PayPal Holdings, Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 4 109 pour PayPal Holdings, Inc. et 6 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 3 810
        Marque 299
Juridiction
        États-Unis 3 444
        International 555
        Canada 65
        Europe 45
Propriétaire / Filiale
PayPal, Inc. 4 095
Paydiant, Inc. 4
PayPal Israel Ltd 3
Bill Me Later, Inc. 2
Braintree Payment Solutions, LLC 2
Voir plus
Date
Nouveautés (dernières 4 semaines) 15
2025 octobre (MACJ) 10
2025 septembre 13
2025 août 7
2025 juillet 30
Voir plus
Classe IPC
G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives 730
G06Q 20/32 - Architectures, schémas ou protocoles de paiement caractérisés par l'emploi de dispositifs spécifiques utilisant des dispositifs sans fil 597
H04L 29/06 - Commande de la communication; Traitement de la communication caractérisés par un protocole 452
G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail 441
G06Q 30/02 - MarketingEstimation ou détermination des prixCollecte de fonds 340
Voir plus
Classe NICE
36 - Services financiers, assurances et affaires immobilières 237
09 - Appareils et instruments scientifiques et électriques 216
42 - Services scientifiques, technologiques et industriels, recherche et conception 174
35 - Publicité; Affaires commerciales 95
16 - Papier, carton et produits en ces matières 9
Voir plus
Statut
En Instance 468
Enregistré / En vigueur 3 641
  1     2     3     ...     42        Prochaine page

1.

RATE LIMITING AT THE EDGE

      
Numéro d'application US2025022678
Numéro de publication 2025/216940
Statut Délivré - en vigueur
Date de dépôt 2025-04-02
Date de publication 2025-10-16
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Singh, Sachin Kumar
  • Suthar, Rushi
  • Baliga, Gurudatha

Abrégé

Techniques are disclosed that relate to rate limiting network traffic at a content distribution network based on decisions provided by a rate limiter located on an on-premise network. A computer system may receive, at the CDN, network traffic requesting access to a service associated with an on-premise network. The computer system sends, to a second computing system deployed in the on-premise network, a request to decide whether to rate constrain the network traffic. The second computing system is configured to perform an analysis on the network traffic. In response to the request, the computer system receives a decision from the second computing system. The computer system implements the decision for the network traffic at the CDN.

Classes IPC  ?

  • H04L 47/76 - Contrôle d'admissionAllocation des ressources en utilisant l'allocation dynamique des ressources, p. ex. renégociation en cours d'appel sur requête de l'utilisateur ou sur requête du réseau en réponse à des changements dans les conditions du réseau
  • H04L 43/08 - Surveillance ou test en fonction de métriques spécifiques, p. ex. la qualité du service [QoS], la consommation d’énergie ou les paramètres environnementaux
  • H04L 43/10 - Surveillance active, p. ex. battement de cœur, utilitaire Ping ou trace-route
  • H04L 67/61 - Ordonnancement ou organisation du service des demandes d'application, p. ex. demandes de transmission de données d'application en utilisant l'analyse et l'optimisation des ressources réseau requises en tenant compte de la qualité de service [QoS] ou des exigences de priorité
  • G06F 16/95 - Recherche dans le Web
  • H04L 65/1101 - Protocoles de session

2.

EXTENSIVE-DIMENSIONAL SOLUTIONS FOR DATA LINEAGE

      
Numéro d'application 19247600
Statut En instance
Date de dépôt 2025-06-24
Date de la première publication 2025-10-16
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Bui, Kim Dung
  • Vasudevan, Sreeram
  • Kaidi, George Chen
  • Jain, Vipul

Abrégé

A method according to the present disclosure may include receiving, from a user device, an update associated with a document, generating an update log event based on the update, appending metadata to the update log event, the metadata indicative of a property of the update, storing the update log event with at least one other log event to generate a plurality of log events, receiving an indication of a type of compression, labelling metadata of each of the plurality of log events based on the indicated type of compression, and compressing the plurality of log events based on the labels.

Classes IPC  ?

3.

RATE LIMITING AT THE EDGE

      
Numéro d'application 18634500
Statut En instance
Date de dépôt 2024-04-12
Date de la première publication 2025-10-16
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Singh, Sachin Kumar
  • Suthar, Rushi
  • Baliga, Gurudatha

Abrégé

Techniques are disclosed that relate to rate limiting network traffic at a content distribution network based on decisions provided by a rate limiter located on an on-premise network. A computer system may receive, at the CDN, network traffic requesting access to a service associated with an on-premise network. The computer system sends, to a second computing system deployed in the on-premise network, a request to decide whether to rate constrain the network traffic. The second computing system is configured to perform an analysis on the network traffic. In response to the request, the computer system receives a decision from the second computing system. The computer system implements the decision for the network traffic at the CDN.

Classes IPC  ?

  • H04L 47/25 - Commande de fluxCommande de la congestion le débit étant modifié par la source lors de la détection d'un changement des conditions du réseau
  • H04L 67/568 - Stockage temporaire des données à un stade intermédiaire, p. ex. par mise en antémémoire

4.

Framework for Managing Natural Language Processing Tools

      
Numéro d'application 19085100
Statut En instance
Date de dépôt 2025-03-20
Date de la première publication 2025-10-09
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Wu, Yuehao
  • Munavalli, Rajesh
  • Zhao, Junhua
  • Chen, Xin
  • Zang, Meng

Abrégé

A system performs operations that include receiving, via first computing environment, a request to process text data using a first natural language processing (NLP) model. The operations further include accessing configuration data associated with the NLP model, where the configuration data generated using a domain specific language that supports a plurality of preprocessing modules in a plurality of programming languages. The operations also include selecting, based on the configuration data, one or more preprocessing modules of the plurality of preprocessing modules, generating, based on the configuration data, a preprocessing pipeline using the one or more preprocessing modules, and generating preprocessed text data by inputting the text data into the preprocessing pipeline. The preprocessed text data is provided to the first NLP model.

Classes IPC  ?

  • G06F 40/20 - Analyse du langage naturel
  • G06F 8/35 - Création ou génération de code source fondée sur un modèle
  • G06F 8/36 - Réutilisation de logiciel

5.

EDGE CLOUD CACHING USING REAL-TIME CUSTOMER JOURNEY INSIGHTS

      
Numéro d'application 19172540
Statut En instance
Date de dépôt 2025-04-07
Date de la première publication 2025-10-09
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Nair, Rahul

Abrégé

Systems and methods for smart cloud caching using edge computing and real-time customer journey insights are disclosed. In one embodiment, a system identifies a trend in communications received by a first edge cloud server, wherein each communication corresponds to a customer journey comprising user action steps performed in a client application. The system determines which user action steps cause API invocations to non-edge cloud servers and generates a sequence of API invocations in an order associated with the sequence of user action steps of the customer journey. The sequence of API invocations may be chained and/or bundled and stored in a cache for replication at edge cloud servers. The system may determine that the trend is pervasive in a geographical location based on satisfaction of a criteria, and replicate the cached sequence of API invocations at a cache of a second edge cloud server that services the geographical location.

Classes IPC  ?

  • G06F 9/54 - Communication interprogramme
  • H04L 67/01 - Protocoles
  • H04L 67/10 - Protocoles dans lesquels une application est distribuée parmi les nœuds du réseau
  • H04L 67/50 - Services réseau
  • H04L 67/52 - Services réseau spécialement adaptés à l'emplacement du terminal utilisateur
  • H04L 67/568 - Stockage temporaire des données à un stade intermédiaire, p. ex. par mise en antémémoire

6.

RECURSIVE ARTIFICIAL INTELLIGENCE CODE FIX CIRCUIT

      
Numéro d'application 18616387
Statut En instance
Date de dépôt 2024-03-26
Date de la première publication 2025-10-02
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Hays, Jack Zante
  • Ramgopal, Gopalsamy Siddharth
  • Kim, Harrison Hongchul

Abrégé

Systems, methods, and computer program products for correcting code issues, such as code smells, using artificial intelligence, are provided. A code issue in one of multiple source code files is determined. An artificial intelligence model, such as a large language model, receives the code issue and the multiple source code files. The AI model recursively modifies at least one source code file from the multiple source code files until the code issue and an error or errors introduced by modifying the at least one source code file are resolved, and the source code files are issue free.

Classes IPC  ?

7.

DYNAMIC DEPLOYMENT OF SMALL LANGUAGE MODELS

      
Numéro d'application 18619833
Statut En instance
Date de dépôt 2024-03-28
Date de la première publication 2025-10-02
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Sarin, Pankaj

Abrégé

Methods and systems are presented for reducing computer power consumption and speeding system response times by dynamically generating and deploying one or more small language models (SLMs) to facilitate automated interactions with users. A context is derived for a chat session based on an utterance submitted by the user and other contextual information associated with the chat session. A SLM is generated specifically for the chat session based on the context. The SLM can be generated by extracting one or more portions of an internal structure of a large language model (LLM), or by merging two or more pre-generated SLMs. The SLM is deployed to generate content for the chat session. When it is detected that the context has changed, the SLM can be updated by incorporating additional parameters from the LLM to continue facilitating automated interactions with the user during the chat session.

Classes IPC  ?

8.

BLOCKCHAIN DATA COMPRESSION AND STORAGE

      
Numéro d'application 18979368
Statut En instance
Date de dépôt 2024-12-12
Date de la première publication 2025-10-02
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Gundavelli, Suryatej
  • Dalton, Charles Gabriel Neale
  • Chan, Michael Jim Tien

Abrégé

Methods and systems described herein improve blockchain storage operations in a variety of environments. A blockchain compression system may determine that a blockchain compression condition associated with a blockchain having a first plurality of blocks has been satisfied. In response, the system compresses the first plurality of blocks using a first hash tree into a first root hash value and stores the first plurality of blocks in a first database. The blockchain compression system generates a first new era genesis block that includes the first root hash value and a first database address of the first database at which the first plurality of blocks are stored. The blockchain compression system stores the blockchain at one or more nodes in a blockchain network. The blockchain includes the first new era genesis block and any previous new era genesis blocks. This may effectively reduce storage requirements for the blockchain, in various embodiments.

Classes IPC  ?

  • H04L 9/06 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p. ex. système DES
  • H04L 9/00 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité

9.

SYSTEMS AND METHODS FOR PREDICTING AND PROVIDING AUTOMATED ONLINE CHAT ASSISTANCE

      
Numéro d'application 19083988
Statut En instance
Date de dépôt 2025-03-19
Date de la première publication 2025-10-02
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Kuo, Yu-Hsuan
  • Nadimpalli, Venkata Ramana

Abrégé

Methods and systems are presented for providing automated online chat assistance in an online chat session. One or more utterances transmitted from a user device of a user via the online chat session are obtained. The one or more utterances are provided to a first prediction model to predict an intent of a user. If it is determined that the first prediction model is unable to predict the intent of the user based on the one or more utterances, the one or more utterances are provided to a second prediction model. After predicting the intent of the user by the second prediction model, the intent is used by a chat robot to provide a dialogue with the user via the online chat session. The one or more utterances and the predicted intent are used to re-train the first prediction model.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  • H04L 51/04 - Messagerie en temps réel ou quasi en temps réel, p. ex. messagerie instantanée [IM]
  • H04L 65/1069 - Établissement ou terminaison d'une session

10.

DYNAMIC DEPLOYMENT OF SMALL LANGUAGE MODELS

      
Numéro d'application US2025020084
Numéro de publication 2025/207349
Statut Délivré - en vigueur
Date de dépôt 2025-03-14
Date de publication 2025-10-02
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Sarin, Pankaj

Abrégé

Methods and systems are presented for reducing computer power consumption and speeding system response times by dynamically generating and deploying one or more small language models (SLMs) to facilitate automated interactions with users. A context is derived for a chat session based on an utterance submitted by the user and other contextual information associated with the chat session. A SLM is generated specifically for the chat session based on the context. The SLM can be generated by extracting one or more portions of an internal structure of a large language model (LLM), or by merging two or more pre-generated SLMs. The SLM is deployed to generate content for the chat session. When it is detected that the context has changed, the SLM can be updated by incorporating additional parameters from the LLM to continue facilitating automated interactions with the user during the chat session.

Classes IPC  ?

  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  • G06F 40/35 - Représentation du discours ou du dialogue
  • G06Q 30/015 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance

11.

ADAPTIVE MODEL EVOLUTION THROUGH IDENTIFICATION AND INTEGRATION OF NOVEL DATA PATTERNS

      
Numéro d'application 18609967
Statut En instance
Date de dépôt 2024-03-19
Date de la première publication 2025-09-25
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Rouhsedaghat, Mozhdeh
  • Sharma, Nitin S.

Abrégé

Systems and methods for performing continual learning for neural network models for performing certain tasks based on data including applying a first neural network model to a second dataset, the first neural network model trained using a first dataset, determining a data distribution representative of the second dataset, determining a third dataset corresponding to a subset of data in the second dataset based on applying a threshold to the data distribution, the subset of data corresponding to new data patterns in the second dataset indicative of including different characteristics than data patterns in the first dataset, obtaining a second neural network model trained using the first dataset, and training the second neural network model using the third dataset to finetune a performance of the second neural network model in performing the certain tasks or other new tasks.

Classes IPC  ?

12.

SYSTEMS AND METHODS FOR CONFIGURING A NETWORKED SYSTEM TO PERFORM THRESHOLD MULTI-PARTY COMPUTATION

      
Numéro d'application 19022867
Statut En instance
Date de dépôt 2025-01-15
Date de la première publication 2025-09-25
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Le Van Gong, Hubert Andre
  • Tang, Khai Hanh
  • Hua, Shanshan

Abrégé

Methods and systems are presented for providing a multi-party computation (MPC) framework for dynamically configuring, deploying, and utilizing an MPC system for performing distributed computations. Based on device attributes and network attributes associated with computer nodes that are available to be part of the MPC system, a configuration for the MPC system is determined. The configuration may specify a total number of computer nodes within the MPC system, a minimum number of computer nodes required to participate in performing a computation process, a key distribution mechanism, and a computation processing mechanism. Encryption keys are generated and distributed among the computer nodes based on the key distribution mechanism. Upon receiving a request for performing the computation, updated network attributes are obtained. The configuration of the MPC system is dynamically modified based on the updated network attributes, and the MPC system performs the computations according to the modified configuration.

Classes IPC  ?

  • H04L 9/08 - Répartition de clés
  • H04L 9/14 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité utilisant plusieurs clés ou algorithmes

13.

AUTOMATIC QUERY AND DATA RETRIEVAL OPTIMIZATION THROUGH PROCEDURAL GENERATION OF DATA TABLES FROM QUERY PATTERNS

      
Numéro d'application US2025018789
Numéro de publication 2025/198868
Statut Délivré - en vigueur
Date de dépôt 2025-03-06
Date de publication 2025-09-25
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Chen, Chongchen
  • Feng, Si
  • Huang, Dawei

Abrégé

Latency, response times, and efficiency improvements for data querying are provided herein, particularly in the context of querying large database systems and data tables from disparate data sources. There are provided systems and methods for automatic query and data retrieval optimization through procedural generation of data tables from query patterns. A service provider may utilize different computing services for query processing and data retrieval for different applications and services used by internal and/or external users. Instead of querying large database systems and numerous data tables, pre-aggregated data tables may instead be used and searched by procedurally generating such tables based on precomputation rules and query patterns. Once patterns have been identified in queries, corresponding data may be aggregated from data sources in a pre-aggregated data table. Query optimization rules may then be used to have these data tables queried in place of their original sources.

Classes IPC  ?

14.

