pression de gaz liquéfiés, solidifiés ou comprimés pour le remplissage avec des gaz comprimés
F17C 13/00 - Détails des récipients ou bien du remplissage ou du vidage des récipients
19.
INTEGRAL AND FULLY ENCLOSED RECIPROCATING ENGINE-COMPRESSOR ASSEMBLY
An integral and fully enclosed reciprocating engine-compressor assembly is disclosed. The assembly comprises - one or more compressor enclosed spaces (10) configured to receive the gas to be compressed, hold the gas during compression and release the gas after compression; - one or more compressor pistons (15) configured to move in alternating motion within the compressor enclosed spaces (10); - one or more engine enclosed spaces (20) configured to receive a compressed 10 motion gas, hold the motion gas during expansion of the motion gas and release the motion gas after expansion; - one or more engine pistons (25) configured to move in alternating motion within the engine enclosed spaces (20); - the engine pistons (25) being integral with the compressor pistons (15). In particular, the gas to be compressed is the same as the motion gas and the one or more compressor enclosed spaces (10) and the one or more engine enclosed spaces (20) are configured as an integral and fully enclosed space.
F04B 9/125 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec une seule chambre de pompage le mouvement alternatif de l'organe de pompage étant obtenu par un moteur à double effet à fluide compressible
F04B 9/133 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec plusieurs chambres de pompage avec deux organes de pompage liés mécaniquement le mouvement alternatif des organes de pompage étant obtenu par un moteur à double effet à fluide compressible
F04B 53/16 - Carcasses d'enveloppeCylindresChemises de cylindre ou culassesConnexions des tubulures pour fluide
F04B 9/123 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec une seule chambre de pompage
F04B 9/129 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant à fluide le fluide étant compressible, p. ex. de la vapeur ou de l'air avec plusieurs chambres de pompage
F04B 25/02 - Pompes multiétagées spécialement adaptées aux fluides compressibles du type à piston étagé
20.
COMPRESSION SYSTEM WITH GAS LEAK RECOVERY AND FUEL CELLS, AND METHOD
A compression system comprising a compressor, the compressor comprising a sealing arrangement including at least one gas seal. A gas leakage recovery line is adapted to recover process gas leakages from the at least one gas seal. A fuel cell arrangement is fluidly coupled to the gas leakage recovery line. The fuel cell arrangement is adapted to process gas leakages and generate electric power therefrom.
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
F04B 53/14 - Pistons, tiges de piston ou liaisons piston-tige
H01M 8/04007 - Dispositions auxiliaires, p. ex. pour la commande de la pression ou pour la circulation des fluides relatives à l’échange de chaleur
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
21.
LOW EMISSION COMPRESSION STATION WITHOUT DEDICATED POWER GENERATION ISLAND
A low emission compression station comprising one or more compressors, each compressor being coupled with an electric machine, the electric machine being coupled with at least one mechanical drive gas turbine and/or at least one fuel cell, wherein the electric machine and/or the mechanical drive gas turbines and/or the fuel cells are sized to comply with both process needs and electric loads and are controlled by a supervision system. In case electric machines are coupled with mechanical drive gas turbines, hybrid gas turbines can be used.
The power generation system comprises a fuel cell unit adapted to generate electric power using a hydrocarbon-containing gas. A water-gas shift reactor is adapted to receive flue gas from the fuel cell unit and convert carbon monoxide contained in the flue gas into carbon dioxide and hydrogen. A cryogenic carbon dioxide capture unit is adapted to receive flue gas from the water-gas shift reactor and remove carbon dioxide therefrom. A recycle line recycles carbon dioxide-depleted flue gas to the fuel cell unit.
C01B 3/12 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés inorganiques comportant un hydrogène lié électropositivement, p. ex. de l'eau, des acides, des bases, de l'ammoniac, avec des agents réducteurs inorganiques par réaction de la vapeur d'eau avec l'oxyde de carbone
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
H01M 8/04089 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
H01M 8/0668 - Élimination du monoxyde de carbone ou du dioxyde de carbone
23.
SYSTEM AND METHOD FOR INSTALLATION OF A CORRUGATED SCREEN PACKING ASSEMBLY
An absorption column includes an outer wall, a floor connected to the outer wall and a ceiling connected to the outer wall, a support ring disposed on an inner surface of the outer wall, and a corrugated screen packing module supported on the support ring. The corrugated screen packing module includes a corrugated screen layer including a plurality of corrugated structures, each of the corrugated structures being configured and dimensioned to pass through an access opening having a first area A1. The first area A1 is smaller than a second area A2 defined by the inner surface of the outer wall in a plane perpendicular to a longitudinal axis of the absorption column.
B01D 3/16 - Colonnes de fractionnement dans lesquelles la vapeur barbote à travers le liquide
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01J 19/32 - Éléments de remplissage en forme de grille ou d'éléments composés de plusieurs pièces pour constituer une unité ou un module dans l'appareil de transfert de chaleur ou de matière
An additive manufactured product produced from a Nickel-based super-alloy powder is disclosed. The powder has a size between 15 and 105 µm and comprises at least the following components, by weight: 0,05-0,14% C, 15,0-22,5% Cr, 1.5-2,5% Mo, 3.5-4,6% Al, 9,0-11,0% Co, 0,01-2,2% Ta, 1,5-3,5% Ti, 2,0-4,0% W, the rest being Ni, wherein the additive manufactured product has secondary and tertiary γ' precipitation content up to 35% volume in the grain interior and the presence of M23C6 carbides at grain boundaries as well as the primary γ' precipitation. Additive manufactured turbomachinery components obtained by the super-alloy are also disclosed, the components being able to withstand high temperature and thermo-mechanical stresses.
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B22F 5/00 - Fabrication de pièces ou d'objets à partir de poudres métalliques caractérisée par la forme particulière du produit à réaliser
B22F 5/04 - Fabrication de pièces ou d'objets à partir de poudres métalliques caractérisée par la forme particulière du produit à réaliser d'aubes de turbines
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B33Y 80/00 - Produits obtenus par fabrication additive
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 1/047 - Fabrication des alliages non ferreux par métallurgie des poudres comprenant des composés intermétalliques
C22C 32/00 - Alliages non ferreux contenant entre 5 et 50% en poids d'oxydes, de carbures, de borures, de nitrures, de siliciures ou d'autres composés métalliques, p. ex. oxynitrures, sulfures, qu'ils soient soient ajoutés comme tels ou formés in situ
C22C 1/059 - Fabrication d'alliages comprenant moins de 5% en poids de phases de renforcement dispersées
25.
SEALING SYSTEM WITH EXTRA PRESSURE PROTECTION, MACHINE AND METHOD
The sealing system for a rotary shaft of a machine is configured to separate a first zone surrounding a first portion of the rotary shaft and a second zone surrounding a second portion of the rotary shaft. The sealing system comprises a sealing member, located between the first portion of the rotary shaft and the second portion of the rotary shaft, and a support member, which supports the sealing member. The support member is configured to perform a movement at least in an axial direction due to a pressure difference between the first zone and the second zone, and to close a gap, defined between the sealing system, in particular between the sealing member, and the rotary shaft, when the pressure difference is higher than a predetermined value.
F16J 15/36 - Joints d'étanchéité entre deux surfaces mobiles l'une par rapport à l'autre par bague glissante pressée contre la face plus ou moins radiale d'une des deux parties reliée par un diaphragme à l'autre partie
26.
