A filterless gas intake system is disclosed. The system comprises a gas passage configured to receive an intake gas flow, the gas passage including an inlet opening, an outlet opening and a lateral wall and one or more separation elements (10), arranged within the gas passage and extending along a direction from one side of the lateral wall to the opposite side, the separation element (10) comprising: a body (11) with at least one concave surface (12) of an electrically conductive material, connected to an earth grounding (13), a leading edge (14), facing the inlet opening of the gas passage and a trailing edge (15) facing the outlet opening of the gas passage; and at least one electrode (16) arranged in front of the at least one concave surface (12) and connected to an electrostatic generator.
B03C 3/08 - Installations alimentées en électricité de l'extérieur du type par voie sèche caractérisées par la présence d'électrodes planes fixes, les surfaces planes étant parallèles au courant de gaz
B03C 3/36 - Parties constitutives ou accessoires, ou leur fonctionnement commandant le débit de gaz ou de vapeurs
B03C 3/47 - Électrodes collectrices planes, p. ex. en forme d'assiettes, de disques, de grilles
A method for performing a start-up of an offshore plant. The offshore plant comprises a power grid, wherein the power grid comprises a power generation source for generating the energy, a load driven by the power generation source and connected to the power grid, a battery energy storage system connected to the power grid and to the load, and a switching and detecting device connected to the power grid. The method comprises the steps of: detecting by the switching and detecting device, a power outage between the load and power grid; and injecting by the battery energy storage system, the energy to the power generation source to start it up, so as to restore the energy conditions on the power grid prior to the power outage. The injecting step provides the re-energization of a busbar connected to the battery energy storage system and a generator connected to a gas turbine.
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
H02J 3/00 - Circuits pour réseaux principaux ou de distribution, à courant alternatif
H02J 3/24 - Dispositions pour empêcher ou réduire les oscillations de puissance dans les réseaux
H02J 3/32 - Dispositions pour l'équilibrage de charge dans un réseau par emmagasinage d'énergie utilisant des batteries avec moyens de conversion
H02J 3/38 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs
3.
SEALING SYSTEM FOR PERMANENT MAGNET MOTOR/GENERATOR
An electric machine comprising a rotary magnetic assembly, preferably comprising permanent magnets; a stationary magnetic assembly, preferably comprising electromagnets; a rotary hub having a cylindrical shape and a tube-shaped recess for housing the rotary magnetic assembly; a sleeve positioned around the tube-shaped recess so to surround it, and mechanically coupled to the rotary hub. The sleeve has a first end region and a second end region which are sealed to the rotary hub so to fluidly isolate the tube-shaped recess. The rotary hub comprises at least one inner channel which is fluidly coupled to the tube-shaped recess.
H02K 7/00 - Dispositions pour la mise en œuvre d'énergie mécanique associées structurellement aux machines dynamo-électriques, p. ex. association structurelle avec des moteurs mécaniques d'entraînement ou des machines dynamo-électriques auxiliaires
H02K 5/20 - Enveloppes ou enceintes caractérisées par leur configuration, leur forme ou leur construction avec des canaux ou des conduits pour la circulation d'un agent de refroidissement
H02K 7/09 - Association structurelle avec des paliers avec des paliers magnétiques
4.
FIRING APPARATUS AND FIRING METHOD FOR HIGH REACTIVE FUEL GASES
A firing apparatus to control the firing of one or more burners of a gas turbine is disclosed. The firing apparatus comprises a shutoff module, for selectively allowing the passage of the fuel from a fuel source, and an adjustment module, which is capable of adjusting the fuel to be delivered to a nozzle manifold of the gas turbine during the firing phase. Also disclosed are methods of firing the gas turbine.
The compression train (13) for a dehydrogenation plant (1) comprises a driver (36) and a single centrifugal compressor (35) drivingly coupled to the driver. The centrifugal compressor comprises a single casing and a plurality of compressor sections (39.1, 39.2, 39.3) inside said casing (37). Each compressor section comprises at least one impeller (40.1, 40.2) arranged for rotation in the casing (37). The compressor (35) is adapted to compress a mixture containing propane, propylene and hydrogen, having a molecular weight between 20 and 35 g/mol, from a suction pressure between about 0.2 barA and about 1.5 barA to a delivery pressure between about 11 barA and about 20 barA, with a volumetric flowrate comprised between about 120,000 m3/h and about 950,000 m3/h.
F04D 1/08 - Pompes multiétagées les étages étant concentriques
F04D 7/02 - Pompes adaptées à la manipulation de liquides particuliers, p. ex. par choix de matériaux spéciaux pour les pompes ou pièces de pompe du type centrifuge
F04D 29/28 - Rotors spécialement adaptés aux fluides compressibles pour pompes centrifuges ou hélicocentrifuges
F04D 29/58 - RefroidissementChauffageRéduction du transfert de chaleur
6.
A RADIAL TURBOMACHINE WITH IMPROVED IMPELLER EYE SEAL
Disclosed herein is a radial turbomachine including a casing and a rotor arranged for rotation in the casing. The rotor includes at least one impeller with a hub, a shroud, and a plurality of blades between the hub and the shroud. An eye seal is stationarily housed in the casing and surrounds an impeller eye. The impeller eye includes a stepped external surface facing the eye seal. The stepped external surface includes a plurality of cylindrical surface portions. The eye seal in turn includes a plurality of annular fins. Each annular fin projects radially inwardly towards a corresponding surface portion of the impeller eye and ends with a annular fin tip at a clearance distance from the respective cylindrical surface portion of the impeller eye. The annular fins include an end projection at the fin tip, the end projection extending in an axial direction.
The integrally geared compressor includes a bull gear supported for rotation in a gear casing, a first pinion shaft, and a second pinion shaft. A first compressor unit is mounted in an overhung fashion at a first end of the first pinion shaft, and a second compressor unit is mounted in an overhung fashion at a second end of the first pinion shaft, or at a first end, or at a second end of the second pinion shaft. A third compressor unit is mounted in an overhung fashion at one of the first end and the second end of the second pinion shaft. The second compressor unit and the third compressor unit are centrifugal compressor units. The first compressor unit comprises an axial compressor section and a centrifugal compressor section combined to one another.
F04D 17/02 - Pompes à flux radial spécialement adaptées aux fluides compressibles, p. ex. pompes centrifugesPompes hélicocentrifuges spécialement adaptées aux fluides compressibles ayant des étages non centrifuges, p. ex. centripètes
Integrally geared turbomachinery system (200) comprising a wheel gear (90) configured to rotate around a rotating axis (R) and at least a couple of pinion shafts (10, 20) mechanically coupled to the wheel gear (90). A first pinion shaft (10) is configured to be mechanically coupled to the wheel gear (90) and to rotate around a first axis (X) parallel to the rotating axis (R) at a first rotating speed and a second pinion shaft (20) is configured to be mechanically coupled to the first pinion shaft (10) and to rotate around a second axis (Y) at a second rotating speed; the first axis (X) and the second axis (Y) are non-parallel.
F16H 1/22 - Transmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec plusieurs arbres d’entraînement ou entraînésTransmissions à engrenages pour transmettre un mouvement rotatif sans engrenages à mouvement orbital comportant plus de deux organes engrenés avec dispositions pour répartir le couple entre plusieurs arbres intermédiaires
A chilled ammonia carbon capture system, using a first working fluid, preferably ammonia, and a heat pump system, using a second working fluid, preferably water, the refrigeration system and the heat pump system being coupled through a vaporizer wherein the heat of the working fluid of the refrigeration system is used to evaporate the working fluid of the heat pump system, so that the waste heat from the chilled ammonia carbon capture system is used to obtain high temperature and high pressure steam. Steam extraction is configured to be utilized in the reboilers of the chilled ammonia carbon capture unit, in such a way that steam refurbishment and additional equipment for the production of high temperature and high pressure steam are not required.
F25B 6/02 - Machines, installations ou systèmes à compression, avec plusieurs circuits de condenseurs disposés en parallèle
F25B 7/00 - Machines, installations ou systèmes à compression fonctionnant en cascade, c.-à-d. avec plusieurs circuits, l'évaporateur d'un circuit refroidissant le condenseur du circuit suivant
F25B 27/02 - Machines, installations ou systèmes utilisant des sources d'énergie particulières utilisant la chaleur perdue, p. ex. chaleur dégagée par des moteurs à combustion interne
F25B 29/00 - Systèmes de chauffage et de refroidissement combinés, p. ex. fonctionnant alternativement ou simultanément
F25B 30/02 - Pompes à chaleur du type à compression
B01D 53/34 - Épuration chimique ou biologique des gaz résiduaires
B01D 51/00 - Prétraitement auxiliaire des gaz ou des vapeurs à épurer des particules dispersées
The gas turbine system comprises a combustor adapted to combust a fuel and an oxidant and generate pressurized hot combustion gas and a turbine fluidly coupled to the combustor and rotated by expansion of the pressurized hot combustion gas from the combustor. A heat exchanger is fluidly coupled to the turbine and adapted to cool expanded combustion gas exhausted from the turbine. A main oxidant supply line is adapted to supply oxidant to the combustor through the heat exchanger. The oxidant streaming through the heat exchanger is in heat exchange relationship with combustion gas exhausted from the turbine. A fuel supply line supplies fuel to the combustor. A secondary oxidant supply line is adapted to supply oxidant in the fuel supply line upstream of a fuel control valve. Also disclosed is a method of operating the system.
F02C 9/20 - Commande du débit du fluide de travail par étranglementCommande du débit du fluide de travail par réglage des aubes
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F02C 7/10 - Chauffage de l'air d'alimentation avant la combustion, p. ex. par les gaz d'échappement au moyen d'échangeurs de récupération de chaleur
F02C 7/232 - Soupapes pour combustibleSystèmes ou soupapes de drainage
11.
DUAL PURPOSE INTEGRATED GEAR FOR HYBRID TRAIN APPLICATION
A hybrid train system comprising at least one gas turbine to drive a load, and an electric machine unit, also connected to the load. A clutch is installed between the gas turbine and the load. Also, an integrated reduction gear unit is interposed between the load and the electric machine unit, to adapt to different operating speeds.
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F02C 3/107 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail ayant une turbine entraînant un compresseur avec plusieurs rotors raccordés par transmission de puissance
12.