Data Synthesis Using Generative Models

      
Numéro d'application 18609311
Statut En instance
Date de dépôt 2024-03-19
Date de la première publication 2025-09-25
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Ravichandran, Vignesh
  • Vashishtha, Rajesh Kumar
  • Rajan, Srivignesh

Abrégé

In disclosed techniques a system generates, using a generative model, current synthetic communications, including inputting conditions for the synthetic communications into the trained generative model. The system generates the trained generative model by iteratively performing multiple operations until a discriminator of the generative model determines that synthetic communications output by the generative model satisfy a difference threshold. The operations include: generating, by a generator of the generative model, based on existing communications, a training synthetic communications, determining, by the discriminator of the generative model, differences between the existing communications and the training synthetic communications, and updating the generator based on the differences. Using the current synthetic communications and the existing communications, the system trains another model to evaluate newly initiated communications. The disclosed data synthesis techniques may advantageously enable discovery of concealed patterns, which in turn improves detection of processing systems that execute models trained on the synthetic data.

Classes IPC  ?

15.

COMPUTING FRAMEWORK FOR ENFORCEMENT OF DATA PRIVACY CONSENT THROUGH DEVICE FINGERPRINTS

      
Numéro d'application 18607979
Statut En instance
Date de dépôt 2024-03-18
Date de la première publication 2025-09-18
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Nadgire, Chetan

Abrégé

There are provided systems and methods for a computing framework for enforcement of data privacy consent through device fingerprints. A service provider, including an electronic transaction processor, may provide consent management and enforcement through device fingerprints server-side in place of using device-side cookies or other data. When a device interacts with a service provider and provides or generates user data, the user of the device may opt-in to consenting to share or use that user data for targeted content and/or personalized services. The device may be fingerprinted using unique device parameters and a fingerprinting algorithm to generate a unique device identifier. User segments may then be built for the user based on the user data and to hide or obfuscate the user data. The device fingerprint may then be shared with the user segments so that when the device is further detected, targeted content and personalization may be provided.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 21/31 - Authentification de l’utilisateur
  • H04L 9/32 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système

16.

Dynamic Sharding Method for Distributed Data Stores

      
Numéro d'application 18596407
Statut En instance
Date de dépôt 2024-03-05
Date de la première publication 2025-09-11
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Leu, Eric

Abrégé

Disclosed methods and systems include maintaining, by a computer system, a database stored across a first number of nodes. This maintaining may include dividing records into a particular number of shards that are distributed among the first number of nodes. In response to a change to a second number of nodes, the computer system may determine a number of shards per node based on the second number of nodes. The computer system may select a subset of the particular number of shards to distribute across the second number of nodes, and move the subset of shards to one or more of the second number of nodes.

Classes IPC  ?

  • G06F 16/27 - Réplication, distribution ou synchronisation de données entre bases de données ou dans un système de bases de données distribuéesArchitectures de systèmes de bases de données distribuées à cet effet

17.

EXTRACTING WEAKLY CORRELATED RULES FROM SINGLE-TREE MACHINE LEARNING MODELS

      
Numéro d'application 18598972
Statut En instance
Date de dépôt 2024-03-07
Date de la première publication 2025-09-11
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Poli, Charles
  • Eligar, Shreekanthadatta

Abrégé

Data associated with a plurality of transactions is accessed. Based on the data, a first tree-based machine learning model (e.g., a gradient boosted tree-based model) is generated that contains a plurality of first nodes and a plurality of first branches interconnecting the plurality of first nodes. A first rule is extracted from the first tree-based machine learning model. The data is adjusted after the first rule has been extracted. Based on the adjusted data, a second tree-based machine learning model (e.g., a gradient boosted tree-based model) is generated that contains a plurality of second nodes and a plurality of second branches interconnecting the plurality of second nodes. A second rule is extracted from the second tree-based machine learning model. The second rule and the first rule have a correlation below a specified threshold, for example, at or close to zero.

Classes IPC  ?

18.

DYNAMIC SHARDING METHOD FOR DISTRIBUTED DATA STORES

      
Numéro d'application US2025015458
Numéro de publication 2025/188461
Statut Délivré - en vigueur
Date de dépôt 2025-02-12
Date de publication 2025-09-11
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Leu, Eric

Abrégé

Disclosed methods and systems include maintaining, by a computer system, a database stored across a first number of nodes. This maintaining may include dividing records into a particular number of shards that are distributed among the first number of nodes. In response to a change to a second number of nodes, the computer system may determine a number of shards per node based on the second number of nodes. The computer system may select a subset of the particular number of shards to distribute across the second number of nodes, and move the subset of shards to one or more of the second number of nodes.

Classes IPC  ?

  • G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement
  • G06F 16/17 - Détails d’autres fonctions de systèmes de fichiers
  • G06F 3/00 - Dispositions d'entrée pour le transfert de données destinées à être traitées sous une forme maniable par le calculateurDispositions de sortie pour le transfert de données de l'unité de traitement à l'unité de sortie, p. ex. dispositions d'interface

19.

V

      
Numéro d'application 1874022
Statut Enregistrée
Date de dépôt 2025-07-09
Date d'enregistrement 2025-07-09
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users.

20.

Bifurcated System for Querying Multiple Data Types

      
Numéro d'application 18617163
Statut En instance
Date de dépôt 2024-03-26
Date de la première publication 2025-09-04
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Zhang, Pengshan
  • Zhou, Yuliang
  • Sharma, Nitin S.
  • Periyasamy, Eswaramoorthy
  • Luan, Xiaojun
  • Guo, Junshi

Abrégé

Techniques are disclosed relating to executing a bifurcated computer system for different types of data processing. The system receives a plurality of requests to execute queries and executes a first service of the system for a first query specified by the requests based on the first query specifying a first type of data. The system accesses, via the first service for the first query, a first database storing the first type of data. The system executes a second service for a second query specified by the requests based on the second query specifying a second type of data. The system accesses, via the second service for the second query, a second database storing the second type of data. The system transmits results of the first database to a user device of the first query and results of the second database to a user device of the second query.

Classes IPC  ?

  • G06F 16/2455 - Exécution des requêtes
  • G06F 16/23 - Mise à jour
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/29 - Bases de données d’informations géographiques

21.

venmo

      
Numéro d'application 1874021
Statut Enregistrée
Date de dépôt 2025-07-09
Date d'enregistrement 2025-07-09
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users.

22.

IMAGE REPAIR OF CAPTURED DOCUMENT IMAGES FOR DOCUMENT IMAGE SUBMISSIONS USING A GENERATIVE ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18591872
Statut En instance
Date de dépôt 2024-02-29
Date de la première publication 2025-09-04
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Fu, Weilin
  • Wang, Chao
  • Jin, Ke
  • Peng, Tian
  • Sun, Wei
  • Shen, Yanjun

Abrégé

There are provided systems and methods for image repair of captured document images for document image submissions using generative artificial intelligence (AI). A service provider, such as an electronic transaction processor for digital transactions, may provide computing services to users, which may be used to engage in interactions with other users and entities including for electronic transaction processing. When utilizing these services, document verification may be required to verify a document. A user may capture an image of a document, such as a driver's license, and an image repair generative AI may determine if image repair may be necessary to improve an image quality of the image. The generative AI may be trained using multiple neural networks to generate and distinguish between different image qualities. The generative AI may therefore generate image data that improves the image quality and allows for verification of content in the image.

Classes IPC  ?

  • G06V 30/12 - Détection ou correction d’erreurs, p. ex. en effectuant une deuxième exploration du motif
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 30/16 - Prétraitement de l’image
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques
  • G06V 30/41 - Analyse du contenu de documents

23.

BIFURCATED SYSTEM FOR QUERYING MULTIPLE DATA TYPES

      
Numéro d'application CN2024079228
Numéro de publication 2025/179519
Statut Délivré - en vigueur
Date de dépôt 2024-02-29
Date de publication 2025-09-04
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Zhang, Pengshan
  • Zhou, Yuliang
  • Sharma, Nitin S.
  • Periyasamy, Eswaramoorthy
  • Luan, Xiaojun
  • Guo, Junshi

Abrégé

Techniques are disclosed relating to executing a bifurcated computer system for different types of data processing. The system receives a plurality of requests to execute queries and executes a first service of the system for a first query specified by the requests based on the first query specifying a first type of data. The system accesses, via the first service for the first query, a first database storing the first type of data. The system executes a second service for a second query specified by the requests based on the second query specifying a second type of data. The system accesses, via the second service for the second query, a second database storing the second type of data. The system transmits results of the first database to a user device of the first query and results of the second database to a user device of the second query.

Classes IPC  ?

  • G06F 16/9537 - Recherche à dépendance spatiale ou temporelle, p. ex. requêtes spatio-temporelles

24.

Self-Adaptive Geospatial Queries

      
Numéro d'application 18590129
Statut En instance
Date de dépôt 2024-02-28
Date de la première publication 2025-08-28
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Luan, Xiaojun
  • Zhang, Pengshan
  • Liu, Delin
  • Sharma, Nitin S.
  • Huang, Zhe

Abrégé

Techniques are disclosed relating to determining a minimum search region with a threshold number of entities within the minimum search region. In some embodiments, a system selects, based on a location of a user device, a first region, where the location of the device is at a center of the first region. The system executes, based on the first region, a query on a database storing entity locations. The system increases the first region by a specified amount to generate a second search region, where the increasing is based on determining that entities returned by the first query does not satisfy an entity threshold requirement. The system executes, based on the second region, a second query on the database. In response to the second query returning a number of entities that satisfy the threshold requirement, the system causes display, at the device, of the entities returned by the second query.

Classes IPC  ?

  • G06F 16/9537 - Recherche à dépendance spatiale ou temporelle, p. ex. requêtes spatio-temporelles
  • G06F 16/29 - Bases de données d’informations géographiques
  • G06F 16/957 - Optimisation de la navigation, p. ex. mise en cache ou distillation de contenus

25.

CONTAINER ORCHESTRATION FRAMEWORK

      
Numéro d'application 19061605
Statut En instance
Date de dépôt 2025-02-24
Date de la première publication 2025-08-21
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Manoharan, Srinivasan
  • Chirakkil, Vinesh
  • Wu, Yuehao
  • Zhao, Junhua
  • Han, Xiaoying
  • Ho, Chun Kiat
  • Viswanathan, Premila
  • Song, Lin

Abrégé

Methods and systems are presented for providing a container orchestration framework for facilitating development and deployment of software applications across different operating environments within an enterprise system. Upon receiving a service request for processing a set of data is received, the container orchestration framework determines one or more machines that store the set of data. Instead of processing the set of data remotely, the container orchestration framework deploys a container that encapsulates an application on the one or more machines. Each application instance running on the one or more machines are executed to process a corresponding subset of data stored on the machine locally. The container orchestration framework obtains the output data from executing the applications on each of the one or more machines, and present the output data as a response to the service request.

Classes IPC  ?

  • G06F 8/61 - Installation
  • G06F 8/41 - Compilation
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

26.

PAYPAL PYUSD

      
Numéro d'application 019234690
Statut En instance
Date de dépôt 2025-08-19
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable computer software and mobile application software for processing electronic payments, transferring funds to and from others, and issuing receipts regarding electronic payment transactions; downloadable software for use in issuing digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for accepting, buying, selling, transmitting, and exchanging digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for electronically trading, storing, sending, receiving, validating, verifying, accepting, tracking, and transferring digital currency, cryptocurrency, virtual currency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for managing, implementing, and validating digital currency, virtual currency, cryptocurrency, stablecoin, digital asset, blockchain asset, digitized asset, digital token, crypto token and utility token payment and exchange transactions; downloadable software for use in payments, purchases, and investments using digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for use as a digital currency, virtual currency, cryptocurrency, stablecoin, digital asset, digital token, crypto token, and utility token wallet; downloadable software for currency conversion; downloadable software for creating tokens that may be used to pay for products and services, and traded or exchanged for cash value; downloadable software for managing and facilitating money transfers, electronic funds transfers, commodity transfers, bill payment remittance, and secure transactions. Electronic transfer of funds; clearing financial transactions via a global computer network and wireless networks; providing electronic mobile payment services for others in the nature of providing secure commercial transactions and payment options using a mobile device at a point of sale; electronic foreign exchange payment processing services; issuance of stablecoins and tokens of value; stablecoin payment processing; stablecoin trading services; stablecoin exchange services; financial services, namely, providing digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens for use by others; financial services, namely, digital currency, virtual currency, cryptocurrency, stablecoin, digital and blockchain asset, digitized asset, digital token, crypto token and utility token transfer, exchange, and payment processing services; financial exchange services; providing a financial exchange for trading digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; currency exchange services, currency trading services, foreign currency dealing, and broker-dealer financial services in the field of cryptocurrency, digital currency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; currency transfer services; electronic transfer of cryptocurrency, digital currency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; electronic wallet payment services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens, and utility tokens, and for managing digital currency, virtual currency, cryptocurrency, stablecoin, digital and blockchain asset, digitized asset, digital token, crypto token, and utility token payment and exchange transactions; electronic payment processing of payments made via digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens, and utility tokens; digital currency, virtual currency, cryptocurrency, stablecoin, digital and blockchain asset, digitized asset, digital token, crypto token and utility token transaction processing services for others; financial management of digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens, and utility tokens. Providing temporary use of online non-downloadable software for electronic payment processing, transferring funds to and from others, and issuing receipts regarding electronic payment transactions; application service provider (ASP) services featuring software for use in digital currency, virtual currency, cryptocurrency, stablecoin, digital and blockchain asset, digitized asset, digital token, crypto token and utility token exchanges and transactions; providing temporary use of online non-downloadable software for use in issuing digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; providing temporary use of online non-downloadable software for accepting, buying, selling, transmitting, and exchanging digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; providing temporary use of online non-downloadable software for electronically trading, storing, sending, receiving, validating, verifying, accepting, tracking, and transferring digital currency, cryptocurrency, virtual currency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; providing temporary use of online non-downloadable software for managing, implementing, and validating digital currency, virtual currency, cryptocurrency, stablecoin, digital asset, blockchain asset, digitized asset, digital token, crypto token and utility token payment and exchange transactions; providing temporary use of online non-downloadable software for use in payments, purchases, and investments using digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; providing temporary use of online non-downloadable software for users to buy and sell products using digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain assets, digitized assets, digital tokens, crypto tokens and utility tokens; providing temporary use of online non-downloadable software for currency conversion; providing temporary use of online non-downloadable software for use as a digital currency, virtual currency, cryptocurrency, stablecoin, digital asset, digital token, crypto token, and utility token wallet; providing temporary use of online non-downloadable software for encryption; providing temporary use of online non-downloadable software for verifying, evaluating, and securing transactions with blockchain technology; providing temporary use of online non-downloadable software for managing and facilitating money transfers, electronic funds transfers, commodity transfers, bill payment remittance, and secure transactions.

27.

GRAPH NEURAL NETWORK WITH POINTED DIRECTIONAL MESSAGE PASSING

      
Numéro d'application 18440453
Statut En instance
Date de dépôt 2024-02-13
Date de la première publication 2025-08-14
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Levy, Ofek

Abrégé

A graph network of a service provider is accessed. The graph network includes a plurality of nodes interconnected by a plurality of edges. A plurality of sub-graphs is generated. Each of the sub-graphs corresponds to a different portion of the graph network. Each of the sub-graphs includes a different subset of the plurality of nodes. A directional flow for information exchanges is defined between the nodes of each of the sub-graphs. A graph neural network (GNN) model is trained based on the defined directional flow. The trained GNN model is utilized to generate one or more predictions.