SYSTEM AND METHOD OF PHASE SEPARATION FOR ABSORPTION COLUMN
A system includes an absorption column configured to receive a lean solvent and an input gas with a feed gas or a feed vapor therein and induce co-current flow of the lean solvent and the input gas therethrough to form a mixture of a rich solvent with the feed gas or the feed vapor absorbed therein and the input gas with the feed gas or the feed vapor at least partially removed, and a post-absorption column processing assembly disposed downstream of the absorption column. The post-absorption column processing assembly includes a vessel configured to receive a single stream of the mixture from the absorption column and separate the mixture into gas and liquid, a first stream with a predominantly liquid phase of the mixture from the absorption column and separate gas therefrom, or a second stream of a predominantly gaseous phase of the mixture and separate the liquid therefrom.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
27.
INTEGRALLY GEARED TURBOMACHINERY SYSTEM WITH INTEGRATED DRIVER
An integrally geared turbomachinery system (200) comprising a wheel gear (290) configured to rotate around a rotating axis (R) and at least one shaft (210, 220) mechanically coupled to the wheel gear (90) and to at least one impeller (211, 212, 221, 222) and is configured to rotate around an axis (X, Y). The system (200) further comprises an epicyclic gear (80) mechanically coupled to the wheel gear (290) and a torque motor (270) mechanically coupled to the epicyclic gear (80) and enclosed in the epicyclic gear (80): the torque motor (270) is configured to transmit motion to the epicyclic gear (80) and the epicyclic gear (80) is configured to transmit motion to the wheel gear (290), so that no external drivers are required.
A system includes an absorption column configured to receive a lean solvent and an input gas with a feed gas or a feed vapor therein and induce co-current flow of the lean solvent and the input gas therethrough to form a mixture of a rich solvent with the feed gas or the feed vapor absorbed therein and the input gas with the feed gas or the feed vapor at least partially removed, and a post-absorption column processing assembly disposed downstream of the absorption column. The post-absorption column processing assembly includes a vessel configured to receive a single stream of the mixture from the absorption column and separate the mixture into gas and liquid, a first stream with a predominantly liquid phase of the mixture from the absorption column and separate gas therefrom, or a second stream of a predominantly gaseous phase of the mixture and separate the liquid therefrom.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
29.
DETERMINING ANOMALIES ON SURFACES OF OR ASSOCIATED TO INDUSTRIAL MACHINES OR COMPONENTS
The innovative method (5000) serves for determining an anomalous condition on a surface (10) of / associated to an industrial machine (100); the method comprises the steps of: b) providing (5100) a set of sentence embedding features of a natural language sentence expressing a concept relating to a presence of a predetermined anomaly on a surface, c) receiving (5200) an image of the surface (10) and/or of surroundings of the surface, d) encoding (5300) the image thereby generating a set of image embedding features, e) determining (5400) a similarity value of a similarity score, wherein the similarity score corresponds to a level of similarity between the set of image embedding features and the set of sentence embedding features, f) comparing (5500) the determined similarity value with a predetermined similarity threshold, and g) transmitting (5600) a result, the result being positive if the determined similarity value is higher than the predetermined similarity threshold.
An absorption column includes an outer wall, a floor connected to the outer wall and a ceiling connected to the outer wall, a support ring disposed on an inner surface of the outer wall, and a corrugated screen packing module supported on the support ring. The corrugated screen packing module includes a corrugated screen layer including a plurality of corrugated structures, each of the corrugated structures being configured and dimensioned to pass through an access opening having a first area A1. The first area A1 is smaller than a second area A2 defined by the inner surface of the outer wall in a plane perpendicular to a longitudinal axis of the absorption column.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01J 19/30 - Éléments de remplissage non agglomérés ou en forme, p. ex. anneaux de Raschig ou éléments de Berl en forme de selle, destinés à être versés dans l'appareil de transfert de chaleur ou de matière
32.
A MULTISTAGE CENTRIFUGAL COMPRESSOR WITH FORWARD SWEPT, BACK SWEPT OR UN-SWEPT IMPELLER BLADES, IN COMBINATION
The centrifugal compressor comprises a plurality of compressor stages, each including an impeller. To reduce the number of stages or to reduce the compressor speed required to achieve a desired pressure ratio, the impellers include at least two of the following: a set consisting of at least one forward swept impeller; a set consisting of at least one back swept impeller; and a set consisting of at least one un-swept impeller.
The present disclosure relates to a system for cooling natural gas and specifically concerns but is not limited to a system for cooling natural gas down to its liquefaction, through heat exchange in a multi-stream heat exchanger with a mixed refrigerant. The system comprises a closed thermodynamic refrigeration cycle, wherein the mixed refrigerant is cooled through cyclic thermodynamic transformations, including compression, cooling, condensation, expansion and vaporization steps, the compression being a two stage compression. The multi-stream heat exchanger is provided with: - a hot passage of the natural gas; - a cold passage of the mixed refrigerant; and - a plurality of hot passages for pre-cooling corresponding streams of mixed refrigerant from different compression stages, each stream being connected to a respective expansion device and separator, the expansion device being configured to expand and at least partially flash the mixed refrigerant and subsequently cool the mixed refrigerant, the separator being configured to separate the mixed refrigerant into a liquid fraction and a vapor fraction, which are finally routed to the mixed refrigerant cold passage.
The present disclosure concerns a turbomachine for cracking a gas. Embodiments disclosed herein specifically concern a turbomachine comprising one or more compressors to compress the gas and consequently increase its temperature up to the cracking temperature of the gas, wherein at least one of the compressors is coupled through a planetary gear type system with an integrally geared rotating system, which is driven by a driving rotating machine. An expander can be advantageously connected downstream of the compressors and is configured to recover energy from the compressed gas, the expander being preferably additionally coupled with the integrally geared rotating system. The compressors can also be combined with one or more catalytic sections, one or more wave rotors and one or more separating apparatuses downstream of the compressors and/or the wave rotors and/or the expander, to separate the products of the cracking reaction.
The present disclosure relates to a system for cooling natural gas, in particular down to its liquefaction, through heat exchange in a multi-stream heat exchanger with a mixed refrigerant that, after having absorbed heat from the natural gas is cooled in a closed thermodynamic refrigeration cycle, wherein a cooling effect is produced through cyclic thermodynamic transformations, including compression, cooling, condensation, expansion and vaporization steps, the compression being a three stage compression. In particular, the multi-stream heat exchanger is provided with: - a hot passage of the natural gas; - a cold passage of the mixed refrigerant; and - a plurality of hot passages for pre-cooling of corresponding streams of mixed refrigerant from different compression stages, and a respective expansion device and separator, the expansion device being configured to expand and at least partially flash and subsequently cool the mixed refrigerant, the separator being configured to separate the mixed refrigerant into a liquid fraction and a vapor fraction, which are routed to the mixed refrigerant cold passage.
A method for controlling a compression system is disclosed, specifically designed for a compression train. The compression train includes a variable speed driver unit for mechanical drive applications, a variable speed compressor with an impeller for gas compression, and an inlet guide vanes unit with an actuator. The method involves determining the initial operating state of the compressor based on operating variables, such as rotating speed, positioning angle of the inlet guide vanes, and process mass gas flow rate. The method allows minimizing an operating function of the compression train, based on constraints, to adjust the speed of the driver unit and the position of the inlet guide vanes to achieve an optimized operating state.
The present disclosure concerns a wave rotor system as a device for cracking a gas. The wave rotor system comprises one or more wave rotors (10), arranged in series or in parallel, each wave rotor being composed of a rotating body comprising a plurality of channels (12) arranged cylindrically around a rotating axis (11) of the rotating body, each one of the extremities of the channels (12) being closed by a respective plate, the plate comprising ports for the passage of a fluid from respective inlet conduits to the channels or from the channels to respective outlet conduits, wherein the wave rotor system is integrated with a catalytic section and optionally with one or more compressors.