FAST RAMPING-UP SYSTEM FOR POWER GENERATION, AND METHOD
Disclosed herein is a power generation system to supply an electric load. The system includes a first power generation unit and a second power generation unit. Both power generation units include a mechanical power generating machine and an electric generator, drivingly coupled to the mechanical power generating machine to convert mechanical power into electric power. The system further includes an energy storage arrangement adapted to store energy in form of a pressurized, liquefied or solidified fluid. An expander unit of the system includes an expander and an electric generator, which is drivingly coupled to the expander to convert mechanical power generated by the expander into electric power. The expander is adapted to receive pressurized fluid from the energy storage arrangement and generate mechanical power by expansion thereof during a transient phase, in case of sudden increase of the power demand from the electric load.
F02C 6/16 - Ensembles fonctionnels de turbines à gaz comportant des moyens pour emmagasiner l'énergie, p. ex. pour faire face à des pointes de charge pour emmagasiner de l'air comprimé
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01D 19/00 - Démarrage des "machines" ou machines motricesDispositifs de régulation, de commande ou de sécurité en rapport avec les organes de démarrage
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
H02J 9/06 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique
H02J 9/08 - Circuits pour alimentation de puissance de secours ou de réserve, p. ex. pour éclairage de secours dans lesquels le système de distribution est déconnecté de la source normale et connecté à une source de réserve avec commutation automatique demandant le démarrage d'une machine motrice
A compression unit for ammonia comprising a multi-stage compressor, including a first set of compressor stages adapted to compress a syngas containing hydrogen and nitrogen; and a second set of compressor stages adapted to compress a refrigerant of a refrigerant circuit. Described herein is also an ammonia production system including the ammonia compression unit and a method.
F04B 25/00 - Pompes multiétagées spécialement adaptées aux fluides compressibles
F25B 1/10 - Machines, installations ou systèmes à compression à cycle irréversible à compression multi-étagée
F25B 9/00 - Machines, installations ou systèmes à compression dans lesquels le fluide frigorigène est l'air ou un autre gaz à point d'ébullition peu élevé
14.
CENTRIFUGAL COMPRESSOR WITH ENERGY RECOVERY FROM A RECYCLE LINE
A centrifugal compressor is described comprising an anti-surge return line is disclosed, wherein a radial expansion impeller is arranged downstream a compressor discharge and one or more flow regulators are arranged between the compressor discharge and the radial expansion impeller, and wherein the radial expansion impeller discharge is connected with the anti-surge return line. A method for controlling surge in a compressor is also described, the method comprising a step of directing at least a portion or volume of the continuous flow of fluid from the compressor to a radial expansion impeller and to a return line.
A process of recovering energy from a low enthalpy fluid stream is disclosed. The process comprises a step of exchanging heat between the low enthalpy fluid stream and a regenerative section (4) of a closed loop salinity gradient energy system (1), the closed loop salinity gradient energy system (1) comprising a low concentration saline solution and a high concentration saline solution that feed a salinity gradient energy system (3) configured to produce energy from the difference in salinity concentration between the concentrations of the two saline solutions, an exhausted saline solution being also obtained from the salinity gradient energy system (3), the regenerative section (4) being adapted to separate part of the solvent of the exhausted saline solution and increase salinity of the exhausted saline solution, in order to restore the low concentration saline solution and the high concentration saline solution to be recirculated to the salinity gradient energy system (3). In addition, a system of recovering energy from a low enthalpy fluid stream is disclosed.
F03G 7/00 - Mécanismes produisant une puissance mécanique, non prévus ailleurs ou utilisant une source d'énergie non prévue ailleurs
B01D 61/00 - Procédés de séparation utilisant des membranes semi-perméables, p. ex. dialyse, osmose ou ultrafiltrationAppareils, accessoires ou opérations auxiliaires, spécialement adaptés à cet effet
16.
AN EXPANDER INCLUDING INNER RINGS SUPPORTING STATIONARY BLADES
The expander (1) comprises an outer casing (3) and an inner casing (5) housed in the outer casing. A plurality of annular arrays of stationary blades (17) are housed in the inner casing. A rotor (11) is housed in the inner casing for rotation therein. The rotor comprises a rotation axis and a plurality of annular arrays of rotor blades (15) surrounding the rotation axis. Each annular array of rotor blades is arranged downstream of a respective one of said annular arrays of stationary blades and forms a respective expander stage therewith. The stationary blades (17) of each annular array of stationary blades are mounted on one respective ring (18) housed in the inner casing. Each ring is in axially oriented pressure contact with two adjacent rings or with one adjacent ring (18) and the inner casing (5). A cooling fluid gap (61) is formed between the rings and the inner casing.
F01D 25/24 - Carcasses d'enveloppeÉléments de la carcasse, p. ex. diaphragmes, fixations
F01D 25/26 - Carcasses d'enveloppe doublesMesures contre les tensions thermiques dans les carcasses d'enveloppe
F01D 25/14 - Carcasses d'enveloppe modifiées à cet effet
F01D 11/08 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages pour obturations de l'espace entre extrémités d'aubes du rotor et stator
F01D 9/04 - InjecteursLogement des injecteursAubes de statorTuyères de guidage formant une couronne ou un secteur
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
17.
TURBOMACHINE INCLUDING STATIONARY BLADES HAVING A SINGLE HOOK
A stationary blade (17) component for an expander (1) of a turbomachine is disclosed, which comprises an outer platform (71), in turn including: a radially outer surface (71.1), a radially inner surface (71.2), a forward edge (71.3), an aft edge (71.4), and a mechanical coupling feature adapted to mechanically attach the outer platform to a supporting structure (18) of a turbomachine. The stationary blade component further includes at least one airfoil (75) extending from the radially inner surface of the outer platform and comprising a leading edge (75.1) and a trailing edge (75.2). The mechanical coupling feature comprises a single forward hook (77) projecting from the radially outer surface of the outer platform and oriented towards the aft edge (71.4) of the outer platform.
F01D 25/24 - Carcasses d'enveloppeÉléments de la carcasse, p. ex. diaphragmes, fixations
F01D 25/26 - Carcasses d'enveloppe doublesMesures contre les tensions thermiques dans les carcasses d'enveloppe
F01D 25/14 - Carcasses d'enveloppe modifiées à cet effet
F01D 11/08 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages pour obturations de l'espace entre extrémités d'aubes du rotor et stator
F01D 9/04 - InjecteursLogement des injecteursAubes de statorTuyères de guidage formant une couronne ou un secteur
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
A system for assembling a turbomachine allowing assembly of at least two turbomachine modules placed on different supports: a first slide configured to support a first turbomachine module and base configured to support a second turbomachine module. The system further comprises a guide, in particular a track comprising two rails. The first slide is configured to perform movements along a longitudinal and typically horizontal direction defined by the guide. The first slide is further configured to enable adjustments of a position of the first turbomachine module by translating the first turbomachine module along a transversal direction and/or a vertical direction and/or the longitudinal direction. The mechanical coupling of the first module and the second module for assembling the turbomachine derives at least from a movement of the first module on the guide along the first direction toward the second module.
The variable inlet guide vane device comprises a disc-shaped member and an annular member coaxial to disc-shaped member and forming a unit therewith. A set of variable inlet guide vanes are pivotally mounted between the disc-shaped member and the annular member. Each variable inlet guide vane comprises a first pivoting pin and a second pivoting pin. The first pivoting pin is pivotally supported by a first bearing housed in the disc-shaped member and the second pivoting pin is pivotally supported by a second bearing housed in the annular member.
F01D 17/16 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage en obturant les injecteurs
20.
COMPOSITION FOR ELECTROLESS PLATINUM PLATING AND PROCESS FOR PLATINUM PLATING
The subject-matter disclosed herein relates to a composition (PC) suitable for electroless platinum plating, a process for plating a coating of platinum onto a substrate based on the use of said composition (PC), an apparatus suitable for performing said process and a platinum plated article formed therefrom.
C23C 18/44 - Revêtement avec des métaux nobles en utilisant des agents réducteurs
C23C 18/16 - Revêtement chimique par décomposition soit de composés liquides, soit de solutions des composés constituant le revêtement, ne laissant pas de produits de réaction du matériau de la surface dans le revêtementDépôt par contact par réduction ou par substitution, p. ex. dépôt sans courant électrique
21.
2 ABSORBER WITH INTEGRATED AMMONIA SLIP MITIGATION AND INTERCOOLING
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
A magnetic bearing for supporting the movement of a piston sliding into a cylinder comprised in a compressor. The piston comprises a first rod that connects the piston to a cross-head of the compressor and an extension rod, which is connected to the first rod. The magnetic bearing comprises a first group of magnets arranged on a first side of the extension rod of the piston, a second group of magnets arranged on a second side of the extension rod of the piston, wherein the magnetic forces exerted by the first group of magnets and the second group of magnets respectively allow the piston to be supported during its movement. The present disclosure also concerns a method of assembling a magnetic bearing.
A process of removing CO2 includes: contacting, in a first absorber stage, a CO2-containing gas stream with a solution mixture to generate a partially cleaned gas stream; contacting, in a second absorber stage, the partially cleaned gas stream with a CO2-lean solution to generate a further cleaned gas stream that contains ammonia and a CO2-partially-enriched solution; dividing the CO2-partially-enriched solution into a first portion and a second portion; removing the first portion of the CO2-partially-enriched solution from the second absorber stage; chilling the removed CO2-partially-enriched solution; contacting, in the third absorber stage, the chilled CO2-partially-enriched solution with the further cleaned gas stream that contains ammonia to generate a treated gas stream and a CO2-partially-enriched-solution containing recovered ammonia; and combining the solution containing the recovered ammonia removed from the third absorber stage with the second portion of the CO2-partially-enriched solution, forming the solution mixture used in the first absorber stage.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/78 - Procédés en phase liquide avec un contact gaz-liquide
Disclosed herein is a pressurizing train comprising a compressor unit having a suction side and a delivery side, and pump unit, having a suction side and a delivery side. The suction side of the pump unit is fluidly coupled with the delivery side of the compressor unit. A common driver is drivingly coupled to the compressor unit and to the pump unit. Also disclosed herein is a pressurizing method of a fluid using a compressor unit and a pump unit in sequence.