Classes IPC  ?

28.

NAMED ENTITY RECOGNITION IN CHAT DIALOGUES FOR CUSTOMER RELATIONSHIP MANAGEMENT SYSTEMS

      
Numéro d'application 19035319
Statut En instance
Date de dépôt 2025-01-23
Date de la première publication 2025-08-07
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Lukyanenko, Nikita Alekseyevich
  • Shvid, Alexander

Abrégé

There are provided systems and methods for named entity recognition in chat dialogues for customer relationship management systems. A service provider, such as an electronic transaction processor for digital transactions, may provide live chat service channels for assistance through live agents and chatbot services. When interacting with these channels, a user may engage in a chat dialogue with live agents. This may include lines of texts corresponding to the exchanged messages and may include named entities for particular types or categories of words that refer to a particular object or thing. To identify these named entities, a natural language processor may utilize machine learning and other engines for named entity recognition in customer relationship management systems to highlight the named entities in live service chats. Agents of the systems may view content that identify the named entities and interact with the named entities to view descriptions.

Classes IPC  ?

  • G06F 40/279 - Reconnaissance d’entités textuelles
  • G06F 40/35 - Représentation du discours ou du dialogue

29.

SUPER-COOKIE IDENTIFICATION FOR STOLEN COOKIE DETECTION

      
Numéro d'application 19046020
Statut En instance
Date de dépôt 2025-02-05
Date de la première publication 2025-08-07
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Marudi, Matan
  • Bercovich, Yuval
  • Raiskin, Yarden

Abrégé

Methods and systems are presented for stolen cookie detection. An authentication request is received for a user to access a website using a web browser executable at the user's device. A series of storage locations available on the device for storing web cookies is identified and sorted in order of increasing fraud risk starting from a first storage location. A cookie value for each storage location is retrieved from the device. For each storage location after the first: an expected cookie value is calculated based on the cookie value of a preceding storage location; the expected cookie value is compared with the value retrieved for the storage location; and a score representing a level of fraud risk for the storage location is assigned. The authentication request is processed based on whether the assigned score for at least one of the storage locations exceeds a predetermined risk tolerance for fraud detection.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06F 21/60 - Protection de données
  • H04L 9/40 - Protocoles réseaux de sécurité

30.

FREE-FORM, AUTOMATICALLY-GENERATED CONVERSATIONAL GRAPHICAL USER INTERFACES

      
Numéro d'application 19056353
Statut En instance
Date de dépôt 2025-02-18
Date de la première publication 2025-08-07
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Hennig, Karl Anton
  • Aswal, Ajay
  • Zerihun, Bisrat

Abrégé

Systems and methods for automatic generation of free-form conversational interfaces are disclosed. In one embodiment, a system receives an input from a user device through a conversational graphical user interface (GUI). An intent of the user may be determined based on the received input. Based on the intent of the user, the system may identify, from a plurality of objects available to the system, one or more objects. Each of the plurality of objects has annotations corresponding to one or more elements of the object and one or more functions of the object. The one or more functions corresponding to the one or more elements are executable to perform an action upon corresponding elements. Based on the identified one or more objects and the annotations of the identified one or more objects, the system may generate a dynamic dialogue flow for the conversational GUI, where the dynamic dialogue flow is generated in real-time during a conversational GUI session.

Classes IPC  ?

  • G06F 16/9032 - Formulation de requêtes
  • G06F 16/9035 - Filtrage basé sur des données supplémentaires, p. ex. sur des profils d'utilisateurs ou de groupes
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  • H04L 51/216 - Gestion de l'historique des conversations, p. ex. regroupement de messages dans des sessions ou des fils de conversation

31.

SCENARIO-BASED DECISIONING BY MACHINE LEARNING MODELS FOR DATA PROCESSING RETRY SUCCESS

      
Numéro d'application 18608047
Statut En instance
Date de dépôt 2024-03-18
Date de la première publication 2025-07-31
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Haque, Sana
  • Rao Gopalkrishna, Ashwin
  • Ahmadpoor, Mohammad
  • Fernandez-Montes Cuberta, Miguel
  • Gaur, Devang
  • Arulmozhi, Suraj
  • Sounderrajan, Mahalinga Prabhu
  • Subash, Ashok
  • Baliga, Pradeep
  • Li, Shiwei
  • Oliver, David
  • Regalado, Spencer

Abrégé

There are provided systems and methods for scenario-based decisioning by machine learning models for data processing retry success. A service provider, such as an electronic transaction processor for digital transactions, may detect a failure of data processing for a transaction or other request when processed with a data processing system. In order to minimize cost and wasted resources for retrying transactions that are likely to further fail, machine learning models may be implemented that generates a predictive score for whether a failed transaction is likely to be successful if retried with the data processing system. This may be done when the transactions are received or detected, which may occur prior to failures, for different scenario-based decisioning. Scenarios for failures may be processed by the models with different retry strategies and a predictive score may be used to predict a probability of success of the retry.

Classes IPC  ?

  • G06F 11/07 - Réaction à l'apparition d'un défaut, p. ex. tolérance de certains défauts
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

32.

RULE GENERATION AND MANAGEMENT USING MACHINE LEARNING

      
Numéro d'application 18704791
Statut En instance
Date de dépôt 2023-07-11
Date de la première publication 2025-07-31
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Li, Zeding
  • Dai, Chen
  • Yang, Jian
  • Cai, Qianwen
  • Lu, Xiaomin
  • Li, Xuan

Abrégé

The disclosed computer-implemented method includes calculating, from transaction data, a statistical change in data entries corresponding to a type of transaction and modeling a transaction rule for normalizing the statistical change by changing an acceptance standard of the type of transaction. The method further includes activating the transaction rule to update a live database system for entering real-time data entries. Various other methods, systems, and computer-readable media are also disclosed.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

33.

Execution of Machine Learning Models at Client Devices

      
Numéro d'application 19046114
Statut En instance
Date de dépôt 2025-02-05
Date de la première publication 2025-07-31
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • M L, Nishanth
  • Cg, Chandan

Abrégé

Techniques are disclosed relating to the execution of machine learning models on client devices, particularly in the context of transaction risk evaluation. This reduces computational burden on server systems. In various embodiments, a server system may receive, from a client device, a request to perform a first operation and select a first machine learning model, from a set of machine learning models, to send to the client device. In some embodiments the first machine learning model is executable, by the client device, to generate model output data for the first operation based on one or more encrypted input data values that are encrypted with a cryptographic key inaccessible to the client device. The server system may send the first machine learning model to the client device and then receive, from the client device, a response message that indicates whether the first operation is authorized based on the model output data.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06F 18/214 - Génération de motifs d'entraînementProcédés de Bootstrapping, p. ex. ”bagging” ou ”boosting”
  • G06F 21/60 - Protection de données
  • H04L 9/14 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité utilisant plusieurs clés ou algorithmes

34.

PLUG-AND-PLAY MODULE FOR DE-BIASING PREDICTIVE MODELS VIA MACHINE-GENERATED NOISE

      
Numéro d'application 18421478
Statut En instance
Date de dépôt 2024-01-24
Date de la première publication 2025-07-24
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Zhao, Yunxia
  • Kim, Dong Yoon
  • Kotturi, Viswas Guptha
  • Wang, Yun
  • Zhou, Yifan
  • Yang, Yi

Abrégé

Data features are accessed from a plurality of sources. The data features pertain to a plurality of users. The data features are inputted into a predictive model. An output is generated via the predictive model. The output of the predictive model is inputted into a plurality of adversarial models. The adversarial models include different types of protected attributes. At least some of the protected attributes are non-binary. Noise is introduced to the predictive model via each of the adversarial models of the plurality of adversarial models. The output of the predictive model is updated after the noise has been introduced to the predictive model. One or more decisions involving the plurality of users are generated at least in part via the updated output of the predictive model.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

35.

DYNAMIC AND MODULAR DATA CLASSIFICATION ENGINE

      
Numéro d'application 19001167
Statut En instance
Date de dépôt 2024-12-24
Date de la première publication 2025-07-24
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Kaidi, George Chen
  • Lim, Li Hua
  • Radhakrishnan, Rajasekaran
  • Vasudevan, Sreeram

Abrégé

Methods and systems are presented for providing a data control framework that enables storing, sharing, and transferring of data in a secure manner. Data files stored in data repositories are scanned. Content associated with different section of each data file is analyzed, and each section is tagged with a sensitivity level based on the content and a subject matter derived for the data file. Each data file is also assigned to a clearance classification based on an expected viewer of the data file. When sections from a first data file is being transferred to a second data file, a data control mechanism is triggered. If a particular section from the first data file is incompatible with the second data file, the data control mechanism may prevent the particular section from being transferred to the second data file, while allowing the remaining sections being transferred to the second data file.

Classes IPC  ?

  • G06F 21/60 - Protection de données
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

36.

PP WORLD

      
Numéro de série 99297362
Statut En instance
Date de dépôt 2025-07-22
Propriétaire PayPal, Inc. ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 09 - Appareils et instruments scientifiques et électriques
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing business information regarding money transfer services; business consulting services in the field of online payments; business managing and tracking credit card, debit card, ACH, prepaid cards, payment cards, and other forms of payment transactions via electronic communications networks for business purposes; business information management, namely, electronic reporting of business analytics relating to payment processing, authentication, tracking, and invoicing Downloadable software for processing electronic payments and for transferring funds to and from others; downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; downloadable computer software and downloadable mobile application software for facilitating electronic commerce transactions; downloadable software for use as a digital wallet; downloadable software for connecting digital wallets; downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; downloadable computer software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; downloadable authentication software for controlling access to and communications with computers and computer networks; downloadable software for currency conversion Electronic payment services involving electronic processing and subsequent transmission of bill payment data; Payment transaction processing services; providing electronic processing of electronic funds transfer, ACH, credit card, debit card, electronic check and electronic payments; financial information processing; money transfer services; electronic funds transfer services; bill payment services; providing a payment network for facilitating transactions from digital wallets; providing financial services, namely, bill payment services provided via a digital wallet and providing secure commercial transactions; transaction processing services for bank accounts, debit cards, and credit cards on embedded digital wallets, cross-border money transfers to banks and mobile wallets with real time currency exchange rates; clearing financial transactions via a global computer network and wireless networks; credit card and debit card transaction processing services; processing of electronic wallet payments; currency exchange services; electronic commerce payment services, namely, establishing funded accounts used to facilitate transactions and purchases on the internet Providing temporary use of online non-downloadable software for processing electronic payments and for transferring funds to and from others; Application Service Provider (ASP) featuring Application Programming Interface (API) software for facilitating payment transactions and financial information processing; providing temporary use of online non-downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; providing temporary use of online non-downloadable software for facilitating electronic commerce transactions; providing temporary use of online non-downloadable software for use as a digital wallet; providing temporary use of online non-downloadable software for connecting digital wallets; providing temporary use of online non-downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; providing temporary use of online non-downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; providing temporary use of online non-downloadable software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; providing temporary use of online non-downloadable authentication software for controlling access to and communications with computers and computer networks; providing temporary use of online non-downloadable software for currency conversion

37.

PAYPAL WORLD

      
Numéro d'application 019221757
Statut En instance
Date de dépôt 2025-07-22
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for processing electronic payments and for transferring funds to and from others; downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; downloadable computer software and downloadable mobile application software for facilitating electronic commerce transactions; downloadable software for use as a digital wallet; downloadable software for connecting digital wallets; downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; downloadable computer software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; downloadable authentication software for controlling access to and communications with computers and computer networks; downloadable software for currency conversion. Providing business information regarding money transfer services; business consulting services in the field of online payments; business managing and tracking credit card, debit card, ACH, prepaid cards, payment cards, and other forms of payment transactions via electronic communications networks for business purposes; business information management, namely, electronic reporting of business analytics relating to payment processing, authentication, tracking, and invoicing. Electronic payment services involving electronic processing and subsequent transmission of bill payment data; Payment transaction processing services; providing electronic processing of electronic funds transfer, ACH, credit card, debit card, electronic check and electronic payments; financial information processing; money transfer services; electronic funds transfer services; bill payment services; providing a payment network for facilitating transactions from digital wallets; providing financial services, namely, bill payment services provided via a digital wallet and providing secure commercial transactions; transaction processing services for bank accounts, debit cards, and credit cards on embedded digital wallets, cross-border money transfers to banks and mobile wallets with real time currency exchange rates; clearing financial transactions via a global computer network and wireless networks; credit card and debit card transaction processing services; processing of electronic wallet payments; currency exchange services; electronic commerce payment services, namely, establishing funded accounts used to facilitate transactions and purchases on the internet. Providing temporary use of online non-downloadable software for processing electronic payments and for transferring funds to and from others; Application Service Provider (ASP) featuring Application Programming Interface (API) software for facilitating payment transactions and financial information processing; providing temporary use of online non-downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; providing temporary use of online non-downloadable software for facilitating electronic commerce transactions; providing temporary use of online non-downloadable software for use as a digital wallet; providing temporary use of online non-downloadable software for connecting digital wallets; providing temporary use of online non-downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; providing temporary use of online non-downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; providing temporary use of online non-downloadable software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; providing temporary use of online non-downloadable authentication software for controlling access to and communications with computers and computer networks; providing temporary use of online non-downloadable software for currency conversion.

38.

PP World

      
Numéro d'application 019221894
Statut En instance
Date de dépôt 2025-07-22
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable software for processing electronic payments and for transferring funds to and from others; downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; downloadable computer software and downloadable mobile application software for facilitating electronic commerce transactions; downloadable software for use as a digital wallet; downloadable software for connecting digital wallets; downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; downloadable computer software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; downloadable authentication software for controlling access to and communications with computers and computer networks; downloadable software for currency conversion. Providing business information regarding money transfer services; business consulting services in the field of online payments; business managing and tracking credit card, debit card, ACH, prepaid cards, payment cards, and other forms of payment transactions via electronic communications networks for business purposes; business information management, namely, electronic reporting of business analytics relating to payment processing, authentication, tracking, and invoicing. Electronic payment services involving electronic processing and subsequent transmission of bill payment data; Payment transaction processing services; providing electronic processing of electronic funds transfer, ACH, credit card, debit card, electronic check and electronic payments; financial information processing; money transfer services; electronic funds transfer services; bill payment services; providing a payment network for facilitating transactions from digital wallets; providing financial services, namely, bill payment services provided via a digital wallet and providing secure commercial transactions; transaction processing services for bank accounts, debit cards, and credit cards on embedded digital wallets, cross-border money transfers to banks and mobile wallets with real time currency exchange rates; clearing financial transactions via a global computer network and wireless networks; credit card and debit card transaction processing services; processing of electronic wallet payments; currency exchange services; electronic commerce payment services, namely, establishing funded accounts used to facilitate transactions and purchases on the internet. Providing temporary use of online non-downloadable software for processing electronic payments and for transferring funds to and from others; Application Service Provider (ASP) featuring Application Programming Interface (API) software for facilitating payment transactions and financial information processing; providing temporary use of online non-downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; providing temporary use of online non-downloadable software for facilitating electronic commerce transactions; providing temporary use of online non-downloadable software for use as a digital wallet; providing temporary use of online non-downloadable software for connecting digital wallets; providing temporary use of online non-downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; providing temporary use of online non-downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; providing temporary use of online non-downloadable software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; providing temporary use of online non-downloadable authentication software for controlling access to and communications with computers and computer networks; providing temporary use of online non-downloadable software for currency conversion.

39.