B01J 19/18 - Réacteurs fixes avec éléments internes mobiles
B01J 19/32 - Éléments de remplissage en forme de grille ou d'éléments composés de plusieurs pièces pour constituer une unité ou un module dans l'appareil de transfert de chaleur ou de matière
A turbo-compressor system is disclosed, comprising a multi-shaft gas turbine for power generation. The gas turbine includes a gas generator creating an exhaust gas flow, a power turbine or low-pressure turbine, and an internal coupling shaft linking these elements. The gas turbine's operation is defined by flow rate and pressure differential. The system also comprises a rotary compressor with rotating blades for gas compression, connected to the power turbine via a main coupling shaft. The turbo-compressor system features inlet guide vanes at the compressor's entrance and variable area turbine nozzles between the gas generator and power turbine, to enable the adjustment of both the compressed and exhaust gas flows. The system's design allows for the control of the gas turbine's operating point through the coordinated manipulation of the inlet guide vanes and variable area turbine nozzles.
F02C 9/20 - Commande du débit du fluide de travail par étranglementCommande du débit du fluide de travail par réglage des aubes
F01D 17/14 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage
39.
PROVIDING EXPLANATIONS OF ANOMALIES IN INDUSTRIAL MACHINES OR PLANTS THROUGH LANGUAGE SENTENCES
The computer-implemented method (2000) serves for providing explanatory information regarding anomalies in an industrial machine or plant in the form of natural language sentences; the method comprises the steps of: a) receiving (2100) a plurality of time series sequences deriving from a corresponding plurality of sensors of said industrial machine or plant, b) encoding (2200) said plurality of time series sequences thereby generating a corresponding plurality of time series embedding features, c) mapping (2300) said plurality of time series embedding features thereby generating a plurality of sentence embedding features, d) decoding (2400) said plurality of sentence embedding features thereby generating a natural language sentence, and e) transmitting (2500) said natural language sentence.
A nozzle sector for a sectorized annular stator of a gas turbine, comprising an inner platform and an outer platform, said inner platform and said outer platform being substantially concentric with respect to turbine rotational axis and spaced apart from each other by at least an airfoils, wherein each one of said inner platform and said outer platform has a platform leading edge, a platform trailing edge and a first and a second platform sidewall edge, each one of said sidewall edges being extending from said platform leading edge to said platform trailing edge of the respective platform, wherein each one of said first and said second sidewall edges has a leading portion, a trailing portion, and an intermediate portion comprised between said leading portion and said trailing portion.
A steam turbine generator unit is disclosed. The steam turbine generator unit comprises a lower deck, an upper deck, and a steam turbine generator. The steam turbine generator is installed on the lower deck and on the upper deck. The steam turbine generator unit also comprises at least three joint members, to be intended placed over at least two parallel beams. Also disclosed is a method for installing a steam turbine generator unit.
A filterless gas intake system is disclosed. The system comprises a gas passage configured to receive an intake gas flow, the gas passage including an inlet opening, an outlet opening and a lateral wall and one or more separation elements (10), arranged within the gas passage and extending along a direction from one side of the lateral wall to the opposite side, the separation element (10) comprising: a body (11) with at least one concave surface (12) of an electrically conductive material, connected to an earth grounding (13), a leading edge (14), facing the inlet opening of the gas passage and a trailing edge (15) facing the outlet opening of the gas passage; and at least one electrode (16) arranged in front of the at least one concave surface (12) and connected to an electrostatic generator.
B03C 3/08 - Installations alimentées en électricité de l'extérieur du type par voie sèche caractérisées par la présence d'électrodes planes fixes, les surfaces planes étant parallèles au courant de gaz
B03C 3/36 - Parties constitutives ou accessoires, ou leur fonctionnement commandant le débit de gaz ou de vapeurs
B03C 3/47 - Électrodes collectrices planes, p. ex. en forme d'assiettes, de disques, de grilles
A method for performing a start-up of an offshore plant. The offshore plant comprises a power grid, wherein the power grid comprises a power generation source for generating the energy, a load driven by the power generation source and connected to the power grid, a battery energy storage system connected to the power grid and to the load, and a switching and detecting device connected to the power grid. The method comprises the steps of: detecting by the switching and detecting device, a power outage between the load and power grid; and injecting by the battery energy storage system, the energy to the power generation source to start it up, so as to restore the energy conditions on the power grid prior to the power outage. The injecting step provides the re-energization of a busbar connected to the battery energy storage system and a generator connected to a gas turbine.
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/24 - Dispositions pour empêcher ou réduire les oscillations de puissance dans les réseaux
H02J 3/32 - Dispositions pour l'équilibrage de charge dans un réseau par emmagasinage d'énergie utilisant des batteries avec moyens de conversion
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
44.
SEALING SYSTEM FOR PERMANENT MAGNET MOTOR/GENERATOR
An electric machine comprising a rotary magnetic assembly, preferably comprising permanent magnets; a stationary magnetic assembly, preferably comprising electromagnets; a rotary hub having a cylindrical shape and a tube-shaped recess for housing the rotary magnetic assembly; a sleeve positioned around the tube-shaped recess so to surround it, and mechanically coupled to the rotary hub. The sleeve has a first end region and a second end region which are sealed to the rotary hub so to fluidly isolate the tube-shaped recess. The rotary hub comprises at least one inner channel which is fluidly coupled to the tube-shaped recess.
H02K 7/00 - Dispositions pour la mise en œuvre d'énergie mécanique associées structurellement aux machines dynamo-électriques, p. ex. association structurelle avec des moteurs mécaniques d'entraînement ou des machines dynamo-électriques auxiliaires
H02K 5/20 - Enveloppes ou enceintes caractérisées par leur configuration, leur forme ou leur construction avec des canaux ou des conduits pour la circulation d'un agent de refroidissement
H02K 7/09 - Association structurelle avec des paliers avec des paliers magnétiques
45.
FIRING APPARATUS AND FIRING METHOD FOR HIGH REACTIVE FUEL GASES
A firing apparatus to control the firing of one or more burners of a gas turbine is disclosed. The firing apparatus comprises a shutoff module, for selectively allowing the passage of the fuel from a fuel source, and an adjustment module, which is capable of adjusting the fuel to be delivered to a nozzle manifold of the gas turbine during the firing phase. Also disclosed are methods of firing the gas turbine.
The compression train (13) for a dehydrogenation plant (1) comprises a driver (36) and a single centrifugal compressor (35) drivingly coupled to the driver. The centrifugal compressor comprises a single casing and a plurality of compressor sections (39.1, 39.2, 39.3) inside said casing (37). Each compressor section comprises at least one impeller (40.1, 40.2) arranged for rotation in the casing (37). The compressor (35) is adapted to compress a mixture containing propane, propylene and hydrogen, having a molecular weight between 20 and 35 g/mol, from a suction pressure between about 0.2 barA and about 1.5 barA to a delivery pressure between about 11 barA and about 20 barA, with a volumetric flowrate comprised between about 120,000 m3/h and about 950,000 m3/h.
F04D 1/08 - Pompes multiétagées les étages étant concentriques
F04D 7/02 - Pompes adaptées à la manipulation de liquides particuliers, p. ex. par choix de matériaux spéciaux pour les pompes ou pièces de pompe du type centrifuge
F04D 29/28 - Rotors spécialement adaptés aux fluides compressibles pour pompes centrifuges ou hélicocentrifuges
F04D 29/58 - RefroidissementChauffageRéduction du transfert de chaleur
47.
A RADIAL TURBOMACHINE WITH IMPROVED IMPELLER EYE SEAL
Disclosed herein is a radial turbomachine including a casing and a rotor arranged for rotation in the casing. The rotor includes at least one impeller with a hub, a shroud, and a plurality of blades between the hub and the shroud. An eye seal is stationarily housed in the casing and surrounds an impeller eye. The impeller eye includes a stepped external surface facing the eye seal. The stepped external surface includes a plurality of cylindrical surface portions. The eye seal in turn includes a plurality of annular fins. Each annular fin projects radially inwardly towards a corresponding surface portion of the impeller eye and ends with a annular fin tip at a clearance distance from the respective cylindrical surface portion of the impeller eye. The annular fins include an end projection at the fin tip, the end projection extending in an axial direction.