A power generation system is disclosed, which comprises power generating turbomachine. The turbomachine drives at least two electric generators drivingly coupled to the power generating turbomachine and electrically coupled to an electric power distribution grid and/or to a local load. In case of failure of one electric generator, the surviving electric generator prevents uncontrolled over-speeding of the shaft line. A method for controlling a power generation system is also disclosed herein.
F02C 9/46 - Commande de secours de l'alimentation en combustible
F02C 9/28 - Systèmes de régulation sensibles aux paramètres ambiants ou à ceux de l'ensemble fonctionnel, p. ex. à la température, à la pression, à la vitesse du rotor
28.
ENHANCED PERFORMANCE MODEL MATCHING, AUGMENTATION AND PREDICTION
A simulation method for simulating the operation of a gas turbine (111) is disclosed. The method comprises a global search procedure and an iterative local search procedure, to calculate parameters to simulate the operation of the gas turbine (111). The output parameters can also be used for monitoring the operation of the gas turbine (111) and planning the maintenance. Also disclosed is a characterization system, for characterizing and simulating the operation of a gas turbine (111).
G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilitéAnalyse de défaillance, p. ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]
A system for generating electricity with reduced or negative carbon emissions. The system includes a power plant section having an electricity generating unit having an input coupled to a hydrocarbon fuel supply and an energy exchange path. The system also includes a direct air capture (DAC) section having a CO2 adsorption device having a CO2 adsorbent material and a ventilator electrically coupled to the electricity generating unit, the ventilator directing air flow through the CO2 adsorption device in a carbon capture mode, wherein the CO2 adsorption device is coupled to and in energy communication with the energy exchange path for releasing adsorbed CO2 in a carbon release mode.
F01D 15/10 - Adaptations pour la commande des générateurs électriques ou combinaisons avec ceux-ci
F01N 3/08 - Silencieux ou dispositifs d'échappement comportant des moyens pour purifier, rendre inoffensifs ou traiter les gaz d'échappement pour rendre les gaz d'échappement inoffensifs
F01N 5/02 - Silencieux ou dispositifs d'échappement combinés ou associés à des dispositifs bénéficiant de l'énergie des gaz évacués les dispositifs utilisant la chaleur
30.
DUAL PURPOSE ENERGY PLANT HAVING A FUEL CELL SYSTEM
A system for generating electricity with reduced or negative carbon emissions includes a power plant section having an electricity generating unit that includes a solid oxide fuel cell (SOFC) system. The SOFC system includes a SOFC fuel cell reactor and a combustor with an energy exchange path. The combustor is coupled to the fuel cell reactor to combust unutilized fuel. The system also includes a direct air capture (DAC) section having a carbon dioxide (CO2) adsorption device having a CO2 adsorbent material and a ventilator electrically coupled to the electric generator for flowing ambient air through the CO2 adsorption device in a carbon capture mode. The CO2 adsorption device is coupled to and in energy communication with the energy exchange path for releasing adsorbed CO2 in a carbon release mode.
H01M 8/0668 - Élimination du monoxyde de carbone ou du dioxyde de carbone
B01D 53/04 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants fixes
B01D 53/06 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par adsorption, p. ex. chromatographie préparatoire en phase gazeuse avec adsorbants mobiles
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/0612 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux à partir de matériaux contenant du carbone
H01M 8/12 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé
H01M 8/1246 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé caractérisés par le procédé de fabrication ou par le matériau de l’électrolyte l'électrolyte étant constitué d’oxydes
31.
GAS TURBINE SYSTEM WITH DIFFUSION-FLAME COMBUSTION AND FUEL BLENDING FOR REDUCING UNDESIRED EMISSIONS
A gas turbine system with a compressor section configured to compress an oxidant flow and provide a compressed oxidant flow at a combustor section. The combustor section receives the oxidant and a fuel gas-mixture separately, the mixture containing at least a fuel gas and an inert gas, to perform diffusion-flame combustion of the fuel and the oxidant in a combustion chamber and to provide a flue-gas flow to a turbine section configured to expand the flue-gas flow and to discharge the expanded flue-gas flow at a turbine outlet. The gas turbine system has also a blending unit configured to mix at least the fuel gas and the inert gas and provide the fuel gas-mixture at the combustor section with a blending ratio depending on a content of the flue gas, for example depending on a content of NOx and/or CO and/or CO2 of the flue gas measured or predicted.
F02C 9/40 - Commande de l'alimentation en combustible spécialement adaptée à l'utilisation d'un combustible particulier ou de plusieurs combustibles
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F02C 3/30 - Addition d'eau, de vapeur ou d'autres fluides aux composants combustibles ou au fluide de travail avant l'échappement de la turbine
A turbomachine for compressing fluids, particularly air. The turbomachine comprises an impeller for pressurizing fluid, and an intake conduit, all housed within a containment body. The intake conduit is equipped with an inlet for air entry and a flow-path duct directing the incoming air towards the impeller. The intake conduit incorporates a stator element defining the flow-path and adjustable inlet guide vanes.
A compression system (200) provided with a compressor (250) having an inlet duct (210) and an outlet duct (220), a compressor driver (270), an anti-surge recirculation loop (240), a suction flow control device (281) at the inlet duct (210) and a pressure drop element (282), such a throttling valve, upstream of the compressor (250) and in parallel with the suction flow control device (281). The compressor (250) may be started up using the pressure drop element (282) only during start-up and excluding it during normal operation of the compressor (250).
22 into the treatment unit; contacting the aqueous stream with the carbon dioxide stream to form a mixture; removing heat from the treatment unit to control a temperature of the mixture; forming a slurry from the mixture, the slurry including water and at least one of a solid potassium salt, or a solid ammonium salt; withdrawing the slurry from the treatment unit as a treated aqueous stream; and introducing the treated aqueous stream into a separator to generate a brine stream, and a recovered potassium and/or ammonia salt stream containing at least one of the solid potassium salt or the solid ammonium salt.
C01D 7/26 - Purification par précipitation ou adsorption
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
A process of recovering solid potassium/ammonia salts includes: introducing an aqueous stream containing at least one of ammonium cations or potassium cations, and at least one of carbonate anions or bicarbonate anions into a treatment unit; introducing a carbon dioxide stream containing CO2 into the treatment unit; contacting the aqueous stream with the carbon dioxide stream to form a mixture; removing heat from the treatment unit to control a temperature of the mixture; forming a slurry from the mixture, the slurry including water and at least one of a solid potassium salt, or a solid ammonium salt; withdrawing the slurry from the treatment unit as a treated aqueous stream; and introducing the treated aqueous stream into a separator to generate a brine stream, and a recovered potassium and/or ammonia salt stream containing at least one of the solid potassium salt or the solid ammonium salt.
A system for detecting gases like hydrogen and the like. The system comprises a gas sensor having at least one chemochromic pigment capable of changing its color when it comes into contact with the gas to be detected. The system also includes a camera for detecting the color chemochromic pigment. The gas sensor is functionally coupled to a control logic unit equipped with an Artificial Intelligence-based algorithm resident in a processor trained for recognizing the color change of the chemochromic pigments of the sensor. Also disclosed are methods for computer-implemented method of detecting a gas leakage.
G01M 3/22 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour tuyaux, câbles ou tubesExamen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour raccords ou étanchéité de tuyauxExamen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des révélateurs particuliers, p. ex. teinture, produits fluorescents, produits radioactifs pour soupapes
G01M 3/38 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation de la lumière
G01N 21/78 - Systèmes dans lesquels le matériau est soumis à une réaction chimique, le progrès ou le résultat de la réaction étant analysé en observant l'effet sur un réactif chimique produisant un changement de couleur
37.
ENERGY STORAGE SYSTEM WITH STAND-BY OPERATION MODE AND METHOD FOR OPERATING THE SYSTEM
An energy storage system (100) comprising a compressor (10), a fluid storage (40), an expander (20) and a generator (15) which is mechanically coupled to the expander (20) and is electrically coupled to an electric grid in order to supply power electricity to the electric grid. The compressor (1) is fluidly coupled to the fluid storage (40) and is configured to compress a first fluid flow and supply it to the fluid storage (40) during a charge mode of the energy storage system; the fluid storage (40) is configured to store the first fluid at least for a predetermined time. During a discharge mode of the energy storage system, the expander (20) is fluidly coupled to the fluid storage (40) so that the fluid storage (40) can supply a second fluid flow at a first temperature at an expander inlet (21) and the expander (20) can expand the second fluid flow according to a first pressure ratio so to discharge the second fluid flow at a second temperature at an expander outlet (29) and to drive the generator (15), so that it is synchronized with power electricity of the electric grid. The energy storage system further comprises a stand-by unit (50) which is fluidly coupled to the expander (20) and is configured to supply a third fluid flow at a third temperature at the expander inlet (21) during a stand-by mode of the energy storage system. During a stand-by mode of the energy storage system, the expander (20) is further configured to expand the third fluid flow according to a second pressure ratio so to discharge the third fluid flow at a fourth temperature (T4) at the expander outlet (29) and to drive the generator (15), so that it is synchronized with power electricity of the electric grid. The first temperature and the second temperature of the second fluid flow are substantially equal to the third temperature and the fourth temperature of the third fluid flow.
F02C 6/16 - Ensembles fonctionnels de turbines à gaz comportant des moyens pour emmagasiner l'énergie, p. ex. pour faire face à des pointes de charge pour emmagasiner de l'air comprimé
38.
STEEL INDUSTRY DECARBONIZATION SYSTEM AND RELATIVE METHOD
A system to treat coke oven gas (COG), in particular coke oven gas produced by a steel plant, configured to receive a coke oven gas stream. The innovative system comprises a compression unit (100) configured to receive the coke oven gas stream, to compress it and to discharge a compressed coke oven gas stream; a separation unit (200) configured to receive the compressed coke oven gas stream, perform a hydrogen (=H2) separation and discharge an hydrogen stream and a gas stream comprising methane (=CH4) and other unreacted components of the coke oven gas stream; a pyrolysis unit (300) configured to receive the gas stream comprising methane and other unreacted components of the coke oven gas and perform pyrolysis of the stream comprising methane and other unreacted components of the coke oven gas stream so to discharge solid carbon (=C) and a gas stream comprising hydrogen and other unreacted components of the coke oven gas stream.