PAYPAL WORLD

      
Numéro de série 99297353
Statut En instance
Date de dépôt 2025-07-22
Propriétaire PayPal, Inc. ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 09 - Appareils et instruments scientifiques et électriques
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Providing business information regarding money transfer services; business consulting services in the field of online payments; business managing and tracking credit card, debit card, ACH, prepaid cards, payment cards, and other forms of payment transactions via electronic communications networks for business purposes; business information management, namely, electronic reporting of business analytics relating to payment processing, authentication, tracking, and invoicing Downloadable software for processing electronic payments and for transferring funds to and from others; downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; downloadable computer software and downloadable mobile application software for facilitating electronic commerce transactions; downloadable software for use as a digital wallet; downloadable software for connecting digital wallets; downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; downloadable computer software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; downloadable authentication software for controlling access to and communications with computers and computer networks; downloadable software for currency conversion Electronic payment services involving electronic processing and subsequent transmission of bill payment data; Payment transaction processing services; providing electronic processing of electronic funds transfer, ACH, credit card, debit card, electronic check and electronic payments; financial information processing; money transfer services; electronic funds transfer services; bill payment services; providing a payment network for facilitating transactions from digital wallets; providing financial services, namely, bill payment services provided via a digital wallet and providing secure commercial transactions; transaction processing services for bank accounts, debit cards, and credit cards on embedded digital wallets, cross-border money transfers to banks and mobile wallets with real time currency exchange rates; clearing financial transactions via a global computer network and wireless networks; credit card and debit card transaction processing services; processing of electronic wallet payments; currency exchange services; electronic commerce payment services, namely, establishing funded accounts used to facilitate transactions and purchases on the internet Providing temporary use of online non-downloadable software for processing electronic payments and for transferring funds to and from others; Application Service Provider (ASP) featuring Application Programming Interface (API) software for facilitating payment transactions and financial information processing; providing temporary use of online non-downloadable software for facilitating money transfer services, electronic funds transfer services, bill payment remittance services, electronic processing and transmission of payments and payment data; providing temporary use of online non-downloadable software for facilitating electronic commerce transactions; providing temporary use of online non-downloadable software for use as a digital wallet; providing temporary use of online non-downloadable software for connecting digital wallets; providing temporary use of online non-downloadable software for connecting, integrating, and enabling transfer of funds between digital wallets and financial accounts; providing temporary use of online non-downloadable software for linking independent financial accounts and digital wallets, enabling migration of data and transfers of funds between independent third party financial accounts and digital wallets, and establishing secure connections between independent financial accounts and digital wallets; providing temporary use of online non-downloadable software for use for financial account management, namely, software for managing and facilitating financial transactions and funds transfers for bank accounts, credit card accounts, debit card accounts, and digital wallets; providing temporary use of online non-downloadable authentication software for controlling access to and communications with computers and computer networks; providing temporary use of online non-downloadable software for currency conversion

40.

REAL-TIME SUGGESTED ACTIONS BASED ON USER PROFILE ATTRIBUTES

      
Numéro d'application 18978824
Statut En instance
Date de dépôt 2024-12-12
Date de la première publication 2025-07-17
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Ranjan, Sumit
  • Ramakrishnan, Sriram
  • Chandrasekaran, Ravi Shankar
  • Damodharan, Dinesh

Abrégé

Techniques are disclosed relating to generating real-time suggested actions for a user based on their user profile attributes. In various embodiments, a server system may select, in real-time, a particular action to suggest to a user based on profile attributes associated with a user account of the user. The server system may then provide a message indicative of this particular action to a user device associated with the user. In some embodiments, the server system may then receive an indication that the user has initiated the particular action. In response to this indication, the server system may update the profile attributes associated with the user account to indicate that the user has initiated the particular action. Using these updated profile attributes, the server system may then select, in real-time, an updated action to suggest to the user that is different from the particular action.

Classes IPC  ?

  • H04L 67/50 - Services réseau
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06N 20/00 - Apprentissage automatique
  • H04L 67/306 - Profils des utilisateurs

41.

Scope-Delimited Sharing of Encoded Sensitive Data

      
Numéro d'application 18987699
Statut En instance
Date de dépôt 2024-12-19
Date de la première publication 2025-07-17
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Knox, Joshua
  • Mills, Benjamin
  • Turumella, Rohit
  • Sanger, Chris
  • Nussbaum, Michael

Abrégé

Techniques for providing access to scope-delimited sensitive data are disclosed. A user provides sensitive data to a first party associated with a payment service provider. The first party stores the sensitive data with the payment service provider, and the payment service provider provides the first party merchant with an encoding of the payment data. The first party provides a purchasing opportunity to the user for goods offered by a third party also associated with the payment service provider. The first party transmits a sensitive data grant request to the payment service provider. In response, the payment service provides a scope-delimited encoding of the sensitive data. The first party provides the scope-delimited encoding of the payment data to the third party. The third party merchant creates a transaction using the scope-delimited encoding of the sensitive data. At some time later, access to the scope-delimited encoding of the sensitive data is revoked.

Classes IPC  ?

  • G06Q 20/08 - Architectures de paiement
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • G06Q 20/12 - Architectures de paiement spécialement adaptées aux systèmes de commerce électronique
  • G06Q 20/38 - Protocoles de paiementArchitectures, schémas ou protocoles de paiement leurs détails
  • H04L 67/02 - Protocoles basés sur la technologie du Web, p. ex. protocole de transfert hypertexte [HTTP]

42.

TWO-SIDED MACHINE LEARNING FRAMEWORK FOR POINTER MOVEMENT-BASED BOT DETECTION

      
Numéro d'application 19001112
Statut En instance
Date de dépôt 2024-12-24
Date de la première publication 2025-07-17
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Chen, Zhe
  • Zhang, Jiyi
  • Wang, Hewen
  • Qi, Panpan
  • Tang, Quan Jin Ferdinand
  • Teo, Solomon Kok How
  • Zhuo, Yuzhen
  • Gaonkar, Mandar Ganaba
  • Pei, Fei
  • Mahalingam, Omkumar

Abrégé

Methods and systems are presented for bot detection. A movement of a pointing device is tracked via a graphical user interface (GUI) of an application executable at a user device. Movement data associated with different locations of the pointing device within the GUI is obtained. The movement data is mapped to functional areas corresponding to a range of the different locations of the pointing device within the GUI over consecutive time intervals. At least one vector representing a sequence of movements for at least one trajectory of the pointing device through one or more of the functional areas and a duration the pointing device stays within each functional area is generated. At least one trained machine learning model is used to determine whether the sequence of movements of the pointing device was produced through human interaction with the pointing device by an actual user of the user device.

Classes IPC  ?

  • G06F 21/31 - Authentification de l’utilisateur
  • G06F 21/32 - Authentification de l’utilisateur par données biométriques, p. ex. empreintes digitales, balayages de l’iris ou empreintes vocales

43.

PAYPAL OPEN

      
Numéro d'application 1865045
Statut Enregistrée
Date de dépôt 2025-03-07
Date d'enregistrement 2025-03-07
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ?
  • 09 - Appareils et instruments scientifiques et électriques
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Downloadable and recorded software for processing electronic payments and for transferring funds to and from others; downloadable and recorded software for remittance, transfer of funds, stored value accounts, debit card transactions, credit card transactions, and financial transactions and account notifications; downloadable and recorded software for creating, preparing, managing, sending, processing, tracking, and reconciling invoices; downloadable and recorded software for issuing receipts regarding mobile payment transactions; downloadable and recorded authentication software for controlling access to and communications with computers and computer networks; downloadable and recorded software for creating and managing a business and an online store, namely, inventory management, order processing, order tracking, fulfillment of orders, sales tracking, collection of sales data, and sales analytics; downloadable and recorded computer software for generating and soliciting business funding and investments; downloadable and recorded software for managing customer relations (CRM) and loyalty programs, namely, software to create, manage, and analyze customer contact and account information, generate and track customer loyalty programs, and generate reports; downloadable and recorded software used for point of sale transactions; downloadable and recorded computer software used to train and manage employees, record employee hours worked, and generate payroll processing; downloadable software development kits (SDK); computer hardware for making, authenticating, facilitating, operating, managing, and processing payment transactions with credit cards, debit cards, prepaid cards, payment cards, gift cards, and other payment forms; electronic devices, namely, point of sale terminals, chip card readers, credit card readers, payment card readers, magnetic encoded and coded card readers, and mobile card readers; charging stands adapted for use with handheld digital electronic devices namely, cell phones, MP3 players, personal digital assistants, point of sale terminals, chip card readers, credit card readers, payment card readers, and mobile card readers; credit card reader stands; tablet and mobile device stands; barcode scanners; receipt printers; cash drawers. Promoting the sale of goods and services of others by means of contests and incentive award programs; providing incentive award programs through issuance and processing of loyalty points for purchase of the goods and services of others; providing incentive award programs through the issuance of gift cards, prepaid gift cards, prepaid stored value cards for the purpose of promoting and rewarding loyalty, discounts, offers, deals, coupons, rebates, rewards, and vouchers to participants for the purchase of the goods and services of others; customer loyalty services for commercial, promotional and/or advertising purposes, namely, administration of a program that allows participants to obtain and redeem points or awards for goods and/or services; business consulting services in the field of online payments; managing and tracking credit card, debit card, ACH, prepaid cards, payment cards, and other forms of payment transactions via electronic communications networks for business purposes; business information management, namely, electronic reporting of business analytics relating to payment processing, authentication, tracking, and invoicing; business management, namely, optimization of payments for businesses; reconciling financial transactions. Financial services, namely, electronic funds transfer; clearing financial transactions; financial services, namely, payment collection, payment transactions and information processing; providing a wide variety of payment and financial services, namely, issuing credit cards and lines of credit, electronic payment services involving electronic processing and subsequent transmission of bill payment data, bill payment services with guaranteed payment delivery, all conducted via a global communications network; credit card transaction processing services; debit card transaction processing services; electronic foreign exchange payment processing; payment processing services, namely, providing virtual currency transaction processing services for others; processing electronic payments made through prepaid cards; providing electronic mobile payment services for others; providing electronic processing of electronic funds transfer, ACH, credit card, debit card, check transactions and payments; credit services, namely, providing revolving credit account services; bill payment services; fund wiring services; providing electronic payment services via ATM machines and point-of-sale (POS) merchants, namely, providing secure commercial transactions and payment options using a mobile device at a point of sale; providing payment collection, payment transaction processing, financial remittance, transfer of funds to make payments, payment services using stored value accounts, and debit card transaction processing to make payments via an online portal; financial risk management services; financial transaction analysis, namely, financial analysis of payment transactions and stored value card and debit card transactions; providing purchase protection services for goods and services purchased by others via a global computer network and wireless networks, namely, providing fraud reimbursement services in the field of credit card purchases and electronic payment purchases, and providing secure commercial transactions for credit card purchases and electronic payment purchases; reimbursement of funds for disputed items in the field of electronic payment purchases; loyalty program and incentive award program payment processing services. Providing temporary use of online non-downloadable software for processing electronic payments and for transferring funds to and from others; providing temporary use of online non-downloadable software for remittance, transfer of funds, stored value accounts, debit card transactions, credit card transactions, financial transactions and account notifications; providing temporary use of online non-downloadable software for creating, preparing, managing, sending, processing, tracking, and reconciling invoices; providing temporary use of online non-downloadable software for issuing receipts regarding mobile payment transactions; providing temporary use of online non-downloadable authentication software for controlling access to and communications with computers and computer networks; providing temporary use of online non-downloadable software for creating and managing a business and an online store, namely, inventory management, order processing, order tracking, fulfillment of orders, sales tracking, collection of sales data, and sales analytics; providing temporary use of online non-downloadable computer software for managing customer relations (CRM) and loyalty programs, namely, software to create, manage, and analyze customer contact and account information, generate and track customer loyalty programs, and generate reports; providing online temporary use of non-downloadable computer software used for point of sale transactions; providing temporary use of online non-downloadable computer software used to train and manage employees, record employee hours worked, and generate payroll processing; application service provider featuring application programming interface (API) software for payment collection, payment transactions, and information processing; providing temporary use of online non-downloadable software for customizing application programming interfaces (APIs), integrating pay in methods to digital wallets, sharing payment data between users and generating reports, managing disputed charges, and automating chargebacks; application service provider (ASP) featuring application programming interface (API) software for payment collection, payment transactions, forwarding data and information processing; electronic monitoring of financial transactions for fraud, money laundering, and illegality in the field of electronic fund transfer and electronic payment processing services; providing temporary use of online non-downloadable computer software for tracking and analyzing payment activity; providing temporary use of online non-downloadable software to evaluate and detect fraud and illegality in payment transactions, and manage compliance validation.

44.

SERVER DEVICE CONFIGURATIONS BASED ON MACHINE LEARNING

      
Numéro d'application 18984487
Statut En instance
Date de dépôt 2024-12-17
Date de la première publication 2025-07-17
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Kurniadi, Fransisco
  • Yang, Yaqin

Abrégé

A system, a medium, and a method are provided to exchange data packets over a communications network and perform machine learning operations. A network server device receives account data from client devices that correspond to account profiles. An account engine of the network server device segments the account profiles into profile groups based on a respective balance associated with each account profile. The account engine determines target accounts from profile groups based on behavioral data. Further, data processing components of the network server device determine a method of contact for each target account. The data processing components determine a respective time to communicate with a respective device for each target account. Further, communication components of the network server device initiate communications to the respective devices at the respective times for each target account.

Classes IPC  ?

  • G06Q 20/32 - Architectures, schémas ou protocoles de paiement caractérisés par l'emploi de dispositifs spécifiques utilisant des dispositifs sans fil
  • G06N 20/00 - Apprentissage automatique
  • G06Q 20/10 - Architectures de paiement spécialement adaptées aux systèmes de transfert électronique de fondsArchitectures de paiement spécialement adaptées aux systèmes de banque à domicile
  • H04L 67/50 - Services réseau
  • H04W 4/21 - Signalisation de servicesSignalisation de données auxiliaires, c.-à-d. transmission de données par un canal non destiné au trafic pour applications de réseaux sociaux

45.

SYSTEMS AND METHODS EMPLOYING A ROUTER FOR ELECTRONIC TRANSACTIONS

      
Numéro d'application 19011238
Statut En instance
Date de dépôt 2025-01-06
Date de la première publication 2025-07-17
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Nuzzi, Frank Anthony

Abrégé

A system, including: a non-transitory memory; and one or more hardware processors coupled to the non-transitory memory and configured to read instructions from the non-transitory memory to cause the system to perform operations including: receiving a transaction request from an endpoint device on a network, wherein the endpoint device is registered with a transaction service provider; locating, based on the transaction request, an authorization token corresponding to a payment mechanism, wherein the authorization token is stored to a memory device of the router; in response to receiving the transaction request, transmitting the authorization token to the transaction service provider to retrieve transaction information from the transaction service provider, wherein the transaction information includes payment data for a user of the endpoint device; and transmitting the transaction information to the upstream network location, wherein the upstream network location includes a merchant server.

Classes IPC  ?

  • G06Q 20/32 - Architectures, schémas ou protocoles de paiement caractérisés par l'emploi de dispositifs spécifiques utilisant des dispositifs sans fil
  • G06Q 20/02 - Architectures, schémas ou protocoles de paiement impliquant un tiers neutre, p. ex. une autorité de certification, un notaire ou un tiers de confiance
  • G06Q 20/10 - Architectures de paiement spécialement adaptées aux systèmes de transfert électronique de fondsArchitectures de paiement spécialement adaptées aux systèmes de banque à domicile
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 40/02 - Opérations bancaires, p. ex. calcul d'intérêts ou tenue de compte
  • H04W 88/00 - Dispositifs spécialement adaptés aux réseaux de télécommunications sans fil, p. ex. terminaux, stations de base ou points d'accès
  • H04W 88/08 - Dispositifs formant point d'accès

46.