The integrally geared compressor includes a bull gear supported for rotation in a gear casing, a first pinion shaft, and a second pinion shaft. A first compressor unit is mounted in an overhung fashion at a first end of the first pinion shaft, and a second compressor unit is mounted in an overhung fashion at a second end of the first pinion shaft, or at a first end, or at a second end of the second pinion shaft. A third compressor unit is mounted in an overhung fashion at one of the first end and the second end of the second pinion shaft. The second compressor unit and the third compressor unit are centrifugal compressor units. The first compressor unit comprises an axial compressor section and a centrifugal compressor section combined to one another.
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
Integrally geared turbomachinery system (200) comprising a wheel gear (90) configured to rotate around a rotating axis (R) and at least a couple of pinion shafts (10, 20) mechanically coupled to the wheel gear (90). A first pinion shaft (10) is configured to be mechanically coupled to the wheel gear (90) and to rotate around a first axis (X) parallel to the rotating axis (R) at a first rotating speed and a second pinion shaft (20) is configured to be mechanically coupled to the first pinion shaft (10) and to rotate around a second axis (Y) at a second rotating speed; the first axis (X) and the second axis (Y) are non-parallel.
F16H 1/22 - Transmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec plusieurs arbres d’entraînement ou entraînésTransmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec dispositions pour répartir le couple entre plusieurs arbres intermédiaires
A chilled ammonia carbon capture system, using a first working fluid, preferably ammonia, and a heat pump system, using a second working fluid, preferably water, the refrigeration system and the heat pump system being coupled through a vaporizer wherein the heat of the working fluid of the refrigeration system is used to evaporate the working fluid of the heat pump system, so that the waste heat from the chilled ammonia carbon capture system is used to obtain high temperature and high pressure steam. Steam extraction is configured to be utilized in the reboilers of the chilled ammonia carbon capture unit, in such a way that steam refurbishment and additional equipment for the production of high temperature and high pressure steam are not required.
F25B 6/02 - Machines, installations ou systèmes à compression, avec plusieurs circuits de condenseurs disposés en parallèle
F25B 7/00 - Machines, installations ou systèmes à compression fonctionnant en cascade, c.-à-d. avec plusieurs circuits, l'évaporateur d'un circuit refroidissant le condenseur du circuit suivant
F25B 27/02 - Machines, installations ou systèmes utilisant des sources d'énergie particulières utilisant la chaleur perdue, p. ex. chaleur dégagée par des moteurs à combustion interne
F25B 29/00 - Systèmes de chauffage et de refroidissement combinés, p. ex. fonctionnant alternativement ou simultanément
F25B 30/02 - Pompes à chaleur du type à compression
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
B01D 51/00 - Prétraitement auxiliaire des gaz ou des vapeurs à épurer des particules dispersées
The gas turbine system comprises a combustor adapted to combust a fuel and an oxidant and generate pressurized hot combustion gas and a turbine fluidly coupled to the combustor and rotated by expansion of the pressurized hot combustion gas from the combustor. A heat exchanger is fluidly coupled to the turbine and adapted to cool expanded combustion gas exhausted from the turbine. A main oxidant supply line is adapted to supply oxidant to the combustor through the heat exchanger. The oxidant streaming through the heat exchanger is in heat exchange relationship with combustion gas exhausted from the turbine. A fuel supply line supplies fuel to the combustor. A secondary oxidant supply line is adapted to supply oxidant in the fuel supply line upstream of a fuel control valve. Also disclosed is a method of operating the system.
F02C 9/20 - Commande du débit du fluide de travail par étranglementCommande du débit du fluide de travail par réglage des aubes
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F02C 7/10 - Chauffage de l'air d'alimentation avant la combustion, p. ex. par les gaz d'échappement au moyen d'échangeurs de récupération de chaleur
F02C 7/232 - Soupapes pour combustibleSystèmes ou soupapes de drainage
52.
DUAL PURPOSE INTEGRATED GEAR FOR HYBRID TRAIN APPLICATION
A hybrid train system comprising at least one gas turbine to drive a load, and an electric machine unit, also connected to the load. A clutch is installed between the gas turbine and the load. Also, an integrated reduction gear unit is interposed between the load and the electric machine unit, to adapt to different operating speeds.
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F02C 3/107 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur avec plusieurs rotors raccordés par transmission de puissance
53.
FAST RAMPING-UP SYSTEM FOR POWER GENERATION, AND METHOD
Disclosed herein is a power generation system to supply an electric load. The system includes a first power generation unit and a second power generation unit. Both power generation units include a mechanical power generating machine and an electric generator, drivingly coupled to the mechanical power generating machine to convert mechanical power into electric power. The system further includes an energy storage arrangement adapted to store energy in form of a pressurized, liquefied or solidified fluid. An expander unit of the system includes an expander and an electric generator, which is drivingly coupled to the expander to convert mechanical power generated by the expander into electric power. The expander is adapted to receive pressurized fluid from the energy storage arrangement and generate mechanical power by expansion thereof during a transient phase, in case of sudden increase of the power demand from the electric load.
F02C 6/16 - Ensembles fonctionnels de turbines à gaz comportant des moyens pour emmagasiner l'énergie, p. ex. pour faire face à des pointes de charge pour emmagasiner de l'air comprimé
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01D 19/00 - Démarrage des "machines" ou machines motricesDispositifs de régulation, de commande ou de sécurité en rapport avec les organes de démarrage
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
H02J 9/06 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
A compression unit for ammonia comprising a multi-stage compressor, including a first set of compressor stages adapted to compress a syngas containing hydrogen and nitrogen; and a second set of compressor stages adapted to compress a refrigerant of a refrigerant circuit. Described herein is also an ammonia production system including the ammonia compression unit and a method.
F04B 25/00 - Pompes multiétagées spécialement adaptées aux fluides compressibles
F25B 1/10 - Machines, installations ou systèmes à compression à cycle irréversible à compression multi-étagée
F25B 9/00 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé
55.
CENTRIFUGAL COMPRESSOR WITH ENERGY RECOVERY FROM A RECYCLE LINE
A centrifugal compressor is described comprising an anti-surge return line is disclosed, wherein a radial expansion impeller is arranged downstream a compressor discharge and one or more flow regulators are arranged between the compressor discharge and the radial expansion impeller, and wherein the radial expansion impeller discharge is connected with the anti-surge return line. A method for controlling surge in a compressor is also described, the method comprising a step of directing at least a portion or volume of the continuous flow of fluid from the compressor to a radial expansion impeller and to a return line.
A process of recovering energy from a low enthalpy fluid stream is disclosed. The process comprises a step of exchanging heat between the low enthalpy fluid stream and a regenerative section (4) of a closed loop salinity gradient energy system (1), the closed loop salinity gradient energy system (1) comprising a low concentration saline solution and a high concentration saline solution that feed a salinity gradient energy system (3) configured to produce energy from the difference in salinity concentration between the concentrations of the two saline solutions, an exhausted saline solution being also obtained from the salinity gradient energy system (3), the regenerative section (4) being adapted to separate part of the solvent of the exhausted saline solution and increase salinity of the exhausted saline solution, in order to restore the low concentration saline solution and the high concentration saline solution to be recirculated to the salinity gradient energy system (3). In addition, a system of recovering energy from a low enthalpy fluid stream is disclosed.