C01B 3/24 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures
C01B 3/56 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification par contact avec des solidesRégénération des solides usés
A fuel nozzle comprising a stem and a first fuel feed channel extending inside the stem from an inlet end positioned at a proximal end of the stem to a first fuel inlet plenum. The fuel nozzle further comprises a first set of fuel injectors fluidly coupled to the first fuel inlet plenum. The fuel nozzle further includes a second fuel feed channel extending inside the stem from an inlet end, positioned at the proximal end of the stem, to a second fuel inlet plenum. A second set of fuel injectors are fluidly coupled to the second fuel inlet plenum. Each fuel injector comprises a centerbody and an outer sleeve surrounding the centerbody and extending along the axis of the centerbody. An annular premix chamber is provided between each outer sleeve and the respective centerbody.
The for calibrating a metering device comprises a closed calibration loop adapted to circulate a primary fluid therein. The closed calibration loop comprises an inlet connection and an outlet connection, adapted to fluidly couple a metering device to be calibrated to the closed calibration loop. The calibration loop further includes a reference metering unit comprising an inlet and an outlet. A flow circulation device circulates a fluid in the closed calibration loop. A heater between the outlet of the reference metering unit and the inlet connection for the metering device to be calibrated; and a cooler between the outlet connection for the metering device to be calibrated and the inlet of the reference metering unit provide heat transfer in the facility.
G01F 25/10 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres
G01F 25/17 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres en utilisant des réservoirs étalonnés
41.
CALIBRATION FACILITY AND METHOD FOR METERING DEVICES, WITH HEAT RECOVERY
Described herein is a facility for calibrating a metering device. The facility comprises a closed calibration loop adapted to circulate a fluid therein. The closed calibration loop comprises an inlet connection and an outlet connection to fluidly couple a metering device to be calibrated to the closed calibration loop, as well as a reference metering unit comprising an inlet and an outlet. A heater and a cooler are arranged in the calibration circuit to heat and cool the process fluid. A heat recovery arrangement, adapted to transfer heat from the cooler to the heater.
G01F 25/10 - Test ou étalonnage des appareils pour la mesure du volume, du débit volumétrique ou du niveau des liquides, ou des appareils pour compter par volume des débitmètres
42.
TURBOMACHINE AND TURBOMACHINE ROTOR WITH FREE STANDING SHROUDED BLADES
Disclosed herein is a turbomachine rotor comprising at least one annular array of shrouded blades (55) around a rotor axis. Each blade comprises an airfoil (55.1) having a leading edge, a trailing edge, a root, a tip, a concave pressure side and an opposite convex suction side, the pressure side and the suction side extending between the leading edge and the trailing edge. Each blade further comprises an inner platform (55.3), at the root of the airfoil, and an outer platform (55.4) at the tip of the airfoil. Each side edge (75) of the outer platform (55.4) of each blade is spaced apart from an opposite side edge (77) of an adjacent blade, such that in use a gap (G) separates the opposite side edges (75, 77) of adjacent blades and the opposite side edges are in a facing, non-contacting relationship to one another in any operating condition of the turbomachine.
The nozzle segment for a gas turbine comprises an inner platform and an outer platform as well as a plurality of airfoils arranged between the inner platform and the outer platform. A set of platform film cooling holes are provided, including at least one inner platform film cooling hole on a surface of the inner platform or on a surface of the outer platform facing said hot gas flow passage. A ratio between a distance in tangential direction of the platform film cooling hole from the pressure side of the respective airfoil and a width of the hot gas flow passage in tangential direction at the platform film cooling hole is comprised between 0 and 0.5.
A centrifugal compressor is described comprising an anti-surge return line is disclosed, wherein a radial expan-sion impeller is arranged downstream the compressor discharge and one or more flow regulators are arranged between the compressor discharge and the radial expansion impeller, and wherein the radial expansion impeller discharge is connected with the anti-surge return line. A method for controlling surge in a compressor is also described, the method comprising a step of directing at least a portion or volume of the continuous flow of fluid from the compressor to a radial expansion impeller and to a return line.
Pulsed absorption contactor systems and methods are provided. The systems include a vessel having inlet and outlet ends and a pulse generator system, a gas inlet configured to direct an input gas stream into the vessel, a gas outlet configured to receive an output gas stream and direct the output gas stream out of the vessel, a liquid inlet configured to direct an input liquid stream into the vessel, and a liquid outlet configured to receive an output liquid stream and direct the output liquid stream out of the vessel. The pulse generator system is configured to induce a fluctuation in the input gas stream, the input liquid stream, and/or a combination of the input gas stream and the input liquid stream.
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
The gas turbine system comprises a gas turbine engine, a first fuel line adapted to feed fuel to the gas turbine engine, a heat recovery steam generator adapted to receive flue gas exhausted from the gas turbine engine, and a second fuel line adapted to feed fuel to a post-burner of the heat recovery steam generator. A carbon dioxide capture unit is fluidly coupled to a stack of the heat recovery steam generator. A recycling line recycles flue gas from the stack of the heat recovery steam generator to the post-burner in the heat recovery steam generator. A carbon dioxide return line recycles a gaseous stream containing carbon dioxide from the carbon dioxide capture unit towards the gas turbine engine or the post-burner. Disclosed herein is also a power generation method with improved carbon dioxide capture.
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F01K 23/10 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle le fluide à la sortie de l'un des cycles chauffant le fluide dans un autre cycle
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
47.
HIGH EFFICIENCY POWER SOLUTION BY INTEGRATION OF PRESSURIZED SOLID OXIDE FUEL CELL WITH EXPANDERS
A solid oxide fuel cell system comprising an oxidant gas feed line and an oxidant gas compression system upstream said solid oxide fuel cell, a fuel feed line upstream said solid oxide fuel cell, a combustion chamber configured to combust unreacted fuel and oxidant gas downstream said solid oxide fuel cell, an exhaust gas line downstream said combustion chamber, a heat exchanger configured to allow heat exchange between said exhaust gas on the hot side of said heat exchanger and said oxidant gas and fuel on the cold side of said heat exchanger and an expansion system configured to expand said exhaust gas downstream said heat exchanger, wherein said oxidant gas compression system comprises a low pressure compressor, driven by an electric motor and a high-pressure compressor, driven by said expansion system by means of a common shaft.
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
H01M 8/04014 - Échange de chaleur par des fluides gazeuxÉchange de chaleur par combustion des réactifs
H01M 8/12 - Éléments à combustible avec électrolytes solides fonctionnant à haute température, p. ex. avec un électrolyte en ZrO2 stabilisé
Pulsed absorption contactor systems and methods are provided. The systems include a vessel having inlet and outlet ends and a pulse generator system, a gas inlet configured to direct an input gas stream into the vessel, a gas outlet configured to receive an output gas stream and direct the output gas stream out of the vessel, a liquid inlet configured to direct an input liquid stream into the vessel, and a liquid outlet configured to receive an output liquid stream and direct the output liquid stream out of the vessel. The pulse generator system is configured to induce a fluctuation in the input gas stream, the input liquid stream, and/or a combination of the input gas stream and the input liquid stream.
B01D 53/18 - Unités d'absorptionDistributeurs de liquides
B01D 53/14 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols par absorption
49.
COMPUTER-BASED DEVICE IMPLEMENTING A PHYSICAL MODEL AND A DATA-DRIVEN MODEL OF A MACHINE
The innovative computer-based device (100) serves for generating a device output signal (101) based on a plurality of device input signals (102); the device output signal (101) corresponds to a physical parameter of an industrial machine (10); the device input signals (102) correspond to physical quantities of the industrial machine (10). The device (100) comprises: a first section (110) being a physics-based section, a second section (120) being a data-based section, and a signal combiner (130). The first section (110) is configured to receive at least a first portion of the plurality of device input signals (102), and to generate a first section output (111) signal by applying a mathematical processing to values of the first portion of the plurality of input signals (102), wherein the mathematical processing relates to a physical model of the industrial machine or part of the industrial machine. The second section (120) is configured to receive at least a second portion of the plurality of device input signals (102), and to generate a second section output signal (121) by applying a neural processing to values of the second portion of the plurality of device input signals (102), wherein the neural processing relates to a data-driven model of the industrial machine or part of the industrial machine. The signal combiner (130) is configured to generate a combination of the first section output signal (111) and the second section output signal (121); the device output signal (101) corresponds to this combination. The device (100) is configured to adjust parameters of the mathematical processing and parameters of the neural processing during a training period of the device preceding an operating period of the device.
In the LNG plant, heat is provided to natural a gas processing system, including a pre-treatment unit and/or a liquefaction unit and/or an evaporation unit, by exploiting heat recovered through a steam generator of the plant that is thermally coupled to an exhaust outlet of a gas turbine of the plant. A heat transfer fluid circuit system with a circulating heat transfer fluid includes a first portion and a second portion; the first portion is located in a section of the steam generator to extract heat from to exhaust gases; the section is located between a stack and an evaporation section; the second portion is thermally coupled to the gas processing system so to provide heat thereto for example through an heat exchanger.
F01K 23/10 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle le fluide à la sortie de l'un des cycles chauffant le fluide dans un autre cycle
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
51.
A TURBOMACHINE COMPRISING A SEAL BETWEEN AN OUTER CASING COMPONENT AND AN INNER CASING COMPONENT, AND METHOD
Disclosed herein is a turbomachine comprising an outer casing component and an inner casing component housed in the outer casing component and coupled to the outer casing component. A passage is provided between the inner casing component and the outer casing component and a sealing arrangement is positioned in the passage. The sealing arrangement comprises an annular seal element and a backpressure ring arranged on the low-pressure side of the annular seal element. In use the backpressure ring is in press-fit engagement with the inner surface of the outer casing component and the annular seal element is in pressure contact against the backpressure ring. Also disclosed herein is a method for mounting a sealing arrangement in a turbomachine.
Described herein is a turbomachine system comprising a turbomachine and an enclosure surrounding the turbomachine and containing at least one duct adapted to contain a flammable gas. An ultrasonic gas leak detector arrangement housed in the enclosure is adapted to detect flammable gas leakages in the enclosure. Disclosed herein is also a method for detecting gas leakages in an enclosure housing a turbomachine.
G01M 3/24 - Examen de l'étanchéité des structures ou ouvrages vis-à-vis d'un fluide par utilisation d'un fluide ou en faisant le vide par détection de la présence du fluide à l'emplacement de la fuite en utilisant des vibrations infrasonores, sonores ou ultrasonores
53.