Automatic query and data retrieval optimization through procedural generation of data tables from query patterns

      
Numéro d'application 18609405
Numéro de brevet 12361000
Statut Délivré - en vigueur
Date de dépôt 2024-03-19
Date de la première publication 2025-07-15
Date d'octroi 2025-07-15
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Chen, Chongchen
  • Feng, Si
  • Huang, Dawei

Abrégé

Latency, response times, and efficiency improvements for data querying are provided herein, particularly in the context of querying large database systems and data tables from disparate data sources. There are provided systems and methods for automatic query and data retrieval optimization through procedural generation of data tables from query patterns. A service provider may utilize different computing services for query processing and data retrieval for different applications and services used by internal and/or external users. Instead of querying large database systems and numerous data tables, pre-aggregated data tables may instead be used and searched by procedurally generating such tables based on precomputation rules and query patterns. Once patterns have been identified in queries, corresponding data may be aggregated from data sources in a pre-aggregated data table. Query optimization rules may then be used to have these data tables queried in place of their original sources.

Classes IPC  ?

47.

DETECTION OF DUPLICATED DATA FOR DIGITAL CONTENT

      
Numéro d'application 18977635
Statut En instance
Date de dépôt 2024-12-11
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Sarin, Pankaj

Abrégé

Systems and techniques for facilitating detection of data duplication issues relating to generation of non-fungible tokens are provided. In various embodiments, a computer system can access a digital artwork image. In various aspects, the computer system can generate a set of plagiarism probabilities by comparing the digital artwork image to a set of cached digital artwork images. In various instances, a given plagiarism probability in the set of plagiarism probabilities can indicate a likelihood that the digital artwork image was derived from a given cached digital artwork image in the set of cached digital artwork images. In various cases, the computer system can calculate an authenticity score for the digital artwork image based on the set of plagiarism probabilities. In various aspects, the computer system can determine whether the authenticity score for the digital artwork image satisfies a threshold authenticity value.

Classes IPC  ?

  • G06V 20/80 - Reconnaissance des objets d’image caractérisés par des motifs aléatoires uniques
  • G06V 20/00 - ScènesÉléments spécifiques à la scène

48.

METHOD AND SYSTEM FOR DETECTING SLOW PAGE LOAD

      
Numéro d'application 18983739
Statut En instance
Date de dépôt 2024-12-17
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Monk, Iv, J. Thomas
  • Doshi, Hemal

Abrégé

A method and system for detecting slow page load is provided. An example system comprises a page request detector, a time-out module, a time-out monitor, and a lightweight page requestor. The page request detector may be configured to detect a request for a web page. The time-out module may be configured to commence a time-out period in response to a request for a web page. The time-out module cooperates with the time-out monitor that may be configured to determine that rendering of a rich version of the requested web page has not commenced at an expiration of the time-out period. The lightweight page requestor may be configured to cause a lightweight version of the requested page to be provided to the client system when the time-out monitor determines that the rendering of a rich version of the requested web page has not commenced at an expiration of the time-out period.

Classes IPC  ?

  • G06F 16/957 - Optimisation de la navigation, p. ex. mise en cache ou distillation de contenus
  • G06F 16/958 - Organisation ou gestion de contenu de sites Web, p. ex. publication, conservation de pages ou liens automatiques
  • G06F 40/143 - Balisage, p. ex. utilisation du langage SGML ou de définitions de type de document
  • G06F 40/197 - Gestion des versions
  • H04L 67/02 - Protocoles basés sur la technologie du Web, p. ex. protocole de transfert hypertexte [HTTP]

49.

REAL-TIME ELECTRONIC SERVICE PROCESSING ADJUSTMENTS

      
Numéro d'application 19010928
Statut En instance
Date de dépôt 2025-01-06
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Huang, Shitong
  • Zhang, Xiaoling
  • Tan, Silu

Abrégé

Systems and methods for real-time electronic service processing adjustments are disclosed. In an embodiment, a computer system may determine that a user account activity has triggered an assessment checkpoint from a plurality of assessment checkpoints in a life cycle of a user account. The computer system may retrieve data from the assessment checkpoint and update a lifetime score for the user account based on the retrieved data. The computer system may update the lifetime score by weighting the retrieved data as one or more features in a linear-weighted lifetime score model, for the life cycle. The computer system may adjust a response threshold for the assessment checkpoint based on the updated lifetime score.

Classes IPC  ?

  • H04L 67/50 - Services réseau
  • G06F 21/55 - Détection d’intrusion locale ou mise en œuvre de contre-mesures

50.

SYSTEMS AND METHODS FOR SIMILARITY-BASED UNIVERSAL OBJECT-DETECTION FOR JOINT IDENTIFICATION

      
Numéro d'application 18292551
Statut En instance
Date de dépôt 2023-06-08
Date de la première publication 2025-07-10
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • He, Jiawei
  • Chen, Yao

Abrégé

A computer-implemented method may include receiving an image to analyze for potential objects; providing the image as input to a pretrained machine learning model, where the pretrained machine learning model is trained to detect a known object that corresponds to a predefined category within the pretrained machine learning model or a generic object; determining based on output from the pretrained machine learning model, that the image comprises an instance of a generic object; performing, based on determining that the image comprises an instance of a generic object, a similarity search between the image and a library of images; and determining, for the instance of the generic object, a specific category defined by the library of images based at least in part on the similarity search. Various other methods and systems are also disclosed.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/74 - Appariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques

51.

MACHINE LEARNING ENGINE USING FOLLOWING LINK SELECTION

      
Numéro d'application 18978965
Statut En instance
Date de dépôt 2024-12-12
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Lim, Chern Jie
  • Pan, Ziyuan
  • Tjong, Jessica
  • Sanderson, Oscar Charles Edward
  • Dong, Yanfei

Abrégé

A machine learning engine may be trained using artificial intelligence techniques and used according to techniques discussed herein. While an initial electronic transaction for a resource may be permitted, a subsequent related transaction to the initial electronic transaction may be analyzed in view of additional electronic information that was not available at the time of the initial transaction. Analysis of the subsequent related transaction, using the machine learning engine, may indicate a new classification related to the resource and/or the acquisition of the resource. Based on this new classification, usage of the resource may be restricted and/or denied, and the initial transaction for the resource may even be canceled retroactively.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06F 16/955 - Recherche dans le Web utilisant des identifiants d’information, p. ex. des localisateurs uniformisés de ressources [uniform resource locators - URL]
  • G06F 21/31 - Authentification de l’utilisateur
  • G06N 20/00 - Apprentissage automatique
  • G06Q 20/34 - Architectures, schémas ou protocoles de paiement caractérisés par l'emploi de dispositifs spécifiques utilisant des cartes, p. ex. cartes à puces ou cartes magnétiques
  • H04L 9/40 - Protocoles réseaux de sécurité

52.

GUIDED WEB CRAWLER FOR AUTOMATED IDENTIFICATION AND VERIFICATION OF WEBPAGE RESOURCES

      
Numéro d'application 18984605
Statut En instance
Date de dépôt 2024-12-17
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Mukherjee, Sourish
  • Singh, Dalvinder
  • Ganesan, Elanselvan
  • Panja, Subhadip
  • Kandasamy, Subramania Jeeva
  • Ramakrishnan, Vikram
  • Bharadwaj, Vishak S.

Abrégé

There are provided systems and methods for a guided web crawler for automated identification and verification of webpage resources. A service provider, such as an online transaction processor, may provide a guided web crawler and/or resources for such crawler for execution by computing devices of users. Users may load different pluggable modules to the guided web crawler, which are associated with specific web crawling tasks. Web crawling tasks may correspond to identification and verification of webpage resources on a webpage, such as a location, placement, use of, and/or number of appearances of the resource. The web crawler may use code from the pluggable module being executed to parse and/or crawl webpage data for a webpage and identify requested resources. Thereafter, the guided web crawler may automate resources to use, display, and/or interact with the identified and verified resource.

Classes IPC  ?

  • G06F 16/951 - IndexationTechniques d’exploration du Web
  • G06F 16/954 - Navigation, p. ex. en utilisant la navigation par catégories

53.

CONFIGURATION-DRIVEN EFFICIENT TRANSFORMATION OF FORMATS AND OBJECT STRUCTURES FOR DATA SPECIFICATIONS IN COMPUTING SERVICES

      
Numéro d'application 19011362
Statut En instance
Date de dépôt 2025-01-06
Date de la première publication 2025-07-10
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Bhat, Rajendra
  • Patodia, Prabin

Abrégé

There are provided systems and methods for configuration-driven efficient transformation of formats and object structures for data specifications in computing services. A service provider, such as an electronic transaction processor for digital transactions, may utilize different computing services that implement rules and artificial intelligence models for decision-making of data including data in production computing environment. Different services may process data in different data formats and structures. However, transformation of data between different services, such as a gateway service that may receive data processing requests and/or data objects and downstream services that may process such requests and objects, may take significant time and resources. A configuration-driven data transformation platform may intelligently create code for and select from transformers that may be used for data transformations. When selected, the transformers may transform data between services faster and more efficiently by being specifically selected based on past performances and code configurations.

Classes IPC  ?

  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06N 20/00 - Apprentissage automatique
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

54.

V

      
Numéro d'application 242231600
Statut En instance
Date de dépôt 2025-07-09
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

(1) Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users.

55.

VENMO

      
Numéro d'application 242231500
Statut En instance
Date de dépôt 2025-07-09
Propriétaire PayPal, Inc. (USA)
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

(1) Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users.

56.

Miscellaneous Design

      
Numéro de série 99267153
Statut En instance
Date de dépôt 2025-07-03
Propriétaire PayPal, Inc. ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users

57.

AUTOMATED GENERATION OF PROMPTS FOR RESEARCH SUMMARIES USING GENERATIVE ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18402884
Statut En instance
Date de dépôt 2024-01-03
Date de la première publication 2025-07-03
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Gelli, Francesco
  • Dong, Yanfei
  • Lin, Ting
  • Zheng, Pingxia
  • Mangalore, Nithin Navin
  • Palaniappan, Sathish Kumar
  • Eda, Chenna Rao
  • Upadhyay, Rushik Navinbhai

Abrégé

A method according to the present disclose may include presenting, on a graphical user interface (GUI), an interactive element; receiving, via the interactive element on the GUI, a research target and a type of research; autonomously retrieving, from a search engine, search results related to the research target; identifying, using a predictive machine learning model, at least one relevant portion of the search results, the at least one relevant portion comprising information related to the research target and responsive to the type of research; generating a prompt based on the type of research and the at least one relevant portion of the search results; and receiving, from a generative machine learning model in response to receipt of the generated prompt, a report indicative of the research target.

Classes IPC  ?

  • G06F 16/9538 - Présentation des résultats des requêtes
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs

58.

SELF-ADAPTIVE GEOSPATIAL QUERIES

      
Numéro d'application CN2023143482
Numéro de publication 2025/138185
Statut Délivré - en vigueur
Date de dépôt 2023-12-29
Date de publication 2025-07-03
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Luan, Xiaojun
  • Zhang, Pengshan
  • Liu, Delin
  • Sharma, Nitin S.
  • Huang, Zhe

Abrégé

Techniques are disclosed relating to determining a minimum search region with a threshold number of entities within the minimum search region. In some embodiments, a system selects, based on a location of a user device, a first region, where the location of the device is at a center of the first region. The system executes, based on the first region, a query on a database storing entity locations. The system increases the first region by a specified amount to generate a second search region, where the increasing is based on determining that entities returned by the first query does not satisfy an entity threshold requirement. The system executes, based on the second region, a second query on the database. In response to the second query returning a number of entities that satisfy the threshold requirement, the system causes display, at the device, of the entities returned by the second query.

Classes IPC  ?

  • G06F 16/9537 - Recherche à dépendance spatiale ou temporelle, p. ex. requêtes spatio-temporelles

59.

GEOSPATIAL QUERY CACHING

      
Numéro d'application CN2023143484
Numéro de publication 2025/138186
Statut Délivré - en vigueur
Date de dépôt 2023-12-29
Date de publication 2025-07-03
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Yue, Ying
  • Zhang, Xia
  • Zhang, Yu
  • Guo, Junshi

Abrégé

Techniques are disclosed relating to improving the efficiency of geolocation queries via geospatial cells and query parameter caching. In various embodiments, a system receives a request from a user device to access geolocation information of entities and determine a first geographic location of the device. The system identifies that the first location is within a geospatial cell stored in a database cache and determines whether query parameters corresponding to the cell are stored in the cache. The system may retrieve the cached query parameters corresponding to the geospatial cell and execute a geolocation query on a database storing location information for different entities based on the cached query parameters. Results of the geolocation query may be different from query results of one or more other queries executed, based on the cached query parameters, for other user computing devices located within the given geospatial cell based on the cached query parameters.

Classes IPC  ?

  • G06F 16/29 - Bases de données d’informations géographiques

60.

VENMO

      
Numéro de série 99267095
Statut En instance
Date de dépôt 2025-07-03
Propriétaire PayPal, Inc. ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 09 - Appareils et instruments scientifiques et électriques
  • 36 - Services financiers, assurances et affaires immobilières
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception

Produits et services

Advertising, marketing, and promotion services; administering promotional and incentive rewards programs, namely, rewards, discounts, and promotional programs featuring discounts and the ability to earn rewards on third-party products and services; debit and credit card incentive reward programs, namely, providing cash back rewards to debit card and credit card account holders; promoting the goods and services of others by providing information regarding rewards, discounts, coupons, rebates, vouchers and special offers for goods and services; promoting the goods and services of others, namely, providing links to the websites of others; promotion services, namely, providing websites featuring links to the online retail and e-commerce websites of others; promoting the goods and services of others via offering rewards, discounts, and promotions through a mobile application Downloadable software for sending, receiving, accepting, buying, selling, storing, transmitting, trading and exchanging digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain financial assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for use in processing payments, purchases, and investments using digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain financial assets, digitized assets, digital tokens, crypto tokens and utility tokens; downloadable software for use as an electronic wallet; magnetically encoded debit cards and credit cards; downloadable software that promotes the goods and services of others by providing information regarding rewards, discounts, cash back offers, coupons, rebates, vouchers and special offers for goods and services; downloadable software for the electronic transfer of money; downloadable software that allows users to transfer money, split money, and share money; downloadable software for processing electronic payment transactions and funds transfers made via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users Software as a service (SaaS) services featuring software for sending, receiving, accepting, buying, selling, storing, transmitting, trading and exchanging digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain financial assets, digitized assets, digital tokens, crypto tokens and utility tokens; Software as a service (SaaS) services featuring software for use in processing payments, purchases, and investments using digital currency, virtual currency, cryptocurrency, stablecoins, digital and blockchain financial assets, digitized assets, digital tokens, crypto tokens and utility tokens; Software as a service (SaaS) services featuring software that promotes the goods and services of others by providing information regarding rewards, discounts, cash back offers, coupons, rebates, vouchers and special offers for goods and services; Software as a service (SaaS) services featuring software for the electronic transfer of money; Software as a service (SaaS) services featuring software that allows users to transfer money, split money, and share money; software as a service (SaaS) services featuring software for processing electronic payment transactions and funds transfers made via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; software as a service (SaaS) services featuring software for use as an electronic wallet

61.