F03G 7/00 - Mécanismes produisant une puissance mécanique, non prévus ailleurs ou utilisant une source d'énergie non prévue ailleurs
B01D 61/00 - Procédés de séparation utilisant des membranes semi-perméables, p. ex. dialyse, osmose ou ultrafiltrationAppareils, accessoires ou opérations auxiliaires, spécialement adaptés à cet effet
57.
AN EXPANDER INCLUDING INNER RINGS SUPPORTING STATIONARY BLADES
The expander (1) comprises an outer casing (3) and an inner casing (5) housed in the outer casing. A plurality of annular arrays of stationary blades (17) are housed in the inner casing. A rotor (11) is housed in the inner casing for rotation therein. The rotor comprises a rotation axis and a plurality of annular arrays of rotor blades (15) surrounding the rotation axis. Each annular array of rotor blades is arranged downstream of a respective one of said annular arrays of stationary blades and forms a respective expander stage therewith. The stationary blades (17) of each annular array of stationary blades are mounted on one respective ring (18) housed in the inner casing. Each ring is in axially oriented pressure contact with two adjacent rings or with one adjacent ring (18) and the inner casing (5). A cooling fluid gap (61) is formed between the rings and the inner casing.
F01D 25/24 - Carcasses d'enveloppeÉléments de la carcasse, p. ex. diaphragmes, fixations
F01D 25/26 - Carcasses d'enveloppe doublesMesures contre les tensions thermiques dans les carcasses d'enveloppe
F01D 25/14 - Carcasses d'enveloppe modifiées à cet effet
F01D 11/08 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages pour obturations de l'espace entre extrémités d'aubes du rotor et stator
F01D 9/04 - InjecteursLogement des injecteursAubes de statorTuyères de guidage formant une couronne ou un secteur
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
58.
TURBOMACHINE INCLUDING STATIONARY BLADES HAVING A SINGLE HOOK
A stationary blade (17) component for an expander (1) of a turbomachine is disclosed, which comprises an outer platform (71), in turn including: a radially outer surface (71.1), a radially inner surface (71.2), a forward edge (71.3), an aft edge (71.4), and a mechanical coupling feature adapted to mechanically attach the outer platform to a supporting structure (18) of a turbomachine. The stationary blade component further includes at least one airfoil (75) extending from the radially inner surface of the outer platform and comprising a leading edge (75.1) and a trailing edge (75.2). The mechanical coupling feature comprises a single forward hook (77) projecting from the radially outer surface of the outer platform and oriented towards the aft edge (71.4) of the outer platform.
F01D 25/24 - Carcasses d'enveloppeÉléments de la carcasse, p. ex. diaphragmes, fixations
F01D 25/26 - Carcasses d'enveloppe doublesMesures contre les tensions thermiques dans les carcasses d'enveloppe
F01D 25/14 - Carcasses d'enveloppe modifiées à cet effet
F01D 11/08 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages pour obturations de l'espace entre extrémités d'aubes du rotor et stator
F01D 9/04 - InjecteursLogement des injecteursAubes de statorTuyères de guidage formant une couronne ou un secteur
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
A system for assembling a turbomachine allowing assembly of at least two turbomachine modules placed on different supports: a first slide configured to support a first turbomachine module and base configured to support a second turbomachine module. The system further comprises a guide, in particular a track comprising two rails. The first slide is configured to perform movements along a longitudinal and typically horizontal direction defined by the guide. The first slide is further configured to enable adjustments of a position of the first turbomachine module by translating the first turbomachine module along a transversal direction and/or a vertical direction and/or the longitudinal direction. The mechanical coupling of the first module and the second module for assembling the turbomachine derives at least from a movement of the first module on the guide along the first direction toward the second module.
The variable inlet guide vane device comprises a disc-shaped member and an annular member coaxial to disc-shaped member and forming a unit therewith. A set of variable inlet guide vanes are pivotally mounted between the disc-shaped member and the annular member. Each variable inlet guide vane comprises a first pivoting pin and a second pivoting pin. The first pivoting pin is pivotally supported by a first bearing housed in the disc-shaped member and the second pivoting pin is pivotally supported by a second bearing housed in the annular member.
F01D 17/16 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage en obturant les injecteurs
61.
COMPOSITION FOR ELECTROLESS PLATINUM PLATING AND PROCESS FOR PLATINUM PLATING
The subject-matter disclosed herein relates to a composition (PC) suitable for electroless platinum plating, a process for plating a coating of platinum onto a substrate based on the use of said composition (PC), an apparatus suitable for performing said process and a platinum plated article formed therefrom.
C23C 18/44 - Revêtement avec des métaux nobles en utilisant des agents réducteurs
C23C 18/16 - Revêtement chimique par décomposition soit de composés liquides, soit de solutions des composés constituant le revêtement, ne laissant pas de produits de réaction du matériau de la surface dans le revêtementDépôt par contact par réduction ou par substitution, p. ex. dépôt sans courant électrique
62.
2 ABSORBER WITH INTEGRATED AMMONIA SLIP MITIGATION AND INTERCOOLING
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
63.
ONCE THROUGH CO2 ABSORBER WITH INTEGRATED AMMONIA SLIP MITIGATION AND INTERCOOLING
A process of removing CO2 includes: contacting, in a first absorber stage, a CO2-containing gas stream with a solution mixture to generate a partially cleaned gas stream; contacting, in a second absorber stage, the partially cleaned gas stream with a CO2-lean solution to generate a further cleaned gas stream that contains ammonia and a CO2-partially-enriched solution; dividing the CO2-partially-enriched solution into a first portion and a second portion; removing the first portion of the CO2-partially-enriched solution from the second absorber stage; chilling the removed CO2-partially-enriched solution; contacting, in the third absorber stage, the chilled CO2-partially-enriched solution with the further cleaned gas stream that contains ammonia to generate a treated gas stream and a CO2-partially-enriched-solution containing recovered ammonia; and combining the solution containing the recovered ammonia removed from the third absorber stage with the second portion of the CO2-partially-enriched solution, forming the solution mixture used in the first absorber stage.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
A magnetic bearing for supporting the movement of a piston sliding into a cylinder comprised in a compressor. The piston comprises a first rod that connects the piston to a cross-head of the compressor and an extension rod, which is connected to the first rod. The magnetic bearing comprises a first group of magnets arranged on a first side of the extension rod of the piston, a second group of magnets arranged on a second side of the extension rod of the piston, wherein the magnetic forces exerted by the first group of magnets and the second group of magnets respectively allow the piston to be supported during its movement. The present disclosure also concerns a method of assembling a magnetic bearing.
Disclosed herein is a pressurizing train comprising a compressor unit having a suction side and a delivery side, and pump unit, having a suction side and a delivery side. The suction side of the pump unit is fluidly coupled with the delivery side of the compressor unit. A common driver is drivingly coupled to the compressor unit and to the pump unit. Also disclosed herein is a pressurizing method of a fluid using a compressor unit and a pump unit in sequence.
A power generation system is disclosed, which comprises power generating turbomachine. The turbomachine drives at least two electric generators drivingly coupled to the power generating turbomachine and electrically coupled to an electric power distribution grid and/or to a local load. In case of failure of one electric generator, the surviving electric generator prevents uncontrolled over-speeding of the shaft line. A method for controlling a power generation system is also disclosed herein.
F02C 9/46 - Commande de secours de l'alimentation en combustible
F02C 9/28 - Systèmes de régulation sensibles aux paramètres ambiants ou à ceux de l'ensemble fonctionnel, p. ex. à la température, à la pression, à la vitesse du rotor
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01N 3/08 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs
F01N 5/02 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant la chaleur
70.