A GAS TURBINE AUXILIARY SYSTEM FOR NH3 CONDITIONING
3332233 conditioning comprising an ammonia cracking reactor (300), the ammonia cracking reactor (300) being configured to de-compose ammonia into a gas mixture of hydrogen, nitrogen and residual ammonia, a separator coupled to said gas turbine (100) and being configured to separate a gas mixture of hydrogen, nitrogen and residual ammonia, into separate streams of hydrogen, nitrogen, ammonia, said separator comprising at least one of: a first separator outlet line (71, 74) connected to said fuel cell (500) for conveying said stream of ammonia to said fuel cell (500), and a second separator outlet line (72, 72b) connected to said fuel cell (500) for conveying said stream of hydrogen to said fuel cell (500).
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
H01M 8/22 - Éléments à combustible dans lesquels le combustible est à base de matériaux comprenant du carbone, de l'oxygène ou de l'hydrogène et d'autres élémentsÉléments à combustible dans lesquels le combustible est à base de matériaux comprenant uniquement des éléments autres que le carbone, l'oxygène ou l'hydrogène
54.
A MEMBRANE REACTOR FOR THE CRACKING OF HYDROCARBONS
A membrane reactor for the cracking of hydrocarbons is disclosed. The reactor comprises a hydrocarbon feed inlet (11), a reaction zone (12) wherein hydrocarbons are cracked into reaction products composed of smaller molecules, energy supply means (13) configured to supply energy to said reaction zone (12), a membrane (14) configured to be selectively permeated by a permeate composed of at least part of the reaction products moving from the reaction zone (12) to a permeation zone (15) and separating from a retentate composed of a remaining part of the reaction products and unreacted hydrocarbons that remain in the reaction zone (12), an outlet (16) of the permeation zone (15) and an outlet (17) of the reaction zone (12). The membrane reactor comprises vibration generating means (18), configured to vibrate the membrane (14), said vibration generating means (18) being configured to generate ultrasonic vibrations.
B01J 8/00 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés
B01J 8/08 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules mobiles
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
B01J 8/40 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées selon la technique du "lit fluidisé" le lit fluidisé étant soumis à des vibrations ou à des pulsations
B01J 19/10 - Procédés utilisant l'application directe de l'énergie ondulatoire ou électrique, ou un rayonnement particulaireAppareils à cet usage utilisant des vibrations de fréquences audibles ou des ultrasons
B01J 19/24 - Réacteurs fixes sans élément interne mobile
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
55.
A GAS TURBINE AUXILIARY SYSTEM FOR NH3 CONDITIONING
3223222 mixture that allows operating the gas turbine in every condition. In one aspect, the cracking reactor is operated to produce an excess of cracked products, said products being used to feed auxiliary services.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
H01M 8/04111 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration des réactifs gazeux utilisant un assemblage turbine compresseur
56.
AN OPTIMIZED SYSTEM TO REALIZE ORTHO TO PARA HYDROGEN CONVERSION WITH MOF CATALYST
A system to realize conversion of hydrogen from ortho to para isomer is disclosed. The system comprises at least one reactor (10), the reactor (10) comprising at least one reaction chamber (11) filled with a catalytic bed comprising metal organic frameworks (MOFs), characterized in that the at least one reaction chamber (11) is encased by a shell (12) apt to be traversed by a flow of a cooling fluid.
A system for generating power using a gas turbine is disclosed. The system comprises an ammonia-cracking device, to convert at least part of a NH3 stream into H2 and N2, to realize a gas NH3/H2/N2 mixture that allows operating the gas turbine in every condition. In one aspect, the NH3 stream is splitted into a first NH3 stream that is cracked into H2 and N2 through a cracking to obtain a H2 and N2 stream and a second NH3 stream that is directed to the gas turbine through a bypass line, the power generating system also comprising a cracking reactor gas mixture split stream line (310), connecting the ammonia cracking reactor (300) to other services (400).
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
F02C 7/224 - Chauffage du combustible avant son arrivée au brûleur
A magnetic bearing for supporting the movement of a piston sliding into a cylinder comprised in a compressor is disclosed. The piston comprises a first rod that connects the piston to a cross-head of the compressor and an extension rod, which is connected to the first rod. The magnetic bearing comprises a first group of magnets arranged on a first side of the extension rod of the piston, a second group of magnets arranged on a second side of the extension rod of the piston, wherein the magnetic forces exerted by the first group of magnets and the second group of magnets respectively allow the piston to be supported during its movement. The present disclosure also concerns a method of assembling a magnetic bearing.
F01B 9/02 - "Machines" ou machines motrices à piston alternatif caractérisées par des liaisons entre pistons et arbres principaux, non spécifiques aux groupes avec vilebrequin
F04B 9/02 - "Machines" ou pompes à piston caractérisées par les moyens entraînants ou entraînés liés à leurs organes de travail les moyens étant mécaniques
F16C 32/04 - Paliers non prévus ailleurs faisant usage de moyens de support magnétiques ou électriques
59.
HEAT DAMPER FOR A WASTE HEAT RECOVERY UNIT AND WASTE HEAT RECOVERY UNIT COMPRISING A HEAT DAMPER
The disclosure concerns a waste heat recovery unit (10) comprising a main heat exchanger (13) configured to exchange heat between an exhaust fluid from a heat source and a working fluid of a waste heat recovery system, wherein the waste heat recovery unit (10) comprises an additional heat exchanger (12) configured to exchange heat between the exhaust fluid and alternatively a cooling fluid or a portion or the whole of said working fluid during transitory states.
F22B 1/18 - Méthodes de production de vapeur caractérisées par le genre de chauffage par exploitation de l'énergie thermique contenue dans une source chaude la source chaude étant un gaz chaud, p. ex. des gaz d'évacuation tels que les gaz d'échappement de moteurs à combustion interne
F22B 35/00 - Systèmes de commande pour chaudières à vapeur
F22B 37/06 - Carneaux ou tubes de fuméesAccessoires à cet effet, p. ex. garnitures de fixation des tubes de fumées
60.
HEAT DAMPER FOR A WASTE HEAT RECOVERY UNIT AND WASTE HEAT RECOVERY UNIT COMPRISING A HEAT DAMPER
The disclosure concerns a waste heat recovery unit comprising a main heat exchanger configured to exchange heat between an exhaust fluid from a heat source and a working fluid of a waste heat recovery system, wherein the waste heat recovery unit comprises an additional heat exchanger configured to exchange heat between the exhaust fluid and alternatively a cooling fluid or a portion or the whole of said working fluid during transitory states.
F22B 35/00 - Systèmes de commande pour chaudières à vapeur
F22B 1/18 - Méthodes de production de vapeur caractérisées par le genre de chauffage par exploitation de l'énergie thermique contenue dans une source chaude la source chaude étant un gaz chaud, p. ex. des gaz d'évacuation tels que les gaz d'échappement de moteurs à combustion interne
61.
A POWER PRODUCING APPARATUS COMPRISING A SYSTEM FOR REDUCING NITROGEN OXIDES IN THE FLUE GAS AND A METHOD FOR REDUCING NITROGEN OXIDES IN THE FLUE GAS OF A POWER PRODUCING APPARATUS
A power producing apparatus comprising a system for reducing nitrogen oxides in the flue gas stream of the power producing apparatus using a fuel comprising one or more of ammonia, hydrogen and natural gas together with air or an oxidizing gas and a re- lated method are disclosed, the flue gas comprising nitrogen oxides, oxygen and even- tually water. In particular, the method comprises the steps of cooling and condensing at least a part of the flue gas stream into a condensate comprising at least part of the nitrogen oxides of the flue gas stream, separating the condensate from the remaining flue gas stream, and collecting the condensate. The system comprises a duct along which one or more heat exchanging areas are arranged, to cool the gas stream and condensate at least a part of the gas stream into a condensate stream comprising at least part of the nitrogen oxides of the gas stream, and wherein the system also comprises condensate collectors configured to collect a respective condensate stream and direct it to a respective condensate withdrawal line.
B01D 53/00 - Séparation de gaz ou de vapeursRécupération de vapeurs de solvants volatils dans les gazÉpuration chimique ou biologique des gaz résiduaires, p. ex. gaz d'échappement des moteurs à combustion, fumées, vapeurs, gaz de combustion ou aérosols
62.
SYSTEM AND METHOD FOR PERFORMING LOCALIZED ELECTROLESS NICKEL PLATING
A system for performing electroless nickel plating on a portion of a metallic piece comprises a chamber fixedly coupled to the metallic piece during operation of the system so that the portion of the metallic piece and the chamber define a closed volume. The chamber has an inlet to supply at least a plating fluid into the volume and an outlet to discharge the plating fluid from the volume, so that the portion of the metallic piece is exposed to the plating fluid and is plated.
C23C 18/16 - Revêtement chimique par décomposition soit de composés liquides, soit de solutions des composés constituant le revêtement, ne laissant pas de produits de réaction du matériau de la surface dans le revêtementDépôt par contact par réduction ou par substitution, p. ex. dépôt sans courant électrique
A vehicle charging system comprising a gas turbine engine mechanically coupled to an electric generator to produce electrical energy, the electrical energy is split into a first electrical energy and a second electrical energy by a power splitter, the first electrical energy is used for charging electric vehicles and the second electrical energy is used for charging hydrogen vehicles for example through an electrolyzer.
B60L 53/302 - Refroidissement des équipements de charge
B60S 5/02 - Alimentation des véhicules en combustibleDisposition générale des installations dans les stations d'approvisionnement
C25B 9/65 - Dispositifs pour l'alimentation en courantConnexions d'électrodesConnexions électriques intercellulaires
C25B 15/08 - Alimentation ou vidange des réactifs ou des électrolytesRégénération des électrolytes
H01M 8/04082 - Dispositions pour la commande des paramètres des réactifs, p. ex. de la pression ou de la concentration
H01M 8/0656 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux par des moyens électrochimiques
A method (100) for monitoring and controlling a hybrid power train system (3, 4), wherein the method comprises: obtaining (101) at least one of a torque value of the hybrid power train system (3, 4) and a rotational speed value of the shaft (36); obtaining (103) state data comprising one or more status information of said hybrid power train system (3, 4); determining (105), based on the state data, an event affecting the operation of the hybrid power train system (3, 4); generating (107) one or more control signals to control at least one of the gas turbine (31) and the electrical machine (32) of said hybrid power train system (3, 4) based on the event and the at least one of the torque value and the rotational speed value; and transmitting (109) said one or more control signals.