VENMO

      
Numéro de série 99267132
Statut En instance
Date de dépôt 2025-07-03
Propriétaire PayPal, Inc. ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Cryptocurrency and stablecoin payment processing; cryptocurrency and stablecoin exchange services; electronic wallet services for trading, storing, sending, receiving, validating, verifying, accepting, tracking, transferring, and transmitting virtual currency, and managing virtual currency payment and exchange transactions; fraud and mistaken transaction reimbursement services, namely, reimbursement of payment purchase processing for transactions concerning lost, damaged, misrepresented, or incorrect products or services; providing purchase protection services, namely, providing payment dispute resolution services and reimbursement services for disputed transactions in the field of electronic payment purchases; financial and banking services, namely, debit card and credit card transaction processing services featuring cash back rewards to customers that make incentivized purchases; electronic funds transfer; processing electronic payment transactions and electronic funds transfers via automated clearing house (ACH), credit card, debit card, electronic check and electronic, mobile and online payment platforms; electronic currency transfer services, namely, electronic splitting and sharing of funds between users

62.

Geospatial Query Caching

      
Numéro d'application 18590167
Statut En instance
Date de dépôt 2024-02-28
Date de la première publication 2025-07-03
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Yue, Ying
  • Zhang, Xia
  • Zhang, Yu
  • Guo, Junshi

Abrégé

Techniques are disclosed relating to improving the efficiency of geolocation queries via geospatial cells and query parameter caching. In various embodiments, a system receives a request from a user device to access geolocation information of entities and determine a first geographic location of the device. The system identifies that the first location is within a geospatial cell stored in a database cache and determines whether query parameters corresponding to the cell are stored in the cache. The system may retrieve the cached query parameters corresponding to the geospatial cell and execute a geolocation query on a database storing location information for different entities based on the cached query parameters. Results of the geolocation query may be different from query results of one or more other queries executed, based on the cached query parameters, for other user computing devices located within the given geospatial cell based on the cached query parameters.

Classes IPC  ?

63.

ADVERSARIALLY ROBUST VOICE BIOMETRICS, SECURE RECOGNITION, AND IDENTIFICATION

      
Numéro d'application 18976736
Statut En instance
Date de dépôt 2024-12-11
Date de la première publication 2025-07-03
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Hennig, Karl Anton
  • Aswal, Ajay
  • Zerihun, Bisrat

Abrégé

Techniques for detecting a fraudulent attempt by an adversarial user to voice verify as a user are presented. An authenticator component can determine characteristics of voice information received in connection with a user account based on analysis of the voice information. In response to determining the characteristics sufficiently match characteristics of a voice print associated with the user account, authenticator component can determine a similarity score based on comparing the characteristics of the voice information and other characteristics of a set of previously stored voice prints associated with the user account. Authenticator component can determine whether the similarity score is higher than a threshold similarity score to indicate whether the voice information is a replay of a recording or a deep fake emulation of the voice of the user. Above the threshold can indicate the voice information is fraudulent, and below the threshold can indicate the voice information is valid.

Classes IPC  ?

  • G10L 17/24 - Procédures interactivesInterfaces homme-machine l’utilisateur étant incité à prononcer un mot de passe ou une phrase prédéfinie
  • G06F 21/32 - Authentification de l’utilisateur par données biométriques, p. ex. empreintes digitales, balayages de l’iris ou empreintes vocales
  • G10L 17/04 - Entraînement, enrôlement ou construction de modèle
  • G10L 17/06 - Techniques de prise de décisionStratégies d’alignement de motifs
  • G10L 17/08 - Utilisation d’une mesure de distorsion ou d’une distance particulière entre un motif d’analyse et les modèles de référence
  • G10L 17/22 - Procédures interactivesInterfaces homme-machine
  • G10L 25/51 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes spécialement adaptées pour un usage particulier pour comparaison ou différentiation
  • H04L 9/40 - Protocoles réseaux de sécurité

64.

SYSTEM AND METHOD FOR MAKING UNIQUE RECOMMENDATIONS BASED ON LOGS

      
Numéro d'application 18960554
Statut En instance
Date de dépôt 2024-11-26
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Krishnan, Sekar

Abrégé

A system may include a processor and a non-transitory computer readable medium having stored thereon instructions that are executable by the processor to cause the system to receive a conversation log between a first user and a second user, derive, via a first machine learning model, at least one text chunk from the conversation log, process, via a second machine learning model, the at least one text chunk, the second machine learning model trained using previous conversation logs to determine whether the at least one text chunk indicates a vulnerability, in response to the at least one text chunk indicating the vulnerability, classify a type of the indicated vulnerability, and automatically execute a remedial action based on the classified type.

Classes IPC  ?

  • G06F 21/55 - Détection d’intrusion locale ou mise en œuvre de contre-mesures
  • G06F 21/57 - Certification ou préservation de plates-formes informatiques fiables, p. ex. démarrages ou arrêts sécurisés, suivis de version, contrôles de logiciel système, mises à jour sécurisées ou évaluation de vulnérabilité
  • G06F 40/289 - Analyse syntagmatique, p. ex. techniques d’états finis ou regroupement

65.

TAPPING NETWORK DATA TO PERFORM LOAD BALANCING

      
Numéro d'application 19001147
Statut En instance
Date de dépôt 2024-12-24
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Blackledge, Clive

Abrégé

Methods, systems, and computer program products are included for load balancing processing of a data stream that is communicated over a network. An exemplary method includes establishing a communication session over a network between a source endpoint device and a destination endpoint device. A network device in the network receives a data stream that is communicated to the destination endpoint device from the source endpoint device during the communication session. The network device provides data corresponding to the data stream to a processing device. The processing device identifies a portion of the data that is assigned to the processing device and performs operations to process the portion of the data. After performing the operations, the processing device communicates a response corresponding to the processing to the source endpoint device by way of the destination endpoint device.

Classes IPC  ?

  • H04L 47/125 - Prévention de la congestionRécupération de la congestion en équilibrant la charge, p. ex. par ingénierie de trafic
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 67/1008 - Sélection du serveur pour la répartition de charge basée sur les paramètres des serveurs, p. ex. la mémoire disponible ou la charge de travail
  • H04L 67/141 - Configuration des sessions d'application
  • H04L 67/56 - Approvisionnement des services mandataires
  • H04L 69/16 - Implémentation ou adaptation du protocole Internet [IP], du protocole de contrôle de transmission [TCP] ou du protocole datagramme utilisateur [UDP]
  • H04L 69/163 - Adaptation dans la bande de l'échange de données TCPProcédures de commande intra-bande

66.

MISSING CONTROL IDENTIFICATION

      
Numéro d'application 18390346
Statut En instance
Date de dépôt 2023-12-20
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Zafar, Zuheb
  • Cao, Li
  • Mangisetty, Sunitha

Abrégé

Systems and methods for determining control objective for electronic documents using models may include obtaining electronic documents and a control objectives library, determining a first set of summaries based on the electronic documents, extracting a set of embeddings from the control objectives library, and determining a set of control objectives based on the summaries and the embeddings. The method may also include determining control objective candidates based on the summaries and embeddings, ranking the control objective candidates based on a confidence score, filtering the control objective candidates based on the ranking, categorizing the control objectives candidates into a second and third set of control objectives, updating the control objectives library to include one or more control objectives from the third set of control objectives, and validating control objectives in the third set of control objectives based on a test plan and updating the control objectives library that pass validation.

Classes IPC  ?

  • G06F 16/338 - Présentation des résultats des requêtes
  • G06F 16/35 - PartitionnementClassement
  • G06F 16/383 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des métadonnées provenant automatiquement du contenu

67.

INTELLIGENT PRE-EXECUTION OF DECISION SERVICE STRATEGIES FOR AVAILABILITY DURING DATA REQUESTS

      
Numéro d'application 18392686
Statut En instance
Date de dépôt 2023-12-21
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Bhat, Rajendra
  • Patodia, Prabin

Abrégé

There are provided systems and methods for intelligent pre-execution of decision service strategies for availability during data requests. A service provider, such as an electronic transaction processor for digital transactions, may utilize different decision services that implement rules and artificial intelligence models for decision-making of data including data in production computing environment. A decision service may normally be invoked to execute a strategy for processing a request when that request is received or arrives at the decision service. To provide faster processing and higher availability of such services, an intimation call may be received at the decision service from an upstream service, which initiates a process to pre-execute the strategy based on available data at the time of the intimation call. Pathways of rules capable of being completed may be executed using the available data and the result may be stored for later merging with further strategy execution.

Classes IPC  ?

  • G06F 9/30 - Dispositions pour exécuter des instructions machines, p. ex. décodage d'instructions

68.

CONVERSATIONAL ARTIFICIAL INTELLIGENCE SERVICE AND CHAT ASSISTANT FOR PERSONALIZED ENTITY ONBOARDING WITH DIGITAL PLATFORMS

      
Numéro d'application 18394579
Statut En instance
Date de dépôt 2023-12-22
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Thakur, Bhartendu
  • Jayaraman, Srikant
  • Vinothkumar, Divya

Abrégé

There are provided systems and methods for streamlined and privacy protected data flows for entity onboarding with online data platforms. An online transaction processor or other service provider may provide computing services and platforms to entities including merchants for electronic transaction processing and other account services. To onboard entities with the transaction processor, the transaction processor may provide a merchant or user-specific experience and recommendations using a conversational AI service and chatbot. An AI engine may be trained to engage with users via chat dialogue, which may interact with users during onboarding and/or account lifecycle events based on the available services and products of the service provider. An intent of the entity may be classified by the AI engine and may be used to generate a recommendation including an action plan or the like of activities or steps for the entity to take.

Classes IPC  ?

  • G06Q 10/0631 - Planification, affectation, distribution ou ordonnancement de ressources d’entreprises ou d’organisations
  • G06F 40/40 - Traitement ou traduction du langage naturel

69.

Macro Adaptive Hyper Model for Underwriting

      
Numéro d'application 18394936
Statut En instance
Date de dépôt 2023-12-22
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Mishra, Satyabrata
  • Sagar, Gaurav

Abrégé

From a plurality of sources, data pertaining to one or more users is accessed. Based on the data, one or more original underwriting model scores are determined for the users. Based on the one or more original underwriting model scores, an initial approval decision is generated for one or more credit applications associated with the one or more users. One or more macro environmental criteria is monitored. Based on the monitoring indicating that the one or more macro environmental criteria has exceeded a specified threshold, the one or more macro environmental criteria and the one or more original underwriting model scores are inputted into a hyper model. Via the hyper model, one or more scaled underwriting model scores are determined for the one or more users. Based on the one or more scaled underwriting model scores, a revised approval decision is generated for one or more credit applications.

Classes IPC  ?

70.

CONVERSATIONAL ARTIFICIAL INTELLIGENCE SERVICE AND CHAT ASSISTANT FOR PERSONALIZED ENTITY ONBOARDING WITH DIGITAL PLATFORMS

      
Numéro d'application US2024059023
Numéro de publication 2025/136704
Statut Délivré - en vigueur
Date de dépôt 2024-12-06
Date de publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Thakur, Bhartendu
  • Jayaraman, Srikant
  • Vinothkumar, Divya

Abrégé

There are provided systems and methods for streamlined and privacy protected data flows for entity onboarding with online data platforms. An online transaction processor or other service provider may provide computing services and platforms to entities including merchants for electronic transaction processing and other account services. To onboard entities with the transaction processor, the transaction processor may provide a merchant or user-specific experience and recommendations using a conversational AI service and chatbot. An AI engine may be trained to engage with users via chat dialogue, which may interact with users during onboarding and/or account lifecycle events based on the available services and products of the service provider. An intent of the entity may be classified by the AI engine and may be used to generate a recommendation including an action plan or the like of activities or steps for the entity to take.

Classes IPC  ?

  • G06Q 30/00 - Commerce
  • G06Q 10/00 - AdministrationGestion
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  • G06Q 30/06 - Transactions d’achat, de vente ou de crédit-bail
  • G06Q 30/0601 - Commerce électronique [e-commerce]

71.

CRYPTOCURRENCY TRANSACTION BACKUP SYSTEM

      
Numéro d'application US2024060578
Numéro de publication 2025/136984
Statut Délivré - en vigueur
Date de dépôt 2024-12-17
Date de publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Aoki, Norihiro Edwin
  • Jethmalani, Mehak
  • Thangarasu, Ganesh
  • Baskaran, Selva Priya
  • Unterberg, Paul
  • Kaushal, Piyush

Abrégé

The disclosed computer-implemented method includes detecting an unavailability of a primary cryptocurrency exchange system and queuing received cryptocurrency transaction requests. The method also includes connecting to a backup cryptocurrency exchange system and completing the queued cryptocurrency transaction requests with a backup asset pool using the backup cryptocurrency exchange system. The method further includes detecting an availability of the primary cryptocurrency exchange system and reconnecting to the primary cryptocurrency exchange system. Various other methods, systems, and computer-readable media are also disclosed.

Classes IPC  ?

  • G06Q 20/36 - Architectures, schémas ou protocoles de paiement caractérisés par l'emploi de dispositifs spécifiques utilisant des portefeuilles électroniques ou coffres-forts électroniques
  • G06Q 20/22 - Schémas ou modèles de paiement
  • G06Q 40/04 - TransactionsOpérations boursières, p. ex. actions, marchandises, produits dérivés ou change de devises

72.

BOT DETECTION THROUGH EXPLAINABLE DEEP LEARNING AND RULE VIOLATION CODEBOOKS FROM GENERATIVE ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18975509
Statut En instance
Date de dépôt 2024-12-10
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Qi, Panpan
  • Chen, Zhe
  • Tang, Quan Jin Ferdinand
  • Pei, Fei
  • Mahalingam, Omkumar
  • Gaonkar, Mandar Ganaba
  • Lin, Ting
  • Rane, Gaurav Vishwanath

Abrégé

There are provided systems and methods of bot detection through explainable deep learning and rule violation codebooks from generative AI. A service provider, such as an electronic transaction processor for digital transactions, may provide computing services to users for processing various requests and interactions with those users. However, malicious users may utilize bots, such as automated scripts and software applications, that attempt to conduct fraud, compromise systems and data, and the like. To provide better bot and bot activity detection, the service provider may implement an explainable deep learning system that may generate rule violations of rules indicating bot activity or presence in computing logs and interactions using a generative AI. The violations may have a corresponding explanation in codebooks to automate bot detection. When bot activity is detected, the explanation may provide a reason for the bot activity detection.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/08 - Méthodes d'apprentissage

73.

Latency and Computational Performance On A Blockchain

      
Numéro d'application 18979416
Statut En instance
Date de dépôt 2024-12-12
Date de la première publication 2025-06-26
Propriétaire PayPal, Inc. (USA)
Inventeur(s) Morais, Antony Amalraj

Abrégé

Blockchain latency is improved by unclogging a mempool, which frees up electronic memory and reduces CPU usage and network bandwidth. Mining data of one or more initial blocks of a blockchain is accessed. The mining data reveals, for each miner, the time delay between individual transactions mined by that miner. A subset of miners is then determined to have lower time delays than miners not in the subset. Thereafter, a different random number is generated for each new block of the blockchain system to be mined. Based on a comparison of this random number and a predefined threshold, either an exploitation phase or an exploration phase is entered for the mining of each new block. In the exploitation phase, mining tasks are assigned only to the subset of the miners. In the exploration phase, mining tasks are assigned to both miners within the subset and miners not in the subset.

Classes IPC  ?

  • H04L 9/06 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité l'appareil de chiffrement utilisant des registres à décalage ou des mémoires pour le codage par blocs, p. ex. système DES
  • G06F 9/46 - Dispositions pour la multiprogrammation
  • H04L 9/00 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité
  • H04L 9/08 - Répartition de clés
  • H04L 9/32 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système

74.