DUAL PURPOSE ENERGY PLANT HAVING A FUEL CELL SYSTEM
A system for generating electricity with reduced or negative carbon emissions includes a power plant section having an electricity generating unit that includes a solid oxide fuel cell (SOFC) system. The SOFC system includes a SOFC fuel cell reactor and a combustor with an energy exchange path. The combustor is coupled to the fuel cell reactor to combust unutilized fuel. The system also includes a direct air capture (DAC) section having a carbon dioxide (CO2) adsorption device having a CO2 adsorbent material and a ventilator electrically coupled to the electric generator for flowing ambient air through the CO2 adsorption device in a carbon capture mode. The CO2 adsorption device is coupled to and in energy communication with the energy exchange path for releasing adsorbed CO2 in a carbon release mode.
H01M 8/0668 - Élimination du monoxyde de carbone ou du dioxyde de carbone
B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
B01D 53/06 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants mobiles
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
H01M 8/12 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé
H01M 8/1246 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé caractérisés par le procédé de fabrication ou par le matériau de l’électrolyte l'électrolyte étant constitué d’oxydes
71.
ENHANCED PERFORMANCE MODEL MATCHING, AUGMENTATION AND PREDICTION
A simulation method for simulating the operation of a gas turbine (111) is disclosed. The method comprises a global search procedure and an iterative local search procedure, to calculate parameters to simulate the operation of the gas turbine (111). The output parameters can also be used for monitoring the operation of the gas turbine (111) and planning the maintenance. Also disclosed is a characterization system, for characterizing and simulating the operation of a gas turbine (111).
G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]
72.
GAS TURBINE SYSTEM WITH DIFFUSION-FLAME COMBUSTION AND FUEL BLENDING FOR REDUCING UNDESIRED EMISSIONS
A gas turbine system with a compressor section configured to compress an oxidant flow and provide a compressed oxidant flow at a combustor section. The combustor section receives the oxidant and a fuel gas-mixture separately, the mixture containing at least a fuel gas and an inert gas, to perform diffusion-flame combustion of the fuel and the oxidant in a combustion chamber and to provide a flue-gas flow to a turbine section configured to expand the flue-gas flow and to discharge the expanded flue-gas flow at a turbine outlet. The gas turbine system has also a blending unit configured to mix at least the fuel gas and the inert gas and provide the fuel gas-mixture at the combustor section with a blending ratio depending on a content of the flue gas, for example depending on a content of NOx and/or CO and/or CO2 of the flue gas measured or predicted.
F02C 9/40 - Commande de l'alimentation en combustible spécialement adaptée à l'utilisation d'un combustible particulier ou de plusieurs combustibles
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
A turbomachine for compressing fluids, particularly air. The turbomachine comprises an impeller for pressurizing fluid, and an intake conduit, all housed within a containment body. The intake conduit is equipped with an inlet for air entry and a flow-path duct directing the incoming air towards the impeller. The intake conduit incorporates a stator element defining the flow-path and adjustable inlet guide vanes.
A compression system (200) provided with a compressor (250) having an inlet duct (210) and an outlet duct (220), a compressor driver (270), an anti-surge recirculation loop (240), a suction flow control device (281) at the inlet duct (210) and a pressure drop element (282), such a throttling valve, upstream of the compressor (250) and in parallel with the suction flow control device (281). The compressor (250) may be started up using the pressure drop element (282) only during start-up and excluding it during normal operation of the compressor (250).
22 into the treatment unit; contacting the aqueous stream with the carbon dioxide stream to form a mixture; removing heat from the treatment unit to control a temperature of the mixture; forming a slurry from the mixture, the slurry including water and at least one of a solid potassium salt, or a solid ammonium salt; withdrawing the slurry from the treatment unit as a treated aqueous stream; and introducing the treated aqueous stream into a separator to generate a brine stream, and a recovered potassium and/or ammonia salt stream containing at least one of the solid potassium salt or the solid ammonium salt.
C01D 7/26 - Purification par précipitation ou adsorption
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A process of recovering solid potassium/ammonia salts includes: introducing an aqueous stream containing at least one of ammonium cations or potassium cations, and at least one of carbonate anions or bicarbonate anions into a treatment unit; introducing a carbon dioxide stream containing CO2 into the treatment unit; contacting the aqueous stream with the carbon dioxide stream to form a mixture; removing heat from the treatment unit to control a temperature of the mixture; forming a slurry from the mixture, the slurry including water and at least one of a solid potassium salt, or a solid ammonium salt; withdrawing the slurry from the treatment unit as a treated aqueous stream; and introducing the treated aqueous stream into a separator to generate a brine stream, and a recovered potassium and/or ammonia salt stream containing at least one of the solid potassium salt or the solid ammonium salt.
A system for detecting gases like hydrogen and the like. The system comprises a gas sensor having at least one chemochromic pigment capable of changing its color when it comes into contact with the gas to be detected. The system also includes a camera for detecting the color chemochromic pigment. The gas sensor is functionally coupled to a control logic unit equipped with an Artificial Intelligence-based algorithm resident in a processor trained for recognizing the color change of the chemochromic pigments of the sensor. Also disclosed are methods for computer-implemented method of detecting a gas leakage.
G01M 3/22 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour tuyaux, câbles ou tubesExamen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour raccords ou étanchéité de tuyauxExamen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour soupapes
G01M 3/38 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation de la lumière
G01N 21/78 - Systèmes dans lesquels le matériau est soumis à une réaction chimique, le progrès ou le résultat de la réaction étant analysé en observant l'effet sur un réactif chimique produisant un changement de couleur
78.
ENERGY STORAGE SYSTEM WITH STAND-BY OPERATION MODE AND METHOD FOR OPERATING THE SYSTEM
An energy storage system (100) comprising a compressor (10), a fluid storage (40), an expander (20) and a generator (15) which is mechanically coupled to the expander (20) and is electrically coupled to an electric grid in order to supply power electricity to the electric grid. The compressor (1) is fluidly coupled to the fluid storage (40) and is configured to compress a first fluid flow and supply it to the fluid storage (40) during a charge mode of the energy storage system; the fluid storage (40) is configured to store the first fluid at least for a predetermined time. During a discharge mode of the energy storage system, the expander (20) is fluidly coupled to the fluid storage (40) so that the fluid storage (40) can supply a second fluid flow at a first temperature at an expander inlet (21) and the expander (20) can expand the second fluid flow according to a first pressure ratio so to discharge the second fluid flow at a second temperature at an expander outlet (29) and to drive the generator (15), so that it is synchronized with power electricity of the electric grid. The energy storage system further comprises a stand-by unit (50) which is fluidly coupled to the expander (20) and is configured to supply a third fluid flow at a third temperature at the expander inlet (21) during a stand-by mode of the energy storage system. During a stand-by mode of the energy storage system, the expander (20) is further configured to expand the third fluid flow according to a second pressure ratio so to discharge the third fluid flow at a fourth temperature (T4) at the expander outlet (29) and to drive the generator (15), so that it is synchronized with power electricity of the electric grid. The first temperature and the second temperature of the second fluid flow are substantially equal to the third temperature and the fourth temperature of the third fluid flow.
F02C 6/16 - Ensembles fonctionnels de turbines à gaz comportant des moyens pour emmagasiner l'énergie, p. ex. pour faire face à des pointes de charge pour emmagasiner de l'air comprimé
79.
STEEL INDUSTRY DECARBONIZATION SYSTEM AND RELATIVE METHOD
A system to treat coke oven gas (COG), in particular coke oven gas produced by a steel plant, configured to receive a coke oven gas stream. The innovative system comprises a compression unit (100) configured to receive the coke oven gas stream, to compress it and to discharge a compressed coke oven gas stream; a separation unit (200) configured to receive the compressed coke oven gas stream, perform a hydrogen (=H2) separation and discharge an hydrogen stream and a gas stream comprising methane (=CH4) and other unreacted components of the coke oven gas stream; a pyrolysis unit (300) configured to receive the gas stream comprising methane and other unreacted components of the coke oven gas and perform pyrolysis of the stream comprising methane and other unreacted components of the coke oven gas stream so to discharge solid carbon (=C) and a gas stream comprising hydrogen and other unreacted components of the coke oven gas stream.