A system comprising a hydrogen source and a nitrogen source. A hydrogen compression unit compresses hydrogen from the hydrogen source. An ammonia synthesis unit fluidly coupled to the hydrogen compression unit and to the nitrogen source compresses a hydrogen and nitrogen blend which is delivered to the ammonia synthesis unit. In use, a seal gas feed line delivers compressed hydrogen to dry gas seals of the hydrogen compressor and a separation gas feed line delivers nitrogen to the at least one dry gas seal. The ammonia synthesis unit is fluidly coupled to vents of the dry gas seals, to receive and process compressed hydrogen from the hydrogen compression unit, nitrogen from the nitrogen source and gas venting from the dry gas seals.
A power plant for controlling the renewable energy absorbed by a hybrid power train for driving a load, and in particular compressors for a liquefied natural gas (LNG), is disclosed. The power plant analyzes the health status of its parts, and in particular of the hybrid gas turbine system, that drives the load.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
H02J 3/46 - Dispositions pour l’alimentation en parallèle d’un seul réseau, par plusieurs générateurs, convertisseurs ou transformateurs contrôlant la répartition de puissance entre les générateurs, convertisseurs ou transformateurs
A hybrid train system is disclosed. The hybrid train system comprises at least one gas turbine, a compressor, and an electric motor. Between the compressor and the electric motor it is installed an active functional rotating equipment, which improves the power transmission, and also supports the power transmission shaft. The active functional rotating equipment can be removed, providing room for ease the maintenance of the compressor. A method for repairing a hybrid train system is also disclosed.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
68.
GRAVITY-ASSISTED MULTIPHASE GEOTHERMAL RE-INJECTION SYSTEM AND METHOD
The system comprises a liquid-gas separator (31) having an inlet (31.1), a gas outlet (31.3) and a liquid outlet (31.2). The system further includes a first vessel (33), a second vessel (35), a pumping unit (37) having a suction side (37.1) and a delivery side (37.2); and a fluid connection (41.4) to the geothermal re-injection well (7). The suction side (37.1) of the pumping unit (37) is adapted to be fluidly coupled selectively with a lower side of the liquid-gas separator (31), a lower side of the first vessel (33) and a lower side of the second vessel (35). The delivery side (37.2) of the pumping unit (37) is adapted to be fluidly coupled selectively with the first vessel (33) and the second vessel (35). The gas outlet (31.3) of the liquid-gas separator (31) is adapted to be fluidly coupled selectively with an upper side of the first vessel (33) and an upper side of the second vessel (35). The fluid connection (41.4) to the geothermal re-injection well (7) is adapted to be fluidly coupled selectively with the upper side of the first vessel (33) and the upper side of the second vessel (35).
F24T 10/20 - Collecteurs géothermiques utilisant l’eau souterraine comme fluide vecteurCollecteurs géothermiques utilisant un fluide vecteur injecté directement dans le sol, p. ex. utilisant des puits d’injection et des puits de récupération
The power generation system comprises: a compressor; a combustor section; a turbine section; an exhaust gas recirculation path adapted to establish a fluid connection between the turbine discharge and the suction side of the compressor section. The power generation system further includes an exhaust discharge stack and a carbon dioxide discharge. The power generation system further includes a flow adjusting arrangement, adapted to modulate: an air flow to the compressor section; an oxidant flow from an air separation unit towards the combustor section; and an exhaust gas flow recirculating through the exhaust gas recirculation path to the suction side of the compressor section.
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
The system for storing and using thermal energy has a first closed-loop cycle arrangement which comprises two main storage tanks: a first tank to store heat-storage fluid at low temperature and a second tank to store 5 heat-storage fluid at high temperature. The system comprises also a second thermodynamic cycle arrangement and a third thermodynamic cycle arrangement which can work respectively as a heat pump, to heat in a first heat exchanger the heat-storage fluid at low temperature by consuming electrical energy and store it in the second tank, and as a heat engine, to produce 0 electrical energy by cooling in a second heat exchanger the heat-storage fluid at high temperature and store it in the first tank.
F28D 20/00 - Appareils ou ensembles fonctionnels d'accumulation de chaleur en généralAppareils échangeurs de chaleur de régénération non couverts par les groupes ou
71.
INTEGRALLY GEARED TURBOMACHINERY SYSTEM WITH AT LEAST TWO COAXIAL IMPELLERS HAVING DIFFERENT ROTATING SPEEDS
Integrally geared turbomachinery system (200) comprising a wheel gear (90) configured to rotate around a rotating axis (R), a couple of pinion shafts (10, 20) and an epicyclic gear (50) configured to mechanically couple a first pinion shaft (10) and a second pinion shaft (20). The epicyclic gear (50) comprises a sun gear (51), a plurality of planet gears (52) and a ring gear (53). The first pinion shaft (10) is configured to be mechanically coupled to the wheel gear (90) and to rotate around a first axis (X) at a first rotational speed and the second pinion shaft (20) is configured to rotate around a second axis (Y) at a second rotational speed different from the first rotational speed due to the epicyclic gear (50). The first axis (X) and the second axis (Y) are coincident and parallel to the rotating axis (R).
The compression arrangement comprises a hydrogen compressor and a return circuit having an inlet, which is fluidly coupled with the discharge side of the centrifugal compressor, and an outlet, which is fluidly coupled with the suction side of the centrifugal compressor. A head-loss control valve is positioned in the return circuit. The head-loss control valve is adapted to generate a controlled head loss in the return circuit when the compressor operates at a flowrate below the surge control line.
Integrally geared turbomachinery system (200, 300) comprising a wheel gear (90) configured to rotate around a rotating axis (R) and at least a couple of pinion shafts (10, 20) which are mechanically coupled to the wheel gear (90) and which have respectively a first axis (X) and a second axis (Y) coincident with each other and parallel to the rotating axis (R). The wheel gear (90) comprises a first portion (91) having a first diameter and a second portion (92) having a second diameter which is smaller than the first diameter. A first pinion shaft (10) is mechanically coupled to the first portion (91) of the wheel gear (90) and is configured to rotate around the first axis (X) at a first rotational speed. A second pinion shaft (20) is mechanically coupled to the second portion (92) of the wheel gear (90) and is configured to rotate around the second axis (Y) at a second rotational speed which is different from the first rotational speed.
The valve system, to be used as a suction valve and/or as a discharge valve in a reciprocating compressor, comprises a valve body, at least one sensor mounted on the valve body and configured to detect a parameter associated to operation of the valve device, and a wireless communication unit electrically coupled to the at least one sensor and configured to transmit information detected by the at least one sensor; the at least one sensor is associated with a fixing member that is inserted in holes of the valve body and that seals the holes. The innovative valve system may comprise further at least one energy harvesting system, which could be for example thermoelectric or piezoelectric, located preferably in or on or at the valve body.
The disclosure concerns a process of carbon oxides-free hydrogen production is disclosed. The process comprises the following steps: - heating a gas stream of a reacting compound including hydrogen atoms in absence of oxidizing agents, to thermally decompose the reacting compound into smaller product compounds, including hydrogen molecules, obtaining a stream of decomposition product compounds; - separating hydrogen molecules from other product compounds of the stream of decomposition product compounds; - reacting a portion of the stream of separated hydrogen molecules with a stream of an oxidizing agent, in particular oxygen or air, to obtain combustion product compounds, including steam and heat, in a stream of combustion product compounds; - providing heat obtained in the previous step to the step of heating the reacting compound; and wherein the process can comprise a step of - recovering energy from the stream of decomposition product compounds and/or from the stream of combustion product compounds. Additionally, a system of hydrogen production is also disclosed, the system being configured to operate according to the above process.
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
C01B 3/26 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures avec des catalyseurs
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
76.
A HEAT EXCHANGER MODULE, AND A HEAT EXCHANGER COMPRISING SAID MODULE
The heat exchanger module comprises a first fluid domain defining a first fluid flow path extending in a general first fluid flowing path from a first fluid inlet to a first fluid outlet, and a second fluid domain defining a second fluid flow path extending in a general second fluid flowing path from a second fluid inlet to a second fluid outlet. A solid domain forms a separation between the first fluid domain and the second fluid domain. The first fluid domain extends from the first fluid inlet to the first fluid outlet and comprises a plurality of primary ducts adjacent the first fluid inlet and the first fluid outlet and a plurality of secondary ducts.
B33Y 80/00 - Produits obtenus par fabrication additive
F28D 7/16 - Appareils échangeurs de chaleur comportant des ensembles de canalisations tubulaires fixes pour les deux sources de potentiel calorifique, ces sources étant en contact chacune avec un côté de la paroi d'une canalisation les canalisations étant espacées parallèlement
F28F 7/02 - Blocs traversés par des passages pour sources de potentiel calorifique
77.
ENERGY OPTIMIZATION PLANT AND OPERATING METHOD THEREOF
An energy optimization plant for load peak applications. The plant has a power generation unit, which energy generated is switched to supply a distributed computing system for mining cryptocurrencies or to be injected into a power grid, for distributing electric power. A power control unit switches the power generated by the power generation unit based on data acquired from a communication network, such as the Internet.
The turbomachine comprises a casing (51) and a rotor (43) housed for rotation in the casing. A high-pressure region (71) and a low-pressure region (73) are provided adjacent the rotor shaft and separated by a high-pressure package seal (75) around the rotor shaft. The high-pressure package seal separates the high-pressure region and the low-pressure region from one another; and the high-pressure region is positioned at the forward-facing side of the high-pressure package seal, and the low-pressure region is positioned at the aft-facing side of the high-pressure package seal. A first rotor cavity (77) is fluidly coupled with the high-pressure region and adapted to provide a coolant flow to an upstream section of the rotor. A second rotor cavity (83) is fluidly coupled with the low-pressure region and adapted to provide a coolant flow to a downstream section of the rotor. A sealing member (85) separates the first rotor cavity and the second rotor cavity from one another.