CONTEXT-BASED GENERATIVE ARTIFICIAL INTELLIGENCE SYSTEM

      
Numéro d'application 18390754
Statut En instance
Date de dépôt 2023-12-20
Date de la première publication 2025-06-26
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Arunachalam, Elavarasi
  • Bondada, Srinivasa Sai Kaushal

Abrégé

Systems, methods, and computer program products for using a generative artificial intelligence system to generate answers or summaries is provided. During the ingestion stage, the system receives documents and transcripts that include data associated with a theme. The data is converted into a common format and is divided into chunks. The chunks are associated with metadata tags that include chunk and data information. From the chunks, the system generates embedding vectors. During the inference stage, the system receives an information request. If the information request is a question, the system generates a vector from the question, and uses a similarity search to identify similar vectors. From the similar vectors, the system identifies chunks. If the information request includes a summary request, the system uses the metadata tags to identify chunks with summary information. The system generates an answer or a summary from the identified chunks.

Classes IPC  ?

  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel

75.

NETWORK SPILLOVER DETECTION AND GLOBAL HOLDOUT CREATION USING GRAPH PARTITIONING

      
Numéro d'application 18392293
Statut En instance
Date de dépôt 2023-12-21
Date de la première publication 2025-06-26
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Sharma, Nitin S.
  • Amani Geshnigani, Sanae
  • Zhang, Pengshan
  • Jia, Haoyang
  • Guo, Junshi

Abrégé

Methods and systems are presented for facilitating computer software feature experimentation by using one or more graph analyses to partition users into different experimentation groups. A graph is generated to represent users of a service provider and relationships among the users. When a request to perform a software feature experiment on the users of the service provider, the graph is analyzed to determine an estimated spillover effect. The graph is then coarsened across multiple levels using a label propagation technique based on one or more coarsening parameters. After the graph has been coarsened, the graph is partitioned into multiple partitions based on one or more partitioning parameters. The coarsening parameters and/or the partitioning parameters may be determined based on the estimated spillover effect. A subset of users is selected for performing the software feature experiment based on the partitioning of the coarsened graph.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel

76.

FAILURE TRACKING WITH REAL-TIME DATA EVENT STREAMING FOR DATA QUALITY CHECKS

      
Numéro d'application 18393310
Statut En instance
Date de dépôt 2023-12-21
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Singarayar, Sathish
  • Karmakar, Prasenjit
  • Gora, Punit
  • Kumawat, Anurag
  • Arumugam, Ramya

Abrégé

Accuracy and speed improvements for data computing results are provided herein, particularly in the context of data event streaming services and downstream data computing processes. There are provided systems and methods for failure tracking with real-time data event streaming for data quality checks. A service provider may utilize different computing services for event processing and storing for downstream applications and services in a production computing environment. Due to issues in data loading and/or processing, certain events when streamed may fail to be processed and/or stored for availability to further system components. A failed event tracker may be implemented where, when events fail to process in an original processing queue, the tracker may detect the failure and write an identifier for the event to a table in an accessible database. The tracker may the republish the event via a retry processing queue using the identifier and may track for completion.

Classes IPC  ?

  • G06F 11/07 - Réaction à l'apparition d'un défaut, p. ex. tolérance de certains défauts

77.

REMOTE TERMINAL DEVICE UPDATES

      
Numéro d'application 18394941
Statut En instance
Date de dépôt 2023-12-22
Date de la première publication 2025-06-26
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Monty, Cory
  • Wojcik, Martin

Abrégé

A method for remote device updates includes receiving a selection of a terminal device having an existing operational configuration and capable of operating in a development mode and a production mode. The method further includes receiving a new operational configuration for the terminal device, causing the terminal device to enter development mode with the new operational configuration, receiving an indication that the new operational configuration should be deployed, and, in response to the indication, formatting the new operational configuration into one or more files usable by the terminal in production mode, and causing the one or more files to be transmitted to the terminal with an instruction for the terminal device to enter production mode operating according to the one or more files.

Classes IPC  ?

78.

BOT DETECTION THROUGH EXPLAINABLE DEEP LEARNING AND RULE VIOLATION CODEBOOKS FROM GENERATIVE ARTIFICIAL INTELLIGENCE

      
Numéro d'application 18396550
Statut En instance
Date de dépôt 2023-12-26
Date de la première publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Qi, Panpan
  • Chen, Zhe
  • Tang, Quan Jin Ferdinand
  • Pei, Fei
  • Mahalingam, Omkumar
  • Gaonkar, Mandar Ganaba
  • Lin, Ting
  • Rane, Gaurav Vishwanath

Abrégé

There are provided systems and methods of bot detection through explainable deep learning and rule violation codebooks from generative AI. A service provider, such as an electronic transaction processor for digital transactions, may provide computing services to users for processing various requests and interactions with those users. However, malicious users may utilize bots, such as automated scripts and software applications, that attempt to conduct fraud, compromise systems and data, and the like. To provide better bot and bot activity detection, the service provider may implement an explainable deep learning system that may generate rule violations of rules indicating bot activity or presence in computing logs and interactions using a generative AI. The violations may have a corresponding explanation in codebooks to automate bot detection. When bot activity is detected, the explanation may provide a reason for the bot activity detection.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/08 - Méthodes d'apprentissage

79.

INTELLIGENT ORCHESTRATION OF PROCESSING RESOURCES FOR PIPELINES

      
Numéro d'application CN2023140952
Numéro de publication 2025/129616
Statut Délivré - en vigueur
Date de dépôt 2023-12-22
Date de publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Sarvepalli, Ashok Kumar

Abrégé

Systems and methods for predicting computer resources to fulfil pipeline requests includes obtaining a processing pipeline request defining a first set of computing resources for allocation during a first time period, obtaining a first dataset corresponding to historical data and scheduled pipelines, determining an availability of computing resources during a second time period based on the request, and predicting a recommendation corresponding to a second set of computing resources and a third time period to fulfill the request, the prediction being determined based on the first dataset and the available computing resources. The operations may further include generating a second dataset as output, sending the second dataset to a second computing device, obtaining a third dataset corresponding to a user selection of one or more computing resources during the third time period, and coordinating with one or more other computing devices in the system to fulfill the request.

Classes IPC  ?

  • G06F 9/38 - Exécution simultanée d'instructions, p. ex. pipeline ou lecture en mémoire

80.

REMOTE TERMINAL DEVICE UPDATES

      
Numéro d'application US2024060673
Numéro de publication 2025/137040
Statut Délivré - en vigueur
Date de dépôt 2024-12-18
Date de publication 2025-06-26
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Monty, Cory
  • Wojcik, Martin

Abrégé

A method for remote device updates includes receiving a selection of a terminal device having an existing operational configuration and capable of operating in a development mode and a production mode. The method further includes receiving a new operational configuration for the terminal device, causing the terminal device to enter development mode with the new operational configuration, receiving an indication that the new operational configuration should be deployed, and, in response to the indication, formatting the new operational configuration into one or more files usable by the terminal in production mode, and causing the one or more files to be transmitted to the terminal with an instruction for the terminal device to enter production mode operating according to the one or more files.

Classes IPC  ?

  • H04L 41/0803 - Réglages de configuration
  • G06F 15/177 - Commande d'initialisation ou de configuration
  • H04L 41/50 - Gestion des services réseau, p. ex. en assurant une bonne réalisation du service conformément aux accords
  • H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]
  • H04L 41/00 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets

81.

SPLIT-AND-MERGE FRAMEWORK FOR AUDIO CONTENT PROCESSING

      
Numéro d'application 18541788
Statut En instance
Date de dépôt 2023-12-15
Date de la première publication 2025-06-19
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Qi, Panpan
  • Chen, Zhe
  • Tang, Quan Jin Ferdinand

Abrégé

Methods and systems are presented for providing a framework for analyzing and classifying audio data using a split-and-merge approach. Audio data is split into multiple audio tracks that correspond to different characteristics. Each audio track is segmented, and features are extracted from each segment of the audio track. Features extracted from audio segments of each audio track is analyzed. One or more correlations between the different audio tracks are determined based on comparing features extracted from audio segments of a first audio track against features extracted from audio segments of a second audio track. The audio data is classified based on the one or more correlations.

Classes IPC  ?

  • G10L 15/08 - Classement ou recherche de la parole
  • G10L 21/0272 - Séparation du signal de voix
  • G10L 25/51 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes spécialement adaptées pour un usage particulier pour comparaison ou différentiation

82.

SPLIT-AND-MERGE FRAMEWORK FOR AUDIO CONTENT PROCESSING

      
Numéro d'application US2024057522
Numéro de publication 2025/128325
Statut Délivré - en vigueur
Date de dépôt 2024-11-26
Date de publication 2025-06-19
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Qi, Panpan
  • Chen, Zhe
  • Tang, Quan Jin Ferdinand

Abrégé

Methods and systems are presented for providing a framework for analyzing and classifying audio data using a split-and-merge approach. Audio data is split into multiple audio tracks that correspond to different characteristics. Each audio track is segmented, and features are extracted from each segment of the audio track. Features extracted from audio segments of each audio track is analyzed. One or more correlations between the different audio tracks are determined based on comparing features extracted from audio segments of a first audio track against features extracted from audio segments of a second audio track. The audio data is classified based on the one or more correlations.

Classes IPC  ?

  • G10L 21/0272 - Séparation du signal de voix
  • G11B 20/10 - Enregistrement ou reproduction numériques
  • G11B 27/02 - Montage, p. ex. variation de l'ordre des signaux d'information enregistrés sur, ou reproduits à partir des supports d'enregistrement ou d'information
  • H04H 60/04 - Équipement de studioInterconnexion des studios
  • G10L 25/00 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes
  • G10L 21/00 - Techniques de traitement du signal de parole ou de voix pour produire un autre signal audible ou non audible, p. ex. visuel ou tactile, afin de modifier sa qualité ou son intelligibilité

83.

ACCOUNT-CENTRIC EVALUATION FOR AUTOMATED CLEARING HOUSE APPROVALS

      
Numéro d'application CN2023138431
Numéro de publication 2025/123245
Statut Délivré - en vigueur
Date de dépôt 2023-12-13
Date de publication 2025-06-19
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Xiong, Pinhua
  • Chen, Xin
  • Weng, Yuchuan

Abrégé

A system may include a processor and a non-transitory computer readable medium having stored thereon instructions that are executable by the processor to cause the system to receive a clearing house request that may include an amount owed to a first party by a second party and an indication of an account associated with the second party, and retrieve a risk score associated with the indicated account. The risk score may have been generated by a trained machine learning model configured to receive, as input, a plurality of account activities and to generate, as output, risk scores for a plurality of accounts indicative of a probability that the associated account is solvent. The system may further determine that the associated risk score exceeds a threshold value, and in response to the associated risk score exceeding the threshold value, execute a transfer of the amount to the first party via a clearing house.

Classes IPC  ?

84.

DISPUTE CONTESTATION AUTOMATION

      
Numéro d'application 18543833
Statut En instance
Date de dépôt 2023-12-18
Date de la première publication 2025-06-19
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Deshpande, Saili
  • Kumar, Arpit
  • Jagadeesh, Deepak
  • Gopal, Ananth
  • Kodre, Ravidutta Ramesh
  • Poh, Zijie
  • Chaudhry, Muhammad Ahmed Tajammul

Abrégé

Systems, methods, and computer program products for using machine learning to determine whether to dispute a chargeback request are provided. A dispute processing system receives a chargeback request for a transaction, transaction data and service provider data associated with the transaction. The dispute processing system incorporates the transaction and service provider data into a template. Next, the dispute processing system uses a machine learning framework to generate machine learning scores that indicates a likelihood of successfully winning the chargeback request and avoiding pre-arbitration. Using the machine learning scores, the transaction data, the service provider data, and at least one dispute processing rule, the dispute processing system determines a likelihood of successfully challenging the chargeback request. Based on the likelihood of successfully contesting the chargeback request, the dispute processing system generates a contestation document from the template, and submits the contestation document to contest the chargeback request.

Classes IPC  ?

  • G06Q 30/016 - Fourniture d’une assistance aux clients, p. ex. pour assister un client dans un lieu commercial ou par un service d’assistance après-vente
  • G06N 20/00 - Apprentissage automatique

85.

CRYPTOCURRENCY TRANSACTION BACKUP SYSTEM

      
Numéro d'application 18654830
Statut En instance
Date de dépôt 2024-05-03
Date de la première publication 2025-06-19
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Aoki, Norihiro Edwin
  • Jethmalani, Mnehak
  • Thangarasu, Ganesh
  • Baskran, Selva Priya
  • Unterberg, Paul
  • Kaushal, Piyush

Abrégé

The disclosed computer-implemented method includes detecting an unavailability of a primary cryptocurrency exchange system and queuing received cryptocurrency transaction requests. The method also includes connecting to a backup cryptocurrency exchange system and completing the queued cryptocurrency transaction requests with a backup asset pool using the backup cryptocurrency exchange system. The method further includes detecting an availability of the primary cryptocurrency exchange system and reconnecting to the primary cryptocurrency exchange system. Various other methods, systems, and computer-readable media are also disclosed.

Classes IPC  ?

  • G06Q 20/06 - Circuits privés de paiement, p. ex. impliquant de la monnaie électronique utilisée uniquement entre les participants à un programme commun de paiement

86.

Interface for Constructing Smart Protocols for Execution on Blockchain Platforms

      
Numéro d'application 18965374
Statut En instance
Date de dépôt 2024-12-02
Date de la première publication 2025-06-19
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Saad, Muhammad
  • Johnson, Raoul
  • Burgis, Jakub

Abrégé

A method for generating a smart protocol includes providing, by a server computer system, a user interface to one or more of a plurality of users. The server computer system may receive, via the user interface, input specifying terms corresponding to a smart protocol that is to be deployed on a particular blockchain platform. The specified terms may include the plurality of users associated with the smart protocol and a web resource to be used to identify one or more external data. An execution of the smart protocol may be based on a value of the external data. Based on the specified terms, the server computer system may generate, without further input from the plurality of users, the smart protocol. The server computer system may deploy the smart protocol to the particular blockchain platform.

Classes IPC  ?

  • G06Q 20/38 - Protocoles de paiementArchitectures, schémas ou protocoles de paiement leurs détails
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 40/04 - TransactionsOpérations boursières, p. ex. actions, marchandises, produits dérivés ou change de devises
  • H04L 69/00 - Dispositions, protocoles ou services de réseau indépendants de la charge utile de l'application et non couverts dans un des autres groupes de la présente sous-classe

87.

AUTOMATED CHATBOTS THAT DETECT PRIVACY DATA SHARING AND LEAKAGE BY OTHER AUTOMATED CHATBOT SYSTEMS

      
Numéro d'application 18537705
Statut En instance
Date de dépôt 2023-12-12
Date de la première publication 2025-06-12
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Sreenidurai, Ramalingam

Abrégé

There are provided systems and methods for automated chatbots that detect privacy data sharing and leakage by other automated chatbot systems. A service provider and other chatbot services, including an electronic transaction processor, may provide self-service channels for assistance through chatbot and other automated computing processes. However, these chatbots may be regulated by compliance with privacy protection requirements, and therefore use of the chatbots and/or user data when responding to users via chatbots in chat sessions may be noncompliant and/or attacked by malicious users to compromise privacy protected data. In order to facilitate detection of leaks and shares by chatbots, an AI for a privacy protection chatbot may be trained on regulations for chatbot use and/or data security and privacy protection. The chatbot may then interact with other chatbots and question the other chatbots using the trained AI model to detect whether privacy protected data is exposed.

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel

88.

AUTOMATICALLY GENERATING AN ELECTRONIC CONVERSATION VIA NATURAL LANGUAGE MAP MODELING

      
Numéro d'application 18532747
Statut En instance
Date de dépôt 2023-12-07
Date de la première publication 2025-06-12
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Sarin, Pankaj

Abrégé

A determination is made that a customer event has been initiated by a customer. The customer event is associated with a plurality of words. The plurality of words are parsed. Based on a result of the parsing of the plurality of words, an intent of the customer corresponding to the customer event is predicted. Based on the predicted intent, a first simulated service agent of a plurality of service agents is associated with the customer event. Based on the predicted intent, a first set of Natural Language Map (NLM) models for the customer and a second set of NLM models for the first simulated service agent are accessed. Based on the first set of NLM models and the second set of NLM models, a simulated conversation between the customer and the first simulated service agent is generated. The simulated conversation involves the predicted intent.

Classes IPC  ?

  • G06F 40/274 - Conversion de symboles en motsAnticipation des mots à partir des lettres déjà entrées
  • G06F 40/205 - Analyse syntaxique
  • H04L 51/02 - Messagerie d'utilisateur à utilisateur dans des réseaux à commutation de paquets, transmise selon des protocoles de stockage et de retransmission ou en temps réel, p. ex. courriel en utilisant des réactions automatiques ou la délégation par l’utilisateur, p. ex. des réponses automatiques ou des messages générés par un agent conversationnel
  • H04L 51/216 - Gestion de l'historique des conversations, p. ex. regroupement de messages dans des sessions ou des fils de conversation

89.

SYSTEMS AND METHODS FOR FORMATTING INFORMAL UTTERANCES

      
Numéro d'application 18984140
Statut En instance
Date de dépôt 2024-12-17
Date de la première publication 2025-06-12
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Cavallari, Sandro
  • Zhuo, Yuzhen
  • Nguyen, Van Hoang
  • Tang, Quan Jin Ferdinand
  • Vasappanavara, Gautam

Abrégé

Methods and systems are presented for translating informal utterances into formal texts. Informal utterances may include words in abbreviation forms or typographical errors. The informal utterances may be processed by mapping each word in an utterance into a well-defined token. The mapping from the words to the tokens may be based on a context associated with the utterance derived by analyzing the utterance in a character-by-character basis. The token that is mapped for each word can be one of a vocabulary token that corresponds to a formal word in a pre-defined word corpus, an unknown token that corresponds to an unknown word, or a masked token. Formal text may then be generated based on the mapped tokens. Through the processing of informal utterances using the techniques disclosed herein, the informal utterances are both normalized and sanitized.

Classes IPC  ?

  • G10L 15/19 - Contexte grammatical, p. ex. désambiguïsation des hypothèses de reconnaissance par application des règles de séquence de mots
  • G06F 40/205 - Analyse syntaxique
  • G06F 40/253 - Analyse grammaticaleCorrigé du style
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole

90.

AUTOMATED ACCOUNT TAKEOVER DETECTION AND PREVENTION

      
Numéro d'application CN2023136170
Numéro de publication 2025/118110
Statut Délivré - en vigueur
Date de dépôt 2023-12-04
Date de publication 2025-06-12
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Hu, Haoyue
  • Zhang, Yan
  • Fang, Zhou

Abrégé

A method of preventing account takeover fraud includes assigning a user account to a target set accounts, determining matric values for past and present computing actions of the target set of accounts, determining, for at least one of the metrics, that present metric value is an outlier with respect to the past metric values and, in response, transmitting an outlier notification to the user. The method further includes receiving a computing action request involving the account, the request including computing action characteristic values, determining that the characteristic values match a combination of characteristic values associated with a risk that exceeds a threshold, the risk determined according to past computing actions and, in response, requiring a second authentication factor of the user or declining the computing action associated with the request.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

91.

LEVERAGING GRAPH NEURAL NETWORKS, COMMUNITY DETECTION, AND TREE-BASED MODELS FOR TRANSACTION CLASSIFICATIONS

      
Numéro d'application 18524614
Statut En instance
Date de dépôt 2023-11-30
Date de la première publication 2025-06-05
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Mendelson, Ori
  • Lotem, Yoav
  • Friedman-Hauser, Irit
  • Spoliansky, Roi
  • Wiener, Alon

Abrégé

Methods and systems are presented for providing a machine learning model framework that uses multiple models that analyze different aspects of graph data to perform transaction classification. A graph is generated to represent relationships among transactions and fuzzy attributes. The framework includes a graph neural network that generates embeddings for each transaction based on the graph. The framework further includes a machine learning model that generates an initial classification score for a particular transaction based on the embeddings generated for the particular transaction and the actual attributes associated with the particular transaction. One or more communities are identified within the graph based on the connections among various fuzzy attributes. Characteristics associated with a particular community corresponding to the particular transaction are used to modify the initial risk score. A classification is determined for the particular transaction based on the modified risk score.

Classes IPC  ?

  • G06N 3/043 - Architecture, p. ex. topologie d'interconnexion fondée sur la logique floue, l’appartenance floue ou l’inférence floue, p. ex. systèmes d’inférence neuro-floue adaptatifs [ANFIS]

92.

Gateway Service Driven Downstream Orchestration

      
Numéro d'application 18524295
Statut En instance
Date de dépôt 2023-11-30
Date de la première publication 2025-06-05
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Bhat, Rajendra
  • Patodia, Prabin

Abrégé

Various techniques are disclosed for providing gateway services between a client system and downstream service systems for a service system. The disclosed gateway service system is capable of implementing a new service for a client system in response to a request from the client system. The gateway service system internally determines which downstream services are needed to implement the new service. In various instances, the gateway service system utilizes machine learning algorithms to determine the downstream services suitable for providing the output needed for the new service. The gateway service system is also capable of determining whether an existing application programming interface (API) is able to be used for the new service or whether a new API needs to be created for the new service. By internally determining the downstream services and APIs, the gateway service system has more efficient utilization of its computational resources.

Classes IPC  ?

  • H04L 67/61 - Ordonnancement ou organisation du service des demandes d'application, p. ex. demandes de transmission de données d'application en utilisant l'analyse et l'optimisation des ressources réseau requises en tenant compte de la qualité de service [QoS] ou des exigences de priorité
  • G06F 9/54 - Communication interprogramme

93.

AUTOMATED POLICY COMPLIANCE

      
Numéro d'application 18282401
Statut En instance
Date de dépôt 2023-06-02
Date de la première publication 2025-06-05
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Chen, Xiangrong
  • Li, Huiting
  • Chen, Ligang
  • Wei, Wei
  • Yu, Hang
  • Chen, Yuguan
  • Wu, Wenjia

Abrégé

A system according to the present disclosure may include a processor, a centralized data warehouse, and a non-transitory computer readable medium storing thereon instructions that are executable by the processor to cause the system to perform operations. The operations may include comprising training a machine learning model based on enterprise data from the centralized data warehouse, the machine learning model trained to determine a value corresponding to a metric, receiving, from at least one external source, updated enterprise data, determining, in real-time by the machine learning model, a predicted change to the value based on the updated enterprise data, and presenting, via a graphical user interface (GUI), a suggested action based on the predicted change.

Classes IPC  ?

  • G06Q 30/018 - Certification d’entreprises ou de produits
  • G06Q 10/0639 - Analyse des performances des employésAnalyse des performances des opérations d’une entreprise ou d’une organisation

94.

GATEWAY SERVICE DRIVEN DOWNSTREAM ORCHESTRATION

      
Numéro d'application US2024053539
Numéro de publication 2025/117120
Statut Délivré - en vigueur
Date de dépôt 2024-10-30
Date de publication 2025-06-05
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Bhat, Rajendra
  • Patodia, Prabin

Abrégé

Various techniques are disclosed for providing gateway services between a client system and downstream service systems for a service system. The disclosed gateway service system is capable of implementing a new service for a client system in response to a request from the client system. The gateway service system internally determines which downstream services are needed to implement the new service. In various instances, the gateway service system utilizes machine learning algorithms to determine the downstream services suitable for providing the output needed for the new service. The gateway service system is also capable of determining whether an existing application programming interface (API) is able to be used for the new service or whether a new API needs to be created for the new service. By internally determining the downstream services and APIs, the gateway service system has more efficient utilization of its computational resources.

Classes IPC  ?

  • G06F 8/36 - Réutilisation de logiciel
  • G06F 21/53 - Contrôle des utilisateurs, des programmes ou des dispositifs de préservation de l’intégrité des plates-formes, p. ex. des processeurs, des micrologiciels ou des systèmes d’exploitation au stade de l’exécution du programme, p. ex. intégrité de la pile, débordement de tampon ou prévention d'effacement involontaire de données par exécution dans un environnement restreint, p. ex. "boîte à sable" ou machine virtuelle sécurisée
  • G06N 20/00 - Apprentissage automatique

95.

AUTOMATED DOMAIN CRAWLER AND CHECKOUT SIMULATOR FOR PROACTIVE AND REAL-TIME SCAM WEBSITE DETECTION

      
Numéro d'application US2024056955
Numéro de publication 2025/117340
Statut Délivré - en vigueur
Date de dépôt 2024-11-21
Date de publication 2025-06-05
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Bitaab, Marzieh
  • Oest, Adam
  • Saad, Muhammad

Abrégé

There are provided systems and methods for an automated domain crawler and checkout simulator for proactive and real-time scam website detection. A service provider, such as an online transaction processor, may provide a domain crawler and checkout simulator that may be used to detect scam websites when registered and/or configured to utilize intermediary webpages of other domains to perpetrate fraud or scams on customers. The domain parser may detect new domain registrations and may parse through their corresponding websites to identify those that include checkout options or other processing flows that proceed through steps and use a service or feature of a service provider, including account usage for electronic transaction processing. The checkout simulator may then simulate a user's experience through the checkout to determine if domain redirections occur. If so, those redirections may be checked to identify usage of a merchant account having been flagged for scams.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • G06Q 30/0241 - Publicités
  • G06Q 30/018 - Certification d’entreprises ou de produits
  • G06Q 30/0207 - Remises ou incitations, p. ex. coupons ou rabais

96.

SYSTEMS AND METHODS FOR EARLY FRAUD DETECTION IN DEFERRED TRANSACTION SERVICES

      
Numéro d'application 18521212
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2025-05-29
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Mohankumar, Padmapriya
  • Kamal, Ashraf
  • Singh, Vishal Kumar

Abrégé

A computer-implemented method for utilizing a machine learning model configured to determine synthetic identity theft may include processing a plurality of user datasets to generate a set of features for each user dataset, with each set of features being representative of a particular user. The method may further include generating a plurality of embeddings sets, with each embedding set being representative of a respective set of features, generating a plurality of synthetic user datasets, combining the plurality of embeddings sets and the plurality of synthetic user datasets to generate a training dataset, the training dataset comprising a plurality of user profiles, training the machine learning model based on the generated training dataset, and determining, via the machine learning model and in response to receiving a new user profile, a determination of whether the new user profile is real or synthetic.

Classes IPC  ?

  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives
  • H04L 9/40 - Protocoles réseaux de sécurité

97.

AUTOMATED DOMAIN CRAWLER AND CHECKOUT SIMULATOR FOR PROACTIVE AND REAL-TIME SCAM WEBSITE DETECTION

      
Numéro d'application 18521909
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2025-05-29
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Bitaab, Marzieh
  • Oest, Adam
  • Saad, Muhammad

Abrégé

There are provided systems and methods for an automated domain crawler and checkout simulator for proactive and real-time scam website detection. A service provider, such as an online transaction processor, may provide a domain crawler and checkout simulator that may be used to detect scam websites when registered and/or configured to utilize intermediary webpages of other domains to perpetrate fraud or scams on customers. The domain parser may detect new domain registrations and may parse through their corresponding websites to identify those that include checkout options or other processing flows that proceed through steps and use a service or feature of a service provider, including account usage for electronic transaction processing. The checkout simulator may then simulate a user's experience through the checkout to determine if domain redirections occur. If so, those redirections may be checked to identify usage of a merchant account having been flagged for scams.

Classes IPC  ?

  • G06Q 30/018 - Certification d’entreprises ou de produits
  • H04L 9/40 - Protocoles réseaux de sécurité

98.

SYSTEMS AND METHODS FOR EARLY FRAUD DETECTION IN DEFERRED TRANSACTION SERVICES

      
Numéro d'application 18521115
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2025-05-29
Propriétaire PAYPAL, INC. (USA)
Inventeur(s)
  • Mohankumar, Padmapriya
  • Kamal, Ashraf
  • Singh, Vishal Kumar

Abrégé

A method may include receiving, via an interface respective of a third party, a first request respective of a user to access a payment application, prompting the user, in response to the first request, to provide user credentials, receiving, from the user, user credentials, processing, via a first set of modules, the user credentials to determine a validity of the user credentials, in response to determining that the user credentials are valid, retrieving transaction details from the third party, the transaction details comprising a profile of the third party and a profile of a subject of the transaction, processing, via a second set of modules, the transaction details to determine a validity of the transaction details, and in response to determining that the transaction details are valid, transmitting an approval of the user to the third party.

Classes IPC  ?

  • G06Q 20/38 - Protocoles de paiementArchitectures, schémas ou protocoles de paiement leurs détails
  • G06Q 20/40 - Autorisation, p. ex. identification du payeur ou du bénéficiaire, vérification des références du client ou du magasinExamen et approbation des payeurs, p. ex. contrôle des lignes de crédit ou des listes négatives

99.

SYSTEMS AND METHODS FOR RULE AGNOSTIC REJECT INFERENCING

      
Numéro d'application 18521190
Statut En instance
Date de dépôt 2023-11-28
Date de la première publication 2025-05-29
Propriétaire PayPal, Inc. (USA)
Inventeur(s)
  • Subburaj, Parthasarathy
  • Umaithanu, Mahesh Balan
  • Kumaraswamy, Ashish
  • Selvaraj, Venkata Subramanian

Abrégé

There are provided systems and methods for rule agnostic reject inferencing. An example method may receive a request for processing a transaction, and determine, using a machine learning model, a classification for the transaction based on data associated with the transaction. The machine learning model may be trained using first training data having verified labels and second training data having inferred labels, and the inferred labels of the second training data may be generated based on a distribution of classifications associated with the first training data. The example method may further process the request based on the classification.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06F 18/2415 - Techniques de classification relatives au modèle de classification, p. ex. approches paramétriques ou non paramétriques basées sur des modèles paramétriques ou probabilistes, p. ex. basées sur un rapport de vraisemblance ou un taux de faux positifs par rapport à un taux de faux négatifs

100.

CENTRALIZED PROFILE FOR VERIFICATION WITHOUT COMPROMISE

      
Numéro d'application 18511008
Statut En instance
Date de dépôt 2023-11-16
Date de la première publication 2025-05-22
Propriétaire PAYPAL, INC. (USA)
Inventeur(s) Kaidi, George Chen

Abrégé

A system according to the present disclosure may include a processor, a centralized data warehouse, and a non-transitory computer readable medium storing thereon instructions that are executable by the processor to cause the system to perform operations. The operations may include receiving, from a user, identifying information, generating, based on the identifying information, a central profile for the user, generating, from the central profile, a first verification token configured to verify the user for a first service, and generating, from the central profile, a second verification token configured to verify the user for a second service. The first verification token and the second verification token are separately revokable and severable from the central profile, and neither the first verification token nor the second verification token comprise the identifying information of the user.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  1     2     3     ...     42        Prochaine page