C01B 3/24 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures
C01B 3/56 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des solidesRégénération des solides usés
A fuel nozzle comprising a stem and a first fuel feed channel extending inside the stem from an inlet end positioned at a proximal end of the stem to a first fuel inlet plenum. The fuel nozzle further comprises a first set of fuel injectors fluidly coupled to the first fuel inlet plenum. The fuel nozzle further includes a second fuel feed channel extending inside the stem from an inlet end, positioned at the proximal end of the stem, to a second fuel inlet plenum. A second set of fuel injectors are fluidly coupled to the second fuel inlet plenum. Each fuel injector comprises a centerbody and an outer sleeve surrounding the centerbody and extending along the axis of the centerbody. An annular premix chamber is provided between each outer sleeve and the respective centerbody.
The for calibrating a metering device comprises a closed calibration loop adapted to circulate a primary fluid therein. The closed calibration loop comprises an inlet connection and an outlet connection, adapted to fluidly couple a metering device to be calibrated to the closed calibration loop. The calibration loop further includes a reference metering unit comprising an inlet and an outlet. A flow circulation device circulates a fluid in the closed calibration loop. A heater between the outlet of the reference metering unit and the inlet connection for the metering device to be calibrated; and a cooler between the outlet connection for the metering device to be calibrated and the inlet of the reference metering unit provide heat transfer in the facility.
G01F 25/10 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres
G01F 25/17 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres en utilisant des réservoirs étalonnés
82.
CALIBRATION FACILITY AND METHOD FOR METERING DEVICES, WITH HEAT RECOVERY
Described herein is a facility for calibrating a metering device. The facility comprises a closed calibration loop adapted to circulate a fluid therein. The closed calibration loop comprises an inlet connection and an outlet connection to fluidly couple a metering device to be calibrated to the closed calibration loop, as well as a reference metering unit comprising an inlet and an outlet. A heater and a cooler are arranged in the calibration circuit to heat and cool the process fluid. A heat recovery arrangement, adapted to transfer heat from the cooler to the heater.
G01F 25/10 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres
83.
TURBOMACHINE AND TURBOMACHINE ROTOR WITH FREE STANDING SHROUDED BLADES
Disclosed herein is a turbomachine rotor comprising at least one annular array of shrouded blades (55) around a rotor axis. Each blade comprises an airfoil (55.1) having a leading edge, a trailing edge, a root, a tip, a concave pressure side and an opposite convex suction side, the pressure side and the suction side extending between the leading edge and the trailing edge. Each blade further comprises an inner platform (55.3), at the root of the airfoil, and an outer platform (55.4) at the tip of the airfoil. Each side edge (75) of the outer platform (55.4) of each blade is spaced apart from an opposite side edge (77) of an adjacent blade, such that in use a gap (G) separates the opposite side edges (75, 77) of adjacent blades and the opposite side edges are in a facing, non-contacting relationship to one another in any operating condition of the turbomachine.
The nozzle segment for a gas turbine comprises an inner platform and an outer platform as well as a plurality of airfoils arranged between the inner platform and the outer platform. A set of platform film cooling holes are provided, including at least one inner platform film cooling hole on a surface of the inner platform or on a surface of the outer platform facing said hot gas flow passage. A ratio between a distance in tangential direction of the platform film cooling hole from the pressure side of the respective airfoil and a width of the hot gas flow passage in tangential direction at the platform film cooling hole is comprised between 0 and 0.5.
A centrifugal compressor is described comprising an anti-surge return line is disclosed, wherein a radial expan-sion impeller is arranged downstream the compressor discharge and one or more flow regulators are arranged between the compressor discharge and the radial expansion impeller, and wherein the radial expansion impeller discharge is connected with the anti-surge return line. A method for controlling surge in a compressor is also described, the method comprising a step of directing at least a portion or volume of the continuous flow of fluid from the compressor to a radial expansion impeller and to a return line.
Pulsed absorption contactor systems and methods are provided. The systems include a vessel having inlet and outlet ends and a pulse generator system, a gas inlet configured to direct an input gas stream into the vessel, a gas outlet configured to receive an output gas stream and direct the output gas stream out of the vessel, a liquid inlet configured to direct an input liquid stream into the vessel, and a liquid outlet configured to receive an output liquid stream and direct the output liquid stream out of the vessel. The pulse generator system is configured to induce a fluctuation in the input gas stream, the input liquid stream, and/or a combination of the input gas stream and the input liquid stream.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
The gas turbine system comprises a gas turbine engine, a first fuel line adapted to feed fuel to the gas turbine engine, a heat recovery steam generator adapted to receive flue gas exhausted from the gas turbine engine, and a second fuel line adapted to feed fuel to a post-burner of the heat recovery steam generator. A carbon dioxide capture unit is fluidly coupled to a stack of the heat recovery steam generator. A recycling line recycles flue gas from the stack of the heat recovery steam generator to the post-burner in the heat recovery steam generator. A carbon dioxide return line recycles a gaseous stream containing carbon dioxide from the carbon dioxide capture unit towards the gas turbine engine or the post-burner. Disclosed herein is also a power generation method with improved carbon dioxide capture.
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F01K 23/10 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle le fluide à la sortie de l'un des cycles chauffant le fluide dans un autre cycle
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
88.
HIGH EFFICIENCY POWER SOLUTION BY INTEGRATION OF PRESSURIZED SOLID OXIDE FUEL CELL WITH EXPANDERS
A solid oxide fuel cell system comprising an oxidant gas feed line and an oxidant gas compression system upstream said solid oxide fuel cell, a fuel feed line upstream said solid oxide fuel cell, a combustion chamber configured to combust unreacted fuel and oxidant gas downstream said solid oxide fuel cell, an exhaust gas line downstream said combustion chamber, a heat exchanger configured to allow heat exchange between said exhaust gas on the hot side of said heat exchanger and said oxidant gas and fuel on the cold side of said heat exchanger and an expansion system configured to expand said exhaust gas downstream said heat exchanger, wherein said oxidant gas compression system comprises a low pressure compressor, driven by an electric motor and a high-pressure compressor, driven by said expansion system by means of a common shaft.
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/04014 - Échange de chaleur par des fluides gazeuxÉchange de chaleur par combustion des réactifs
H01M 8/12 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé
Pulsed absorption contactor systems and methods are provided. The systems include a vessel having inlet and outlet ends and a pulse generator system, a gas inlet configured to direct an input gas stream into the vessel, a gas outlet configured to receive an output gas stream and direct the output gas stream out of the vessel, a liquid inlet configured to direct an input liquid stream into the vessel, and a liquid outlet configured to receive an output liquid stream and direct the output liquid stream out of the vessel. The pulse generator system is configured to induce a fluctuation in the input gas stream, the input liquid stream, and/or a combination of the input gas stream and the input liquid stream.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
90.
COMPUTER-BASED DEVICE IMPLEMENTING A PHYSICAL MODEL AND A DATA-DRIVEN MODEL OF A MACHINE
The innovative computer-based device (100) serves for generating a device output signal (101) based on a plurality of device input signals (102); the device output signal (101) corresponds to a physical parameter of an industrial machine (10); the device input signals (102) correspond to physical quantities of the industrial machine (10). The device (100) comprises: a first section (110) being a physics-based section, a second section (120) being a data-based section, and a signal combiner (130). The first section (110) is configured to receive at least a first portion of the plurality of device input signals (102), and to generate a first section output (111) signal by applying a mathematical processing to values of the first portion of the plurality of input signals (102), wherein the mathematical processing relates to a physical model of the industrial machine or part of the industrial machine. The second section (120) is configured to receive at least a second portion of the plurality of device input signals (102), and to generate a second section output signal (121) by applying a neural processing to values of the second portion of the plurality of device input signals (102), wherein the neural processing relates to a data-driven model of the industrial machine or part of the industrial machine. The signal combiner (130) is configured to generate a combination of the first section output signal (111) and the second section output signal (121); the device output signal (101) corresponds to this combination. The device (100) is configured to adjust parameters of the mathematical processing and parameters of the neural processing during a training period of the device preceding an operating period of the device.