F01D 5/08 - Dispositifs de chauffage, de protection contre l'échauffement ou de refroidissement
F01D 5/02 - Organes de support des aubes, p. ex. rotors
F01D 5/06 - Rotors à plus d'un étage axial, p. ex. du type à tambour ou à disques multiplesLeurs parties constitutives, p. ex. arbres, connections des arbres
F01D 11/00 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F02C 6/10 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique fournissant un fluide de travail à un utilisateur, p. ex. un processus chimique, retournant le fluide de travail à une turbine de l'ensemble fonctionnel
F02C 6/18 - Utilisation de la chaleur perdue dans les ensembles fonctionnels de turbines à gaz à l'extérieur des ensembles eux-mêmes, p. ex. ensembles fonctionnels de chauffage à turbine à gaz
F25J 3/00 - Procédés ou appareils pour séparer les constituants des mélanges gazeux impliquant l'emploi d'une liquéfaction ou d'une solidification
79.
A STAND-ALONE POWER PRODUCTION PLANT COMPRISING A CONCENTRATED SOLAR POWER UNIT MERGED INTO A COMBINED CYCLE GAS TURBINE PLANT INTEGRATED WITH A PHOTOVOLTAIC POWER UNIT
A stand-alone power production plant with a high solar based renewable integration is disclosed. The power production plant comprises at least one electrical power unit connected to a combined cycle gas turbine plant and to a photovoltaic power unit and a concentrated solar power unit is merged into the combined cycle gas turbine plant. A thermal storage unit is also part of the power production plant, to collect heat from the CSP and optionally from the PV unit and to supply heat to the second thermodynamic cycle. Also disclosed are methods for operating the power production plant by minimizing and even zeroing both long-term and short-term fluctuations.
F01K 3/18 - Ensembles fonctionnels caractérisés par l'emploi d'accumulateurs de vapeur ou de chaleur ou bien de réchauffeurs intermédiaires de vapeur comportant des réchauffeurs
F01K 3/20 - Ensembles fonctionnels caractérisés par l'emploi d'accumulateurs de vapeur ou de chaleur ou bien de réchauffeurs intermédiaires de vapeur comportant des réchauffeurs avec chauffage par les gaz de combustion de la chaudière principale
F01K 23/10 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle le fluide à la sortie de l'un des cycles chauffant le fluide dans un autre cycle
80.
Method of controlling the renewable energy use in an LNG train
A method of controlling the renewable energy absorbed by a hybrid power train for driving a load, and in particular compressors for a liquefied natural gas (LNG) plant is disclosed. The method comprises an analysis of the health status of part and of the whole hybrid power plant that drive the load. A power plant is also disclosed, operated by the controlling method.
F02C 7/36 - Transmission de puissance entre les différents arbres de l'ensemble fonctionnel de turbine à gaz, ou entre ce dernier et l'utilisateur de puissance
F02C 6/06 - Ensembles fonctionnels de turbines à gaz délivrant un fluide de travail chauffé ou pressurisé à d'autres appareils, p. ex. sans sortie de puissance mécanique délivrant des gaz comprimés
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
81.
COMPUTER-IMPLEMENTED METHOD AND SYSTEM FOR GENERATING A DEFECTIVE IMAGE OF A MACHINE THROUGH A DEFECT MASK
According to the innovative method a defective image of a portion of a machine is generated through at least the steps of: receiving (240) an non-defective image of the portion of the machine, receiving (250) a segmentation image mask corresponding to a defect, receiving (260) defect coordinates corresponding to a position of the defect, generating (270) a masked image by blanking an area of the non-defective image, and using a conditional Generative Adversarial Network for generating (280) the defective image; notably, it is the masked image that is input to the conditional Generative Adversarial Network as image input and not the whole non-defective image; notably, both the segmentation image mask and the defect coordinates are input to the conditional Generative Adversarial Network as condition input and not simply a label.
The magnetic thrust bearing has a rotor assembly comprising a thrust disk. The thrust disk is arranged to rotate around an axis (X) and to receive a cooling fluid at an inner area around the axis (X) and discharge it in an outer area around the periphery of the thrust disk. The thrust disk comprises a plurality of blades located at the periphery of the thrust disk that are configured to pump the fluid as a result of rotation of the rotor assembly, in order to avoid the use of an external blower or additional impeller to flow the cooling fluid and preferably to allow the cooling fluid recirculation in a closed loop configuration.
Described herein is a packing box for mounting on a machinery shaft. In accordance with one aspect, the packing box housing defines a central opening for insertion of a movable machinery shaft with a hollow passageway surrounding the central opening to form a path for the flow of a fluid coolant. The passageway is provided with a fluid inlet port and a fluid outlet port opening onto the outer surface of the packing box housing, and it is formed by a single conduit or by a plurality of conduits obtained through additive manufacturing process and connected in series or in parallel to wound around the central opening.
A methane pyrolysis reactor and a methane pyrolysis method comprising the steps of: passing a natural gas stream; through a porous and permeable plate, to form natural gas bubbles; bubbling the natural gas stream through a molten metal column supported by the porous and permeable plate, to react methane to give hydrogen and carbon dioxide; separating a hydrogen gas stream; and a carbon slag; wherein the size of the pores of the porous and permeable plate is such that the capillary pressure required for the molten metal to enter the pores exceeds the bottom pressure of the molten metal column.
C01B 3/26 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures avec des catalyseurs
C01B 32/05 - Préparation ou purification du carbone non couvertes par les groupes , , ,
85.
LIQUEFIED NATURAL GAS PRODUCTION UNIT AND START-UP METHOD OF A LIQUEFIED NATURAL GAS PRODUCTION UNIT TO MINIMIZE STORAGE CONTAMINATION
A liquefied natural gas production unit and a method of managing the same, the unit comprising a cold box providing a plurality of heat exchangers configured to cool down natural gas, a separator configured to separate pre-cooled natural gas into a vapor stream and a heavy hydrocarbon liquid stream, a debutanizer connected to the bottom of the separator through a heavy hydrocarbon liquid stream line, the debutanizer being configured to evaporate light hydrocarbons from the heavy hydrocarbon liquid stream, a liquid stream line connected to the bottom of the debutanizer, a vapor stream line connecting the top of the separator with the cold box, and a light hydrocarbons vapor line connecting the top of the debutanizer with the cold box, a natural gas line collecting the natural gas from the vapor stream line and from light hydrocarbons vapor line downstream the cold box.
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
86.
HYDROGEN COMPRESSING ASSEMBLY, HYDROGEN PRODUCTION PLANT, AND COMPRESSING METHOD
A gas compressing assembly and a hydrogen production plant are disclosed. The gas compressing assembly has a pressure stage, for increasing the pressure of the hydrogen. The compressing assembly has at least one barrel compressor and at least one reciprocating compressor. Also disclosed are methods of compressing hydrogen.
F04B 53/00 - Parties constitutives, détails ou accessoires non prévus dans les groupes ou ou présentant un intérêt autre que celui visé par ces groupes
F04D 25/06 - Ensembles comprenant des pompes et leurs moyens d'entraînement la pompe étant entraînée par l'électricité
An inspection apparatus to automatically determine the state of a serviced machine component through a plurality of inspection phases; the apparatus includes: a computer unit, a 3D scanner, a plurality of inspection sensors for performing a plurality of inspection phases on the component; the computer unit interacts with the scanner and the sensors in order to generate an annotated 3D model of the component; the computer unit is configured to perform simulation on the machine component so to determine a status of one or more regions of the machine component; furthermore, the computer unit may be provided with a checking engine for applying one or more criteria to the results of the simulation and automatically determine whether the component is serviceable and/or repairable and generate a status report accordingly.
A drive unit for driving a load, like a centrifugal compressor, a pump, or the like, comprising a driving shaft connected to the load to be driven. The drive unit comprises a plurality of electric motors connected to the driving shaft and a plurality of variable frequency drives electrically connected to the power grid used to feed each electric motor.
H02P 5/52 - Dispositions spécialement adaptées à la régulation ou la commande de la vitesse ou du couple d’au moins deux moteurs électriques pour la régulation de vitesse de plusieurs moteurs dynamo-électriques en relation les uns avec les autres en assurant en plus la commande du déplacement angulaire relatif
89.
FLUID COOLING PLANT AND REFRIGERANT MODULE THEREOF
A fluid cooling plant to cool and liquefy a fluid, like a hydrogen, is disclosed. The fluid cooling plant comprises a first cooling stage, and a second cooling stage, connected to the first cooling source. The first cooling stage has a cold source and a heat exchanger, to cool the ambient temperature hydrogen gas. The cold source is liquid natural gas but not only, which is gasified by ambient temperature hydrogen so that the hydrogen is cooled down. The second cooling stage is made of one or more refrigerant modules, whose operation is based on a magnetocaloric material. Also disclosed is an operating method of the refrigerant modules.
F25J 1/00 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux
F25J 1/02 - Procédés ou appareils de liquéfaction ou de solidification des gaz ou des mélanges gazeux nécessitant l'emploi d'une réfrigération, p. ex. de l'hélium, de l'hydrogène
F25B 21/00 - Machines, installations ou systèmes utilisant des effets électriques ou magnétiques
An air-oil separation system to separate oil droplets from an air flow is disclosed. The air-oil separation system (1) comprises a piping having an inlet and an outlet of said air flow, the piping comprising - a first ascending section downstream said inlet, the first ascending section having an axis forming an angle a from 80° to 100° with respect to the horizontal, a portion of the first ascending section having an upwards increasing cross-section; - a horizontal or descending section, downstream said first ascending section, the first ascending section and the horizontal or descending section being connected by a bent section, the horizontal or descending section having an axis forming an angle P from 0° to -20° with respect to the horizontal, the horizontal or descending section having an end plate; - a second ascending section connecting the horizontal or descending section with the outlet of the piping, the second ascending section having an axis forming an angle y from 80° to 100° with respect to the horizontal, the second ascending section being connected to the final portion of the horizontal or descending section, upstream the end plate, the portion of the horizontal or descending section comprised between the connection with the second ascending section and the end plate forming a dead end section; - a draining pipe with a first end connected to a lower portion of the dead end section; a transversal partial obstruction at the final portion of the horizontal or descending section, upstream the connection with the second ascending section.
B01D 45/06 - Séparation de particules dispersées dans des gaz ou des vapeurs par gravité, inertie ou force centrifuge par inertie par inversion du sens de l'écoulement
F01M 13/04 - Ventilation ou aération du carter par des moyens épurant l'air avant qu'il ne sorte du carter, p. ex. des séparateurs d'huile
A balanced grid valve for steam extraction from a multi-stage steam turbine comprising a first balancing chamber and a second balancing chamber which are configured to receive steam at high pressure through at least one duct. The balancing chambers are preferably in the form of annular grooves and are arranged at two different radial distances from the axis of the valve in order to reduce mechanical distortion of the valve.
F01K 7/38 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices étant du type à soutirage ou sans condensationUtilisation de la vapeur pour le réchauffage de l'eau d'alimentation les machines motrices étant du type turbine
F01D 17/14 - Organes de commande terminaux disposés sur des parties du stator faisant varier l'aire effective de la section transversale des injecteurs ou tuyères de guidage
F01K 7/34 - Ensembles fonctionnels de machines à vapeur caractérisés par l'emploi de types particuliers de machines motricesEnsembles fonctionnels ou machines motrices caractérisés par un circuit de vapeur, un cycle de fonctionnement ou des phases particuliersDispositifs de commande spécialement adaptés à ces systèmes, cycles ou phasesUtilisation de la vapeur soutirée ou de la vapeur d'évacuation pour le réchauffage de l'eau d'alimentation les machines motrices étant du type à soutirage ou sans condensationUtilisation de la vapeur pour le réchauffage de l'eau d'alimentation
92.
IMPROVED METHOD FOR ESTIMATING AND SETTING EXHAUST PURGE TIME IN A COMBUSTION SYSTEM AND COMBUSTION SYSTEM THEREOF
The disclosure concerns a method for estimating and setting the exhaust purge time in a combustion system comprising a gas turbine, which is configured for estimating whether a purge cycle is needed or not, based on values collected by pressure detectors arranged upstream the gas turbine, specifically inside a fuel-gas compartment feeding the gas turbine. The disclosure concerns also a combustion system for carrying out such method.
The multilayer coating (100) for a metal piece (10), in particular a turbomachinery component, more in particular a turbomachinery impeller, comprising a first layer (20) which is applied on at least a portion of the metal piece (10) and which has a hydrogen diffusion coefficient of less than 10-7 m2/s even when subjected to stress (the hydrogen diffusion coefficient being measured through a hydrogen permeation test), and a second layer (30) which is applied on top of the first layer (20) and which is exposed to a process fluid comprising hydrogen. The second layer (30) comprises an oxide chosen between: aluminum oxide (Al2O3), titanium dioxide (TiO2) and silicon dioxide (SiO2). The first and the second layer (20) and (30) may be applied according to various depositing process techniques at temperature below 500 °C.
C23C 30/00 - Revêtement avec des matériaux métalliques, caractérisé uniquement par la composition du matériau métallique, c.-à-d. non caractérisé par le procédé de revêtement
C23C 28/04 - Revêtements uniquement de matériaux inorganiques non métalliques
C23C 28/00 - Revêtement pour obtenir au moins deux couches superposées, soit par des procédés non prévus dans un seul des groupes principaux , soit par des combinaisons de procédés prévus dans les sous-classes et
F01D 5/28 - Emploi de matériaux spécifiésMesures contre l'érosion ou la corrosion
B01F 27/053 - Agitateurs caractérisés par leurs éléments, leurs matériaux ou leurs propriétés mécaniques caractérisés par leurs matériaux
B01J 19/02 - Appareils caractérisés par le fait qu'ils sont construits avec des matériaux choisis pour leurs propriétés de résistance aux agents chimiques
F04D 29/22 - Rotors spécialement pour les pompes centrifuges
F04D 1/00 - Pompes à flux radial, p. ex. pompes centrifugesPompes hélicocentrifuges
Disclosed herein is an expander for a supercritical carbon dioxide thermodynamic cycle. The expander comprises an outer casing, a combustor in the outer casing, and a rotor with a rotation axis, housed for rotation in the outer casing. The rotor comprises an aft shaft portion, and a forward shaft portion. Between the aft shaft portion and the forward shaft portion a plurality of rotor disks are arranged. Each rotor disk comprises a respective annular row of rotor blades. Upstream of each annular row of rotor blades, a respective annular row of stationary vanes is provided. Each annular row of stationary vanes and the respective annular row of rotor blades form an expander stage.
F01D 5/06 - Rotors à plus d'un étage axial, p. ex. du type à tambour ou à disques multiplesLeurs parties constitutives, p. ex. arbres, connections des arbres
F01D 5/30 - Fixation des aubes au rotorPieds de pales
F01D 9/04 - InjecteursLogement des injecteursAubes de statorTuyères de guidage formant une couronne ou un secteur
F01D 5/08 - Dispositifs de chauffage, de protection contre l'échauffement ou de refroidissement
95.
A ROTOR FOR A POWER-GENERATING TURBOMACHINE, A TURBOMACHINE COMPRISING SAID ROTOR, AND A THERMODYNAMIC CIRCUIT USING SAID TURBOMACHINE
The rotor includes a plurality of rotor disks which are stacked and connected to one another by a plurality of tie rods. The tie rods comprise at least a first tie rod arrangement and a second tie rod arrangement. The first tie rod arrangement includes a plurality of first tie rods parallel to the rotation axis of the rotor at a first distance therefrom. The second tie rod arrangement can include a set of tie rods arranged parallel to the rotation axis of the rotor and at a second distance therefrom, the second distance being smaller than the first distance. Alternatively, or in combination, the second tie rod arrangement incudes a central tie rod coaxial with the rotation axis.
F01D 5/06 - Rotors à plus d'un étage axial, p. ex. du type à tambour ou à disques multiplesLeurs parties constitutives, p. ex. arbres, connections des arbres
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
96.
A RECIPROCATING COMPRESSOR WITH A PRESSURE-DROP CHAMBER AND METHOD
The reciprocating compressor comprises a compressor frame, a crankshaft and a connecting rod, connecting the crankshaft to a crosshead. A piston rod connects a piston to the crosshead. The piston reciprocates in a gas compression cylinder. At least one pressure-drop module is positioned between the gas compression cylinder and a crosspiece guide. The piston rod extends from the gas compression cylinder through a pressure-drop chamber of the pressure-drop module. Also disclosed herein is a method of operating a reciprocating compressor.
F04B 39/00 - Parties constitutives, détails ou accessoires de pompes ou de systèmes de pompage spécialement adaptés aux fluides compressibles, non prévus dans les groupes ou présentant un intérêt autre que celui visé par ces groupes
F04B 39/04 - Mesures pour éviter que le lubrifiant ne contamine le fluide pompé
97.
METHANE-PYROLYSIS BASED GAS TURBINE SYSTEM AND METHOD
The power generation system comprises a pyrolysis unit with a pyrolysis re actor adapted to generate hydrogen from pyrolysis of hydrocarbon, in particular natural gas, and a heat generator adapted to provide heat to the pyrolysis reactor. A gas turbine engine is further provided, which is supplied with hydrogen gener ated by the pyrolysis unit. A waste heat recovery arrangement recovers waste heat from flue gas of the gas turbine engine and deliver recovered waste heat to the pyrolysis unit.
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
F01K 23/06 - Ensembles fonctionnels caractérisés par plus d'une machine motrice fournissant de l'énergie à l'extérieur de l'ensemble, ces machines motrices étant entraînées par des fluides différents les cycles de ces machines motrices étant couplés thermiquement la chaleur de combustion provenant de l'un des cycles chauffant le fluide dans un autre cycle
98.
EXPANDER AND THERMODYNAMIC CYCLE USING THE EXPANDER
Disclosed herein is an expander for a high-pressure thermodynamic cycle, for instance a supercritical or transcritical carbon dioxide cycle. The expander comprises a rotor having a shaft and a plurality of rotor disks mounted on said shaft for co-rotation therewith. Each rotor disk comprises a respective annular row of rotor blades and is shrink-fitted on the shaft.
F01D 5/06 - Rotors à plus d'un étage axial, p. ex. du type à tambour ou à disques multiplesLeurs parties constitutives, p. ex. arbres, connections des arbres
F02C 3/34 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail avec recyclage d'une partie du fluide de travail, c.-à-d. cycles semi-fermés comportant des produits de combustion dans la partie fermée du cycle
F01D 5/08 - Dispositifs de chauffage, de protection contre l'échauffement ou de refroidissement
F01D 11/00 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages
F01D 11/04 - Prévention ou réduction des pertes internes du fluide énergétique, p. ex. entre étages par obturation non contact, p. ex. du type labyrinthe utilisant un fluide d'obturation, p. ex. de la vapeur
F02C 3/22 - Ensembles fonctionnels de turbines à gaz caractérisés par l'utilisation de produits de combustion comme fluide de travail utilisant un combustible, un oxydant ou un fluide de dilution particulier pour produire les produits de combustion le combustible ou l'oxydant étant gazeux aux température et pression normales
99.
A ROTOR, A POWER-GENERATION TURBOMACHINE COMPRISING SAID ROTOR, AND A THERMODYNAMIC CIRCUIT USING SAID TURBOMACHINE
Disclosed herein is a rotor comprising a set of rotor disks. Each rotor disk comprises a respective annular row of rotor blades. The rotor further comprises a forward shaft portion and an aft shaft portion. A first set of rotor disks is formed integrally with a section of one of said forward shaft portion and aft shaft portion. Said section of the shaft portion and the first set of rotor disks form a monolithic component. Moreover, the forward shaft portion and the aft shaft portion are connected to one another by a tie rod arrangement.
F01D 5/06 - Rotors à plus d'un étage axial, p. ex. du type à tambour ou à disques multiplesLeurs parties constitutives, p. ex. arbres, connections des arbres
100.
AN EXPANDER FOR OXY-FUEL COMBUSTION CYCLES AND THE LIKE
The supercritical expander comprises an outer casing and a rotor housed in the outer casing for rotation around a rotation axis. At least one combustor is housed in the casing or associated to the casing. The outer casing comprises a high-pressure casing and a low-pressure exhaust casing coupled to one another with a flange connection along a plane orthogonal to the rotation axis. The low-pressure exhaust casing comprises a discharge plenum, adapted to collect combustion gas expanded through a gas expansion flow path; the low-pressure exhaust casing comprising at least one exhaust aperture.