In the LNG plant, heat is provided to natural a gas processing system, including a pre-treatment unit and/or a liquefaction unit and/or an evaporation unit, by exploiting heat recovered through a steam generator of the plant that is thermally coupled to an exhaust outlet of a gas turbine of the plant. A heat transfer fluid circuit system with a circulating heat transfer fluid includes a first portion and a second portion; the first portion is located in a section of the steam generator to extract heat from to exhaust gases; the section is located between a stack and an evaporation section; the second portion is thermally coupled to the gas processing system so to provide heat thereto for example through an heat exchanger.
F01K 23/10 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle le fluide à la sortie de l'un des cycles chauffant le fluide dans un autre cycle
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
92.
A TURBOMACHINE COMPRISING A SEAL BETWEEN AN OUTER CASING COMPONENT AND AN INNER CASING COMPONENT, AND METHOD
Disclosed herein is a turbomachine comprising an outer casing component and an inner casing component housed in the outer casing component and coupled to the outer casing component. A passage is provided between the inner casing component and the outer casing component and a sealing arrangement is positioned in the passage. The sealing arrangement comprises an annular seal element and a backpressure ring arranged on the low-pressure side of the annular seal element. In use the backpressure ring is in press-fit engagement with the inner surface of the outer casing component and the annular seal element is in pressure contact against the backpressure ring. Also disclosed herein is a method for mounting a sealing arrangement in a turbomachine.
Described herein is a turbomachine system comprising a turbomachine and an enclosure surrounding the turbomachine and containing at least one duct adapted to contain a flammable gas. An ultrasonic gas leak detector arrangement housed in the enclosure is adapted to detect flammable gas leakages in the enclosure. Disclosed herein is also a method for detecting gas leakages in an enclosure housing a turbomachine.
G01M 3/24 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des vibrations infrasonores, sonores ou ultrasonores
94.
A GAS TURBINE AUXILIARY SYSTEM FOR NH3 CONDITIONING
3332233 conditioning comprising an ammonia cracking reactor (300), the ammonia cracking reactor (300) being configured to de-compose ammonia into a gas mixture of hydrogen, nitrogen and residual ammonia, a separator coupled to said gas turbine (100) and being configured to separate a gas mixture of hydrogen, nitrogen and residual ammonia, into separate streams of hydrogen, nitrogen, ammonia, said separator comprising at least one of: a first separator outlet line (71, 74) connected to said fuel cell (500) for conveying said stream of ammonia to said fuel cell (500), and a second separator outlet line (72, 72b) connected to said fuel cell (500) for conveying said stream of hydrogen to said fuel cell (500).
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
H01M 8/22 - Éléments à combustible dans lesquels le combustible est à base de matériaux comprenant du carbone, de l'oxygène ou de l'hydrogène et d'autres élémentsÉléments à combustible dans lesquels le combustible est à base de matériaux comprenant uniquement des éléments autres que le carbone, l'oxygène ou l'hydrogène
95.
A MEMBRANE REACTOR FOR THE CRACKING OF HYDROCARBONS
A membrane reactor for the cracking of hydrocarbons is disclosed. The reactor comprises a hydrocarbon feed inlet (11), a reaction zone (12) wherein hydrocarbons are cracked into reaction products composed of smaller molecules, energy supply means (13) configured to supply energy to said reaction zone (12), a membrane (14) configured to be selectively permeated by a permeate composed of at least part of the reaction products moving from the reaction zone (12) to a permeation zone (15) and separating from a retentate composed of a remaining part of the reaction products and unreacted hydrocarbons that remain in the reaction zone (12), an outlet (16) of the permeation zone (15) and an outlet (17) of the reaction zone (12). The membrane reactor comprises vibration generating means (18), configured to vibrate the membrane (14), said vibration generating means (18) being configured to generate ultrasonic vibrations.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules mobiles
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
B01J 8/40 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé" le lit fluidisé étant soumis à des vibrations ou à des pulsations
B01J 19/10 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage utilisant des vibrations de fréquences audibles ou des ultrasons
B01J 19/24 - Réacteurs fixes sans élément interne mobile
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
A system for generating power using a gas turbine is disclosed. The system comprises an ammonia-cracking device, to convert at least part of a NH3 stream into H2 and N2, to realize a gas NH3/H2/N2 mixture that allows operating the gas turbine in every condition. In one aspect, the NH3 stream is splitted into a first NH3 stream that is cracked into H2 and N2 through a cracking to obtain a H2 and N2 stream and a second NH3 stream that is directed to the gas turbine through a bypass line, the power generating system also comprising a cracking reactor gas mixture split stream line (310), connecting the ammonia cracking reactor (300) to other services (400).
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
97.
A GAS TURBINE AUXILIARY SYSTEM FOR NH3 CONDITIONING
3223222 mixture that allows operating the gas turbine in every condition. In one aspect, the cracking reactor is operated to produce an excess of cracked products, said products being used to feed auxiliary services.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
98.
AN OPTIMIZED SYSTEM TO REALIZE ORTHO TO PARA HYDROGEN CONVERSION WITH MOF CATALYST
A system to realize conversion of hydrogen from ortho to para isomer is disclosed. The system comprises at least one reactor (10), the reactor (10) comprising at least one reaction chamber (11) filled with a catalytic bed comprising metal organic frameworks (MOFs), characterized in that the at least one reaction chamber (11) is encased by a shell (12) apt to be traversed by a flow of a cooling fluid.
The disclosure concerns a waste heat recovery unit comprising a main heat exchanger configured to exchange heat between an exhaust fluid from a heat source and a working fluid of a waste heat recovery system, wherein the waste heat recovery unit comprises an additional heat exchanger configured to exchange heat between the exhaust fluid and alternatively a cooling fluid or a portion or the whole of said working fluid during transitory states.
F22B 35/00 - Systèmes de commande pour chaudières à vapeur
F22B 1/18 - Méthodes de production de vapeur caractérisées par le genre de chauffage par exploitation de l'énergie thermique contenue dans une source chaude la source chaude étant un gaz chaud, p. ex. des gaz d'évacuation tels que les gaz d'échappement de moteurs à combustion interne
100.
A POWER PRODUCING APPARATUS COMPRISING A SYSTEM FOR REDUCING NITROGEN OXIDES IN THE FLUE GAS AND A METHOD FOR REDUCING NITROGEN OXIDES IN THE FLUE GAS OF A POWER PRODUCING APPARATUS
A power producing apparatus comprising a system for reducing nitrogen oxides in the flue gas stream of the power producing apparatus using a fuel comprising one or more of ammonia, hydrogen and natural gas together with air or an oxidizing gas and a re- lated method are disclosed, the flue gas comprising nitrogen oxides, oxygen and even- tually water. In particular, the method comprises the steps of cooling and condensing at least a part of the flue gas stream into a condensate comprising at least part of the nitrogen oxides of the flue gas stream, separating the condensate from the remaining flue gas stream, and collecting the condensate. The system comprises a duct along which one or more heat exchanging areas are arranged, to cool the gas stream and condensate at least a part of the gas stream into a condensate stream comprising at least part of the nitrogen oxides of the gas stream, and wherein the system also comprises condensate collectors configured to collect a respective condensate stream and direct it to a respective condensate withdrawal line.
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols