UnitedHealth Group Incorporated

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 442 pour UnitedHealth Group Incorporated Trier par
Recheche Texte
Excluant les filiales
Affiner par Reset Report
Type PI
        Marque 278
        Brevet 164
Juridiction
        États-Unis 382
        International 34
        Europe 15
        Canada 11
Date
Nouveautés (dernières 4 semaines) 1
2025 octobre 3
2025 août 4
2025 juillet 2
2025 (AACJ) 27
Voir plus
Classe IPC
G06N 20/00 - Apprentissage automatique 30
G06F 40/30 - Analyse sémantique 17
G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients 17
G06F 16/23 - Mise à jour 15
G06F 21/31 - Authentification de l’utilisateur 15
Voir plus
Classe NICE
36 - Services financiers, assurances et affaires immobilières 161
44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture. 135
35 - Publicité; Affaires commerciales 121
42 - Services scientifiques, technologiques et industriels, recherche et conception 68
41 - Éducation, divertissements, activités sportives et culturelles 56
Voir plus
Statut
En Instance 75
Enregistré / En vigueur 367
  1     2     3     ...     5        Prochaine page

1.

TECHNIQUES FOR EFFICIENT DATA CATEGORIZATION

      
Numéro d'application 18634565
Statut En instance
Date de dépôt 2024-04-12
Date de la première publication 2025-10-16
Propriétaire UNITEDHEALTH GROUP, INCORPORATED (USA)
Inventeur(s) Radinsky, Moshe Daniel

Abrégé

Techniques for efficient data categorization are disclosed herein. An example computer-implemented method includes receiving (i) a data set including a plurality of data points that each include at least one data line and (ii) a rule group including a plurality of rules and a plurality of rule sets. The example method further includes applying a categorization algorithm to the data set and the rule group that includes: generating a rule signature for each data line in each data point, identifying a set of unique rule signatures within the generated rule signatures, and determining a categorization for each unique rule signature of the set of unique rule signatures. The example method further includes storing a data object indicative of the determined categorizations.

Classes IPC  ?

  • H04L 9/32 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité comprenant des moyens pour vérifier l'identité ou l'autorisation d'un utilisateur du système

2.

NATURAL LANGUAGE PROCESSING TECHNIQUES FOR MACHINE-LEARNING-GUIDED SUMMARIZATION USING HYBRID CLASS TEMPLATES

      
Numéro d'application 19235227
Statut En instance
Date de dépôt 2025-06-11
Date de la première publication 2025-10-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sabapathy, Rajesh
  • Mittal, Chirag
  • Awasthi, Gourav
  • Josyula, Aditya Teja
  • Gulati, Ankur
  • Khan, Lubna
  • Bansal, Tarun

Abrégé

As described herein, various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing natural language processing operations for generating guided summaries using summarization templates that are mapped to hybrid classes of a hybrid classification space for a hybrid classification machine learning model. In some embodiments, by using summarization templates, a proposed summarization framework is able to vastly reduce the computational complexity of performing summarization on an input document data object, such as an input multi-party communication transcript data object, by defining the set of dynamic data fields that apply to the input document data object based at least in part on an assigned class/category of the input document data object.

Classes IPC  ?

3.

TEMPORALLY DYNAMIC LOCATION-BASED PREDICTIVE DATA ANALYSIS

      
Numéro d'application 19236098
Statut En instance
Date de dépôt 2025-06-12
Date de la première publication 2025-10-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Stroh, Alison R.
  • Suarez, Mario M.
  • Dion, Stephen R.
  • Dipascal, Jordan R.
  • Syverson, Derek J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing temporally dynamic location-based predictive data analysis. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform temporally dynamic location-based predictive data analysis by using at least one of cohort generation machine learning models and cohort-based growth forecast machine learning models.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06N 20/00 - Apprentissage automatique

4.

SYSTEMS AND METHODS FOR AUTHENTICATING A RESOURCE SYSTEM

      
Numéro d'application 18584132
Statut En instance
Date de dépôt 2024-02-22
Date de la première publication 2025-08-28
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Rawat, Saransh
  • Kumar, Mayank
  • Goodman, Valeria M.
  • Mahmood, Krystine D.
  • Sachdeva, Jatin

Abrégé

Systems and methods are disclosed for determining authenticity of a resource system. The method includes receiving a dataset that includes a first subset and a second subset associated with a first resource system; down-sampling the first subset but not the second subset; generating a first feature for a machine learning model based on the down-sampled first subset; generating a second feature for the machine learning model based on the second subset; generating, via input of at least one of the first feature or the second feature into the machine learning model that is trained to output a fraudulent measure, one or more data objects indicative of validating the fraudulent measure; and initiating performance of one or more prediction-based actions in response to the generating.

Classes IPC  ?

5.

SECURE AND AUTONOMOUS DATA ENCRYPTION AND SELECTIVE DE-IDENTIFICATION

      
Numéro d'application US2024059506
Numéro de publication 2025/174447
Statut Délivré - en vigueur
Date de dépôt 2024-12-11
Date de publication 2025-08-21
Propriétaire UNITEDHEALTH GROUP INCORPORATED (USA)
Inventeur(s)
  • Zhu, Ying
  • Shintani, Kazuki
  • Sarabu, Santhosh

Abrégé

Various embodiments of the present disclosure provide automated encryption and data de-identification techniques for improving computer security. The techniques apply machine learning and encryption techniques to transform input data objects to tagged data objects that may be locally decrypted using encrypted element representation stored within the tagged data objects. The techniques may include determining a protected data element from an input data object based on privacy criteria and generating the tagged data object from the input data object by replacing the protected data element with an anonymized privacy tag that identifies a privacy type of the protected data element. The techniques may further include generating an encrypted element representation of the protected data element and inserting the encrypted element representation to a portion of the tagged data object to enable decryption of the tagged data object by authorized entities.

Classes IPC  ?

  • G06F 21/60 - Protection de données
  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès
  • H04L 9/00 - Dispositions pour les communications secrètes ou protégéesProtocoles réseaux de sécurité

6.

UHC RX VISIBILITY

      
Numéro de série 99338385
Statut En instance
Date de dépôt 2025-08-14
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières

Produits et services

Pharmaceutical cost management services and drug utilization review services Pharmacy benefit management services; Providing counseling and consulting in the field of healthcare insurance benefits; Providing insurance information in the field of employee pharmacy benefit plans insurance

7.

Automated data routing and comparison systems and methods for identifying and implementing an optimal pricing model

      
Numéro d'application 18354368
Numéro de brevet 12387248
Statut Délivré - en vigueur
Date de dépôt 2023-07-18
Date de la première publication 2025-08-12
Date d'octroi 2025-08-12
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Cherryhomes, David G.
  • Bailey, James A.
  • Baker, Robert
  • Maurer, Matthew J.
  • Larrandson, Ry
  • Rooda, Nick
  • Heinzel, Charles

Abrégé

To automate a pricing strategy for an otherwise unpriced service or item, prices may be generated through a plurality of different pricing models, via a pricing engine passing input data to a plurality of discrete pricing models. Those pricing models may pass data back to the pricing engine, which then adjudicates the results of the pricing models to identify a most-relevant pricing model for the particular unpriced service or item.

Classes IPC  ?

8.

UNITEDHEALTHCARE CLEAR COMMITMENT

      
Numéro de série 99313842
Statut En instance
Date de dépôt 2025-07-31
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 36 - Services financiers, assurances et affaires immobilières
  • 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Insurance services, namely, underwriting, issuance and administration of health insurance insurance; Providing insurance information in the field of health insurance Providing healthcare information; Healthcare

9.

MIND YOUR HEALTH

      
Numéro de série 99269892
Statut En instance
Date de dépôt 2025-07-07
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Health care

10.

Programmatically managing social determinants of health to provide electronic data links with third party health resources

      
Numéro d'application 18344269
Numéro de brevet 12347537
Statut Délivré - en vigueur
Date de dépôt 2023-06-29
Date de la première publication 2025-07-01
Date d'octroi 2025-07-01
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Shapiro, Sheila Kay
  • Mcclure, Donna

Abrégé

Certain embodiments are directed to systems and methods for automatically providing data indicative of one or more characteristics of services that may be recommended to a particular patient, wherein the services are executable at least in part electronically based on data generated and provided by a system for facilitating access to the services. The generated data may be utilized for generating one or more user interfaces providing data regarding derived standard pricing data that is automatically assigned to the referred services and which may be attributable to a patient based at least in part on the patient's usage of the services.

Classes IPC  ?

  • G16H 20/00 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G16H 15/00 - TIC spécialement adaptées aux rapports médicaux, p. ex. leur création ou leur transmission

11.

Miscellaneous Design

      
Numéro de série 99233840
Statut En instance
Date de dépôt 2025-06-13
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable foundation services, namely, providing financial support to families with children for healthcare services that are not covered by health insurance

12.

MACHINE LEARNING TECHNIQUES FOR PREDICTING AND RANKING SUGGESTIONS BASED ON USER ACTIVITY DATA

      
Numéro d'application 18532430
Statut En instance
Date de dépôt 2023-12-07
Date de la première publication 2025-06-12
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Tomar, Ayush
  • Liu, Chenwei

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for generating (i) a first label set representative of a selection of a content item based on search session data and (ii) a second label set representative of one or more transactions associated with the content item based on transaction data. A dominant label set is determined from the plurality of label sets based on an occurrence frequency associated with the first label set and the second label set. Based on an occurrence of an event associated with the dominant label set, either a first label associated with the dominant label set is assigned to first search query-content item record pairs associated with a training dataset, or one or more stochastic labels from the plurality of label sets are assigned to second search query-content item record pairs associated with the training dataset.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs
  • G06N 3/047 - Réseaux probabilistes ou stochastiques

13.

MACHINE LEARNING TECHNIQUES FOR PREDICTING AND RANKING SUGGESTIONS BASED ON USER ACTIVITY DATA

      
Numéro d'application 18532510
Statut En instance
Date de dépôt 2023-12-07
Date de la première publication 2025-06-12
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Tomar, Ayush
  • Liu, Chenwei

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for providing content item suggestions based on historical search data of a user by: generating one or more content item feature vectors associated with a plurality of content items from a list of suggestions, generating one or more personalized feature vectors associated with the user based on user activity data, generating a plurality of predictions for the plurality of content items based on the one or more keyword feature vectors and the one or more personalized feature vectors, assigning a plurality of rankings to the plurality of content items based on the plurality of prediction probabilities, and generating one or more suggestions based on the plurality of rankings.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs

14.

DENTAL SAVINGS COMPLETE

      
Numéro de série 99193994
Statut En instance
Date de dépôt 2025-05-20
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 35 - Publicité; Affaires commerciales

Produits et services

Administration of a program for enabling participants to obtain discounts on goods and receive improved services

15.

SYSTEMS AND METHODS FOR MEDICAL FRAUD DETECTION

      
Numéro d'application 19022202
Statut En instance
Date de dépôt 2025-01-15
Date de la première publication 2025-05-15
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Gilbertson, Thomas R.
  • Mukherji, Raja
  • Harte, Karen M.
  • Mahmud, Nasim
  • Berberian, Ryan A.
  • Westhoff, John J.
  • Lyon, Gregory H.
  • Cooley, John B.

Abrégé

Systems and methods are disclosed for determining fraudulent entities. The method includes retrieving characteristics data associated with known fraudulent entities. A first graph is generated based on the characteristics data associated with the known fraudulent entities, the first graph represents relationships among the fraudulent entities and related entities of the known fraudulent entities. Identification data associated with a target entity is received. Characteristics data associated with the target entity is retrieved using the identification data. A second graph is generated based on the characteristics data associated with the target entity, the second graph represents relationships among the target entity and related entities of the target entity. The first graph and the second graph are compared to generate an association score for the target entity. Investigative targets are determined based on the association score. A presentation of the investigative targets is displayed via a graphical user interface of a device.

Classes IPC  ?

16.

GRINS2 GIVE ONE SMILE. GET TWO IN RETURN.

      
Numéro de série 99110058
Statut En instance
Date de dépôt 2025-03-28
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable services, namely, coordination of the procurement and distribution of in-kind donations of children's books, toys and games from public donors to hospitalized children Charitable foundation services, namely, providing financial support to to families with children for healthcare services that are not covered by health insurance

17.

GRINS2 GIVE ONE SMILE. GET TWO IN RETURN.

      
Numéro de série 99110073
Statut En instance
Date de dépôt 2025-03-28
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable services, namely, coordination of the procurement and distribution of in-kind donations of children's books, toys and games from public donors to hospitalized children Charitable foundation services, namely, providing financial support to families with children for healthcare services that are not covered by health insurance

18.

PREDICTIVE MONITORING OF THE GLUCOSE-INSULIN ENDOCRINE METABOLIC REGULATORY SYSTEM

      
Numéro d'application 18967920
Statut En instance
Date de dépôt 2024-12-04
Date de la première publication 2025-03-20
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Catani, Steven
  • Guo, Yinglong
  • Ehlert, Benjamin W.
  • Lensing, Cody James
  • Garth, Stephen Rushton
  • Ferrell, David R.
  • Clark, Callahan Nordean

Abrégé

There is a need for more effective and efficient predictive data analysis, such as more effective and efficient data analysis solutions for performing predictive monitoring of the glucose-insulin endocrine metabolic regulatory system.

Classes IPC  ?

  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61B 5/145 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang

19.

UHCCF

      
Numéro de série 99087891
Statut En instance
Date de dépôt 2025-03-17
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable foundation services, namely, providing financial support to families with children for healthcare services that are not covered by health insurance

20.

Miscellaneous Design

      
Numéro de série 99088026
Statut En instance
Date de dépôt 2025-03-17
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable foundation services, namely, providing financial support to families with children for healthcare services that are not covered by health insurance

21.

UNITEDHEALTHCARE CHILDREN'S FOUNDATION

      
Numéro de série 99084401
Statut Enregistrée
Date de dépôt 2025-03-14
Date d'enregistrement 2025-11-04
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Charitable foundation services, namely, providing financial support to families with children for healthcare services that are not covered by health insurance

22.

CUDDLES TO GO

      
Numéro de série 99084600
Statut En instance
Date de dépôt 2025-03-14
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 24 - Tissus et produits textiles

Produits et services

Fleece blankets

23.

UNITEDHEALTHCARE HEALTH COST SHIELD

      
Numéro de série 99084537
Statut En instance
Date de dépôt 2025-03-14
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Insurance services, namely, underwriting, issuance and administration of health insurance; Providing information in insurance matters

24.

CARING. CONNECTING. GROWING TOGETHER.

      
Numéro d'application 1838821
Statut Enregistrée
Date de dépôt 2024-08-14
Date d'enregistrement 2024-08-14
Propriétaire UnitedHealth Group Incorporated (USA)
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 38 - Services de télécommunications
  • 41 - Éducation, divertissements, activités sportives et culturelles

Produits et services

Employment counseling and recruiting services; providing on-line employment information regarding recruiting, career advice, career events, resume advice, interview tips, job resources, job listings, and internships; providing an interactive website offering recruitment, employment, and career development information (Term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations); providing an on-line searchable database featuring employment opportunities and content about employment opportunities (Term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations); employment counseling, recruiting and job placement information and assistance for military veterans. Providing e-mail services that allows for individuals to speak directly with an employment recruiter; providing live online chat rooms that allows for individuals to speak directly with an employment recruiter. On-line journals, namely, blogs featuring career advice related to job opportunities, job resources and listings, resumes, interviews, internships, college applications, and general career-related information (Term considered too vague by the International Bureau pursuant to Rule 13 (2) (b) of the Regulations); education services, namely, providing on-line presentations, seminars and non-downloadable webinars in the field of career coaching, resume drafting, interviewing skills, and job attainment.

25.

SYSTEMS AND METHODS FOR AUTOMATED DIGITAL IMAGE SELECTION AND PRE-PROCESSING FOR AUTOMATED CONTENT ANALYSIS

      
Numéro d'application 18889983
Statut En instance
Date de dépôt 2024-09-19
Date de la première publication 2025-01-30
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Amundson, Russell H.
  • Bhargava, Saurabh
  • Singh, Rama Krishna
  • Pande, Ravi
  • Gupta, Vishwakant
  • Mantri, Gaurav
  • Agrawal, Abhinav
  • Suman, Sapeksh

Abrégé

Systems and methods are configured for preprocessing of images for further content based analysis thereof. Such images are extracted from a source data file, by standardizing individual pages within a source data file as image data files, and identifying whether the image satisfies applicable size-based criteria, applicable color-based criteria, and applicable content-based criteria, among others, utilizing one or more machine-learning based models. Various systems and methods may identify particular features within the extracted images to facilitate further image-based analysis based on the identified features.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06F 18/2137 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères de préservation de la topologie, p. ex. positionnement multidimensionnel ou cartes auto-organisatrices
  • G06F 18/24 - Techniques de classification
  • G06T 3/60 - Rotation d’images entières ou de parties d'image
  • G06T 7/11 - Découpage basé sur les zones
  • G06T 7/33 - Détermination des paramètres de transformation pour l'alignement des images, c.-à-d. recalage des images utilisant des procédés basés sur les caractéristiques
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06T 7/90 - Détermination de caractéristiques de couleur
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/77 - Traitement des caractéristiques d’images ou de vidéos dans les espaces de caractéristiquesDispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p. ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]Séparation aveugle de source
  • G16H 30/40 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le traitement d’images médicales, p. ex. l’édition
  • G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance

26.

MACHINE LEARNING TECHNIQUES FOR FEATURE PREDICTION BASED ON CLUSTERING USING ANCILLARY AND LOCATION DATA

      
Numéro d'application 18355820
Statut En instance
Date de dépôt 2023-07-20
Date de la première publication 2025-01-23
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Johnson, Kurt
  • Pahuja, Chiranjeev
  • Kamatam, Krishna Naveen Kumar
  • Li, Elena

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for a predictive data analysis system that is configured to rank one or more candidate entities. A machine learning model is trained to rank the one or more candidate entities for initiating the performance of one or more prediction-based actions based on one or more sets of a plurality of clusters generated based on population data merged with ancillary data, and an association of location data with external domain data. The plurality of clusters is generated by generating embeddings for one or more features associated with a plurality of entities selected for clustering and determining a similarity score for entity pairs selected from the plurality of entities based on a distance function and the embeddings.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

27.

HIERARCHICAL DELIMITER IDENTIFICATION FOR PARSING OF RAW DATA

      
Numéro d'application 18218986
Statut En instance
Date de dépôt 2023-07-06
Date de la première publication 2025-01-09
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Singh, Sanjay Kumar
  • Jethy, Subhasis
  • Saini, Udit
  • Das, Ranju
  • Manohar, Vasant
  • Bhotika, Rahul
  • Morato, Carlos

Abrégé

An example system for parsing and transforming input data that includes processing circuitry and memory, the memory configured to store the input data. The processing circuitry is configured to determine a first delimiter in the input data. The processing circuitry is configured to determine a plurality of second delimiter hypotheses and parse the input data according to the first delimiter and the plurality of second delimiter hypotheses to generate a plurality of tables that are each associated with a respective one of the plurality of second delimiter hypotheses. The processing circuitry is configured to determine a respective consistency score for each of the plurality of tables and select a table from among the plurality of tables based on the respective consistency score associated with the table. The processing circuitry is configured to format the input data based on the selected table to generate formatted data and output the formatted data.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/23 - Mise à jour

28.

CANONICAL TRANSFORMATIONS USING MACHINE LEARNING LANGUAGE MODEL

      
Numéro d'application 18331530
Statut En instance
Date de dépôt 2023-06-08
Date de la première publication 2024-12-12
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Singh, Sanjay Kumar
  • Jethy, Subhasis
  • Saini, Udit
  • Morato, Carlos W.
  • Bhotika, Rahul
  • Das, Ranju
  • Manohar, Vasant

Abrégé

Various embodiments of the present disclosure provide machine learning techniques for transforming disparate, third-party datasets to canonical representations. The techniques include generating, using a machine learning prediction model, a canonical representation for an input dataset. The machine learning prediction model is previously trained using permutative input embeddings for a training dataset based on canonical data entity features, such that each permutative input embedding corresponds to a different sequence of the canonical data entity features. The permutative input embeddings are leveraged to generate a latent representation for the training dataset. The latent representation is combined with a canonical data map to generate an alignment vector, which is refined to generate an output vector for the input dataset. The machine learning prediction model is trained using a model loss generated based on a comparison of the output vector with a corresponding labeled vector.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données

29.

Systems and methods for medical fraud detection

      
Numéro d'application 18311378
Numéro de brevet 12236490
Statut Délivré - en vigueur
Date de dépôt 2023-05-03
Date de la première publication 2024-11-07
Date d'octroi 2025-02-25
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Gilbertson, Thomas R.
  • Mukherji, Raja
  • Harte, Karen M.
  • Mahmud, Nasim
  • Berberian, Ryan A.
  • Westhoff, John J.
  • Lyon, Gregory H.
  • Cooley, John B.

Abrégé

Systems and methods are disclosed for determining fraudulent entities. The method includes retrieving characteristics data associated with known fraudulent entities. A first graph is generated based on the characteristics data associated with the known fraudulent entities, the first graph represents relationships among the fraudulent entities and related entities of the known fraudulent entities. Identification data associated with a target entity is received. Characteristics data associated with the target entity is retrieved using the identification data. A second graph is generated based on the characteristics data associated with the target entity, the second graph represents relationships among the target entity and related entities of the target entity. The first graph and the second graph are compared to generate an association score for the target entity. Investigative targets are determined based on the association score. A presentation of the investigative targets is displayed via a graphical user interface of a device.

Classes IPC  ?

  • G06Q 40/00 - FinanceAssuranceStratégies fiscalesTraitement des impôts sur les sociétés ou sur le revenu
  • G06Q 40/08 - Assurance

30.

MALU KOU

      
Numéro de série 98826132
Statut En instance
Date de dépôt 2024-10-29
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 36 - Services financiers, assurances et affaires immobilières
  • 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.
  • 45 - Services juridiques; services de sécurité; services personnels pour individus

Produits et services

Providing insurance information Health care; Health care services, namely, wellness programs; Health counseling; Managed health care services; Providing information in the fields of health and wellness Providing patient advocate services in the field of health care

31.

MACHINE LEARNING MODEL TRAINING FOR IMPROVING ANOMALY DETECTION

      
Numéro d'application 18189039
Statut En instance
Date de dépôt 2023-03-23
Date de la première publication 2024-09-26
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Palomera, Aldo Cordova
  • Hill, Brian Lawrence
  • Halperin, Eran
  • Saeedi, Ardavan

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for improving machine learning model training based on receiving labeled training data objects, generating a normal prediction loss parameter, generating a global classification loss parameter, generating a composite loss parameter, and initiating the performance of one or more prediction-based operations.

Classes IPC  ?

32.

BENEFIT ASSIST

      
Numéro de série 98759565
Statut Enregistrée
Date de dépôt 2024-09-19
Date d'enregistrement 2025-01-28
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières

Produits et services

Insurance claims auditing services Claims administration services in the field of health insurance; Insurance consulting in the field of health insurance; Providing information about healthcare insurance plans

33.

PROMPT ENGINEERING AND AUTOMATED QUALITY ASSESSMENT FOR LARGE LANGUAGE MODELS

      
Numéro d'application 18589179
Statut En instance
Date de dépôt 2024-02-27
Date de la première publication 2024-08-29
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Kelly, Damian
  • Bhadauria, Vivek
  • Volozin, Andrey
  • Fernando, Sanjeeva L.

Abrégé

Various embodiments of the present disclosure provide prompt engineering and text quality assessment techniques for improving generative text outputs. The techniques may include identifying an initial document subset for a generative text request that includes a request to generate a generative text document based on one or more request text fields. The techniques may include generating a contextual classification for the one or more request text fields and identifying a refined document subset based on the contextual classification. The techniques may include generating one or more request field embeddings respectively corresponding to the one or more request text fields and identifying a prompt document subset based on the one or more request field embeddings. The techniques may include generating, using a large language model, one or more generative text fields using a generative model prompt based on the prompt document subset and the one or more request text fields.

Classes IPC  ?

34.

SYSTEMS AND METHODS FOR TRAINING AND LEVERAGING A MULTI-HEADED MACHINE LEARNING MODEL FOR PREDICTIVE ACTIONS IN A COMPLEX PREDICTION DOMAIN

      
Numéro d'application 18309092
Statut En instance
Date de dépôt 2023-04-28
Date de la première publication 2024-08-01
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Morato, Carlos W.
  • Wang, Yan
  • Juluru, Mamatha

Abrégé

Various embodiments of the present disclosure provide machine learning techniques for transforming third-party coding sets to universal canonical representations. The techniques may include receiving a plurality of training datasets corresponding to a plurality of predictive categories and generating a plurality of teacher models respectively corresponding to the plurality of predictive categories based on the plurality of training datasets. The techniques include generating a multi-headed composite model based on a plurality of trained parameters for each of the plurality of teacher models. The multi-headed composite model includes a plurality of model heads that respectively correspond to the plurality of teacher models and the plurality of predictive categories. The multi-headed composite model is leveraged to generate an output embedding for a text input of any predictive category. Each text input is processed by selecting a particular head of the multi-headed composite model that corresponds to the predictive category of the text input.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06F 40/30 - Analyse sémantique

35.

SYSTEMS AND METHODS FOR TRAINING AND LEVERAGING A MULTI-HEADED MACHINE LEARNING MODEL FOR PREDICTIVE ACTIONS IN A COMPLEX PREDICTION DOMAIN

      
Numéro d'application 18309088
Statut En instance
Date de dépôt 2023-04-28
Date de la première publication 2024-08-01
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Morato, Carlos W.
  • Wang, Yan
  • Juluru, Mamatha

Abrégé

Various embodiments of the present disclosure provide machine learning techniques for transforming third-party coding sets to universal canonical representations. The techniques may include receiving a plurality of training datasets corresponding to a plurality of predictive categories and generating a plurality of teacher models respectively corresponding to the plurality of predictive categories based on the plurality of training datasets. The techniques include generating a multi-headed composite model based on a plurality of trained parameters for each of the plurality of teacher models. The multi-headed composite model includes a plurality of model heads that respectively correspond to the plurality of teacher models and the plurality of predictive categories. The multi-headed composite model is leveraged to generate an output embedding for a text input of any predictive category. Each text input is processed by selecting a particular head of the multi-headed composite model that corresponds to the predictive category of the text input.

Classes IPC  ?

36.

Generation of synthetic question-answer pairs using a document classifier and classification explainer

      
Numéro d'application 18315112
Numéro de brevet 12443800
Statut Délivré - en vigueur
Date de dépôt 2023-05-10
Date de la première publication 2024-08-01
Date d'octroi 2025-10-14
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Stremmel, Joel David
  • Halperin, Eran
  • Batra, Sanjit S
  • Saeedi, Ardavan
  • Hassanzadeh, Hamid Reza

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for improving question-answer (QA) machine learning model training based on generating predicted label indicators, generating prediction score indicators and prediction explanation indicators, generating structured label-explanation datasets, generating synthetic QA training datasets, generating a prediction output, and initiating the performance of one or more prediction-based operations based on the prediction output.

Classes IPC  ?

  • G06F 40/30 - Analyse sémantique
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

37.

MACHINE LEARNING TECHNIQUES FOR REINFORCEMENT LEARNING USING CROSS-SUPPORT LIKELIHOOD MODEL SIMILARITY DETERMINATIONS

      
Numéro d'application 18047753
Statut En instance
Date de dépôt 2022-10-19
Date de la première publication 2024-07-11
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hussain, Reem A.
  • Patel, Yagnesh J.
  • Nori, Vijay S.

Abrégé

Various embodiments of the present invention introduce technical advantages related to computational efficiency and storage efficiency of training reinforcement learning models using model-based reinforcement learning approaches. For example, various embodiments of the present invention enable training components of a dynamics model of a reinforcement learning framework using cross-space likelihood similarity measures between predicted transition likelihood models and empirical transition likelihood models even when the two noted likelihood models have distinct distribution supports. This enables using training/empirical observation data to train dynamics model components even when the output state spaces of the dynamics model components are distinct from the output state space of the empirical distributions determined using the training/empirical observation data.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

38.

SYSTEMS AND METHODS FOR EVALUATING PROGRAMS

      
Numéro d'application 18149294
Statut En instance
Date de dépôt 2023-01-03
Date de la première publication 2024-07-04
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Wang, Changchun Alan
  • Mathis, Andrea
  • Hu, Wenjun

Abrégé

Systems and computer-implemented method for evaluating programs are disclosed. A computer-implemented method includes determining a propensity score, using a propensity score model, for each patient among multiple patients. The multiple patients include treatment patients and control patients, and the propensity score represents a probability of assignment to a treatment group. The method includes assigning a random value to each patient in an assignment group. The assignment group includes at least one of the treatment patients or the control patients. The method includes sorting the patients based on the assigned random values and matching, based on the sorted patients and the determined propensity scores, each treatment patient to a control patient to create multiple matches. Each match includes one treatment patient and at least one control patient. The method includes performing, based on the multiple matches, one or more actions related to the multiple patients.

Classes IPC  ?

  • G16H 10/20 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des essais ou des questionnaires cliniques électroniques

39.

ADAPTIVE PREDICTIONS BASED ON CONTINUOUS SENSOR MEASUREMENTS

      
Numéro d'application 18300451
Statut En instance
Date de dépôt 2023-04-14
Date de la première publication 2024-07-04
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Jhuang, An-Ting
  • Cook, David

Abrégé

Various embodiments of the present disclosure provide predictive modeling techniques for generating predictive classifications from a plurality of continuous sensor measurements. The techniques may include identifying change points from sensor measurements for an input data object, determining data spikes from the sensor measurements based on the change points, and generating a predictive classification for the input data object based on the data spikes. The predictive classification may correspond to an evaluation time period with one or more sub-time periods. The techniques may include determining a sub-time period classification for each of the sub-time periods of the evaluation time period. The predictive classification may be derived from the sub-time period classifications. Using the predictive classification, an action output may be generated and provided for the input data object.

Classes IPC  ?

  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61B 5/145 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang

40.

SYSTEMS AND METHODS FOR UTILIZING TOPIC MODELS TO WEIGHT MIXTURE-OF-EXPERTS FOR IMPROVEMENT OF LANGUAGE MODELING

      
Numéro d'application 18311608
Statut En instance
Date de dépôt 2023-05-03
Date de la première publication 2024-06-27
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Saeedi, Ardavan
  • Halperin, Eran
  • Stremmel, Joel David
  • Hassanzadeh, Hamid Reza

Abrégé

Systems and methods are disclosed for predicting a next text. A method may include receiving one or more documents, such as a document associated with a healthcare provider. The document is then processed to generate one or more tokens which are representative of the document. The document is then processed with a machine-learning model, such as a topic model, and a topic vector is output for the document. Based at least in a part on this topic vector, the document is then processed by one or more expert machine-learning models, which each output a probability vector. The various probability vectors are then further processed to calculate a total probability vector for the document. Based at least in part on the total probability vector for the document, a text output is selected.

Classes IPC  ?

  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06F 40/274 - Conversion de symboles en motsAnticipation des mots à partir des lettres déjà entrées

41.

TEMPORAL SEQUENCE CAUSAL TRANSFORMER MACHINE LEARNING MODEL

      
Numéro d'application 18331600
Statut En instance
Date de dépôt 2023-06-08
Date de la première publication 2024-05-23
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Dahlem, Dominik Roman Christian
  • Nori, Vijay S.
  • Halperin, Eran
  • Rakocz, Nadav

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for generating a prediction output comprising one or more actions by receiving data associated with encounters in a tuple form, tokenizing the encounters, training a causal transformer machine learning model configured to predict outcomes of actions by translating action tokens from the tokenized encounters into one or more embedding spaces, and training a causal transformer machine learning model to select the one or more actions based on embeddings from the one or more embedding spaces.

Classes IPC  ?

42.

APPLICATION OF PERSONALIZED SENSOR-BASED RISK PROFILES FOR IMPACTS OF EXTERNAL EVENTS

      
Numéro d'application 18211988
Statut En instance
Date de dépôt 2023-06-20
Date de la première publication 2024-05-23
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Lyng, Gregory D.
  • Hill, Brian Lawrence
  • Zou, James
  • Karkkainen, Kimmo M.
  • Vodrahalli, Kailas
  • Halperin, Eran

Abrégé

Embodiments provide for application of personalized or individualized sensor-based risk profiles for impacts of external events. An example method includes receiving sensor data from one or more sensors couplable with a subject body of a subject population comprising a plurality of subject bodies; receiving external factor data associated with the subject population; generating a population-level external event impact metric, where the population-level external event impact metric represents a predicted impact of one or more external events on a physiological or other metric of the subject population; generating a subject-level external impact metric, where the subject-level external event impact metric represents a predicted impact of the one or more external events on the physiological or other metric associated with the subject body; and initiating the performance of one or more prediction-based actions based on the subject-level external event impact metric.

Classes IPC  ?

  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients
  • A61B 5/145 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang
  • G16H 20/17 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients administrés par perfusion ou injection
  • G16H 40/20 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour la gestion ou l’administration de ressources ou d’établissements de soins de santé, p. ex. pour la gestion du personnel hospitalier ou de salles d’opération
  • G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G16H 50/30 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le calcul des indices de santéTIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour l’évaluation des risques pour la santé d’une personne

43.

MACHINE LEARNING TECHNIQUES FOR PREDICTING CLASSIFICATION PROGRESSION

      
Numéro d'application 17987141
Statut En instance
Date de dépôt 2022-11-15
Date de la première publication 2024-05-16
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hertzberg, Jeffrey
  • Kelly, Neal
  • Martinez, Miguel
  • Kilgore, Emily

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for predicting progression of condition classifications using a progression prediction machine learning model. The progression prediction machine learning model is trained using training data that assigns an outcome label to each entity that is in a defined base cohort based at least in part on whether the entity has subsequent severity level that exceeds an initial severity level. Once trained the progression prediction machine learning mode is configured to predict a severity level escalation probability in a future time period for an entity.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

44.

METHODS, APPARATUSES AND COMPUTER PROGRAM PRODUCTS FOR GENERATING PREDICTED MULTI-DRUG CONTRAINDICATION DATA OBJECTS

      
Numéro d'application 18052508
Statut En instance
Date de dépôt 2022-11-03
Date de la première publication 2024-05-09
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Halperin, Eran
  • Hill, Brian
  • Austin, George

Abrégé

Methods, apparatuses, systems, computing devices, and/or the like are provided. An example method may generate a plurality of multidimensional patient-drug tensors based at least in part on a plurality of patient record data objects and a plurality of combined drug input vectors, generate an interaction-attentive prediction data object based at least in part on the plurality of multidimensional patient-drug tensors and at least one interaction-attentive machine learning model, generate an interaction-inattentive prediction data object based at least in part on the plurality of patient record data objects and an interaction-inattentive machine learning model, determine a drug combination indicator based at least in part on comparing the interaction-attentive prediction data object and the interaction-inattentive prediction data object, generate a predicted multi-drug contraindication data object based at least in part on the drug combination indicator, and perform one or more prediction-based actions.

Classes IPC  ?

  • G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G16H 70/40 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des médicaments, p. ex. leurs effets secondaires ou leur usage prévu

45.

Systems and methods for training multi-armed bandit models

      
Numéro d'application 18302185
Numéro de brevet 12394508
Statut Délivré - en vigueur
Date de dépôt 2023-04-18
Date de la première publication 2024-05-02
Date d'octroi 2025-08-19
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Afrasiabi, Mohsen
  • Choudhury, Tanzeem
  • Livesey, Cecilia M.
  • Martin, Jared Dustin
  • Confer, Herk Anthony
  • Mulcahy, Daniel Joseph
  • Krell, Rony

Abrégé

A method for determining a treatment recommendation using a multi-armed bandit (MAB) model can include receiving first patient information, determining, using the MAB model, the treatment recommendation based on the first patient information, wherein the MAB model is trained based on a MAB treatment recommendation determined by the MAB model using second patient information and a clinical treatment recommendation determined according to clinical guidelines based on the second patient information, and providing the treatment recommendation.

Classes IPC  ?

  • G16H 20/00 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients
  • G06N 3/092 - Apprentissage par renforcement

46.

SYSTEMS AND METHODS FOR MODEL COMPARISON AND EVALUATION

      
Numéro d'application 18050613
Statut En instance
Date de dépôt 2022-10-28
Date de la première publication 2024-05-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s) Hane, Christopher A.

Abrégé

Systems and methods are disclosed for comparing a plurality of models. The method includes generating raw scores for the plurality of models based on multiple measures of demographic bias and performance. The raw scores for each of the plurality of models are stored in corresponding locations of a raw score matrix. The rank scores for the plurality of models are determined based on comparing the raw scores of the plurality models in each of the multiple measures of demographic bias and performance. The rank scores for each of the plurality of models are stored in corresponding locations of a rank matrix. Tournament scores for the plurality of models are determined based on performing a pairwise comparison of the rank scores. The tournament scores are stored in corresponding locations of a tournament matrix. The tournament scores are tallied to determine a rank for each of the plurality of models.

Classes IPC  ?

  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur

47.

MACHINE LEARNING TECHNIQUES FOR GENERATING CROSS-TEMPORAL SEARCH RESULT PREDICTION

      
Numéro d'application 17938575
Statut En instance
Date de dépôt 2022-10-06
Date de la première publication 2024-04-11
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Unsal, Cem
  • Lyng, Gregory D.
  • Bulu, Irfan

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing cross-temporal search result predictions. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform cross-temporal search result predictions using a multimodal hierarchical attention machine learning framework.

Classes IPC  ?

  • G06F 16/2457 - Traitement des requêtes avec adaptation aux besoins de l’utilisateur
  • G06F 16/2458 - Types spéciaux de requêtes, p. ex. requêtes statistiques, requêtes floues ou requêtes distribuées

48.

MEDICALRX ADVISOR

      
Numéro de série 98493366
Statut Enregistrée
Date de dépôt 2024-04-10
Date d'enregistrement 2024-12-10
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 45 - Services juridiques; services de sécurité; services personnels pour individus

Produits et services

Health care cost containment Providing patient advocate services in the field of pharmacies and the process of obtaining prescription drugs at affordable prices

49.

PROCESSING DIFFERENT TIMESCALE DATA UTILIZING A MODEL

      
Numéro d'application 18325598
Statut En instance
Date de dépôt 2023-05-30
Date de la première publication 2024-03-21
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Lyng, Gregory D.
  • Halperin, Eran
  • Hill, Brian Lawrence
  • Karkkainen, Kimmo M.
  • Vodrahalli, Kailas

Abrégé

Embodiments of the disclosure provide for improved processing of data with different timescales, for example high-frequency data and low-frequency data. Embodiments specifically improve such processing of different timescale data processed by a machine learning model. Additionally or alternatively, some embodiments include improved processing of data with different timescales by selecting an optimal variant from a plurality of possible variants of a prediction model.

Classes IPC  ?

50.

MACHINE LEARNING SIGNAL PROCESSING TECHNIQUES FOR GENERATING PHYSIOLOGICAL PREDICTS

      
Numéro d'application 18470468
Statut En instance
Date de dépôt 2023-09-20
Date de la première publication 2024-03-21
Propriétaire UnitedHealth Group Incorporation (USA)
Inventeur(s)
  • Saha, Sankalita
  • Callahan, Clark N.
  • Thompson, Nels
  • Li, Ze Yuan
  • Jazdzewski, Cody J.
  • Krell, Rony
  • Choudhury, Tanzeem Yuan

Abrégé

Various embodiments of the present disclosure provide signal interpretation and data aggregation techniques for generating predictive insights for a user. The techniques may include receiving initial physiological features for a user that are based on recorded sensor values for the user. The techniques include generating activity encodings for the user based on interaction data objects for the user and generating a combined input feature vector by aggregating the initial physiological features and the activity encodings. The techniques include generating, using a machine learning model, a physiological prediction for the user based on the combined input feature vector.

Classes IPC  ?

  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61B 5/145 - Mesure des caractéristiques du sang in vivo, p. ex. de la concentration des gaz dans le sang ou de la valeur du pH du sang
  • G16H 20/17 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients administrés par perfusion ou injection
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

51.

MACHINE LEARNING TRAINING APPROACH FOR A MULTITASK PREDICTIVE DOMAIN

      
Numéro d'application 18155228
Statut En instance
Date de dépôt 2023-01-17
Date de la première publication 2024-03-21
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Austin, George
  • Halperin, Eran
  • Mohaghegh, Fazlolah
  • Cordova Palomera, Aldo

Abrégé

Various embodiments of the present disclosure disclose a machine learning training approach for intelligently training a plurality of machine learning models associated with a multitask environment. The techniques include jointly training the plurality of machine learning models based on task similarities by generating a similarity matrix corresponding to a plurality machine learning models, generating a sharing loss value for the at least two machine learning models, generating, using a loss function and a training dataset, a prediction loss value for a particular machine learning model of the at least two machine learning models, generating an aggregated loss value for the particular machine learning model based on the similarity matrix, the sharing loss value, and the prediction loss value, and updating the particular machine learning model based on the aggregated loss value for the particular machine learning model.

Classes IPC  ?

52.

Automated data routing and comparison systems and methods for identifying and implementing an optimal pricing model

      
Numéro d'application 16693592
Numéro de brevet 11922471
Statut Délivré - en vigueur
Date de dépôt 2019-11-25
Date de la première publication 2024-03-05
Date d'octroi 2024-03-05
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Cherryhomes, David G.
  • Bailey, James A.
  • Baker, Robert
  • Maurer, Matthew J.
  • Larrandson, Ry
  • Rooda, Nick
  • Heinzel, Charles

Abrégé

To automate a pricing strategy for an otherwise unpriced service or item, prices may be generated through a plurality of different pricing models, via a pricing engine passing input data to a plurality of discrete pricing models. Those pricing models may pass data back to the pricing engine, which then adjudicates the results of the pricing models to identify a most-relevant pricing model for the particular unpriced service or item.

Classes IPC  ?

53.

INDIVIDUALIZED CLASSIFICATION THRESHOLDS FOR MACHINE LEARNING MODELS

      
Numéro d'application 18172521
Statut En instance
Date de dépôt 2023-02-22
Date de la première publication 2024-02-29
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Dahlem, Dominik Roman Christian
  • Lyng, Gregory D.
  • Hane, Christopher A.
  • Halperin, Eran

Abrégé

Various embodiments of the present disclosure describe feature bias mitigation techniques for machine learning models. The techniques include generating or receiving a contextual bias correction function, a protected bias correction function, or an aggregate bias for a machine learning model. The aggregate bias correction function for the model may be based on the contextual or protected bias correction functions. At least one of the generated or received functions may be configured to generate an individualized threshold tailored to specific attributes of an input to the machine learning model. Each of the functions may generate a respective threshold based on one or more individual parameters of the input. An output from the machine learning model may be compared to the individualized threshold to generate a bias adjusted output that accounts for the individual parameters of the input.

Classes IPC  ?

54.

INDIVIDUALIZED CLASSIFICATION THRESHOLDS FOR MACHINE LEARNING MODELS

      
Numéro d'application 18172519
Statut En instance
Date de dépôt 2023-02-22
Date de la première publication 2024-02-29
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Dahlem, Dominik Roman Christian
  • Lyng, Gregory D.
  • Hane, Christopher A.
  • Halperin, Eran

Abrégé

Various embodiments of the present disclosure describe feature bias mitigation techniques for machine learning models. The techniques include generating or receiving a contextual bias correction function, a protected bias correction function, or an aggregate bias for a machine learning model. The aggregate bias correction function for the model may be based on the contextual or protected bias correction functions. At least one of the generated or received functions may be configured to generate an individualized threshold tailored to specific attributes of an input to the machine learning model. Each of the functions may generate a respective threshold based on one or more individual parameters of the input. An output from the machine learning model may be compared to the individualized threshold to generate a bias adjusted output that accounts for the individual parameters of the input.

Classes IPC  ?

55.

TEMPORAL DATA AUGMENTATION AND PREDICTION USING MULTI-STAGE MACHINE-LEARNING BASED MODELS

      
Numéro d'application 18057785
Statut En instance
Date de dépôt 2022-11-22
Date de la première publication 2024-02-22
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Halperin, Eran
  • Lyng, Gregory L.
  • Hill, Brian L.

Abrégé

Various embodiments of the present disclosure disclose machine-learning based data augmentation and prediction techniques for generating predictive classifications based on temporal data. A machine-learning based model is provided that can receive an input data object associated with a plurality of predictive temporal parameters; determine augmented temporal data objects based on the predictive temporal parameters; generate predictive data representations for the input data object based on the predictive temporal parameters and the augmented temporal data objects; generate a multi-channel predictive data representation based on the predictive data representations for the input data object; and generate a predictive classification for the input data object based on the multi-channel predictive data representation.

Classes IPC  ?

  • G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients

56.

Programmatically managing social determinants of health to provide electronic data links with third party health resources

      
Numéro d'application 16791110
Numéro de brevet 11908557
Statut Délivré - en vigueur
Date de dépôt 2020-02-14
Date de la première publication 2024-02-20
Date d'octroi 2024-02-20
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Shapiro, Sheila Kay
  • Mcclure, Donna

Abrégé

Certain embodiments are directed to systems and methods for automatically providing data indicative of one or more characteristics of services that may be recommended to a particular patient, wherein the services are executable at least in part electronically based on data generated and provided by a system for facilitating access to the services. The generated data may be utilized for generating one or more user interfaces providing data regarding derived standard pricing data that is automatically assigned to the referred services and which may be attributable to a patient based at least in part on the patient's usage of the services.

Classes IPC  ?

  • G16H 20/00 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients
  • G16H 15/00 - TIC spécialement adaptées aux rapports médicaux, p. ex. leur création ou leur transmission
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients

57.

AUTOMATED ELECTRONIC MEDICAL RECORD (EMR) ANALYSIS VIA POINT OF CARE COMPUTING SYSTEMS

      
Numéro d'application 18491618
Statut En instance
Date de dépôt 2023-10-20
Date de la première publication 2024-02-08
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hansen, Kimberly
  • Moodley, Sagran
  • Bishop, Jeff
  • Bier, George
  • Goel, Anupam

Abrégé

A care estimate module operating on a central computing entity receives a trigger indication (a) comprising patient identifying information and (b) that identifies a service; extracts the patient identifying information from the trigger indication; determines the service; identifies a potential provider that provides the service; and determines a care estimate for the potential provider to provide the service to the patient. The potential provider is identified based on eligibility information associated with the patient, a location associated with the patient, and an address associated with the potential provider. The care estimate is determined based on the eligibility information associated with the patient. The central computing entity generates a care estimate notification that identifies the potential provider and comprises the care estimate; and provides the care estimate notification such that a user computing entity receives the care estimate notification.

Classes IPC  ?

  • G16H 15/00 - TIC spécialement adaptées aux rapports médicaux, p. ex. leur création ou leur transmission
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G16H 40/00 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux
  • G06Q 40/08 - Assurance
  • G16H 80/00 - TIC spécialement adaptées pour faciliter la communication entre les professionnels de la santé ou les patients, p. ex. pour le diagnostic collaboratif, la thérapie collaborative ou la surveillance collaborative de l’état de santé
  • G06F 21/31 - Authentification de l’utilisateur
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché

58.

COMPATIBILITY IN CARE

      
Numéro de série 98396577
Statut En instance
Date de dépôt 2024-02-07
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 35 - Publicité; Affaires commerciales

Produits et services

Business management consulting and advisory services for the healthcare industry; Business services provided to the healthcare industry, namely, the collection, reporting, and analysis of healthcare quality data for business purposes; Medical practice management for others; Physician referrals

59.

Storage container assembly

      
Numéro d'application 29756565
Numéro de brevet D1012481
Statut Délivré - en vigueur
Date de dépôt 2020-10-29
Date de la première publication 2024-01-30
Date d'octroi 2024-01-30
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Ehlert, Jennie Audrey
  • Cheng, Andrew Tsong-Bo
  • Adabag, Emre Charles
  • Detor, Samantha Roberta

60.

PRICELOCK

      
Numéro de série 98348707
Statut En instance
Date de dépôt 2024-01-09
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 35 - Publicité; Affaires commerciales

Produits et services

Consulting services in the cost management of health care

61.

Machine-learning based transcript summarization

      
Numéro d'application 17937616
Numéro de brevet 12217013
Statut Délivré - en vigueur
Date de dépôt 2022-10-03
Date de la première publication 2023-12-28
Date d'octroi 2025-02-04
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sabapathy, Rajesh
  • Mittal, Chirag
  • Awasthi, Gourav
  • Josyula, Aditya Teja

Abrégé

There is a need for more effective and efficient predictive natural language summarization. This need is addressed by applying hybrid extractive and abstractive summarization techniques in a unique processing pipeline to generate a cohesive and comprehensive summary of a multi-party interaction. A method for generating the summary of a multi-party interaction includes receiving a multi-party interaction transcript data object comprising a plurality of interaction utterances from at least two participants; using an extractive summarization model to identify a key sentence of the multi-party interaction transcript data object; identifying an interaction utterance from the multi-party interaction transcript data object that corresponds to the key sentence; generating a contextual summary for the multi-party interaction transcript data object based at least in part on the interaction utterance; and generating a reported contextual summary for the multi-party interaction transcript data object based at least in part on the contextual summary.

Classes IPC  ?

62.

MACHINE-LEARNING BASED IRRELEVANT SENTENCE CLASSIFIER

      
Numéro d'application 17937606
Statut En instance
Date de dépôt 2022-10-03
Date de la première publication 2023-12-28
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sabapathy, Rajesh
  • Mittal, Chirag
  • Awasthi, Gourav
  • Josyula, Aditya Teja

Abrégé

There is a need for more effective, efficient, and accurate computer text comprehension. This need is addressed by applying unique text processing techniques to identify and remove irrelevant sentences from a narrative. The text processing techniques include a machine-learning based model that is trained using automatically generated training data that is tailored to a particular circumstance. A method for machine narrative comprehension includes receiving a narrative data object comprising one or more sentences; determining, using a machine-learning based irrelevant classifier model, a relevance of at least one of the one or more sentences; responsive to a determination that at least one sentence is irrelevant, generating a pertinent summary by removing the at least one sentence from the narrative; and generating, based at least in part on the pertinent summary, an output indicia data object for the narrative data object.

Classes IPC  ?

  • G06F 40/30 - Analyse sémantique
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

63.

Search analysis and retrieval via machine learning embeddings

      
Numéro d'application 17971491
Numéro de brevet 12169512
Statut Délivré - en vigueur
Date de dépôt 2022-10-21
Date de la première publication 2023-12-21
Date d'octroi 2024-12-17
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hamilton, Laura D.
  • Garg, Vinit
  • Tomar, Ayush
  • Linenweber, Martin R.
  • Bawa, Preet Kamal S.
  • Armbrust, David
  • Kartha, Rupesh
  • Yu, Lun

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for retrieving relevant items for user queries by generating, using a search engine machine learning model, a prediction-based action for the query input wherein query input embeddings of the query input are generated. For each query input embedding, a k-Nearest-Neighbor (KNN) search is performed with respect to search engine repository item embeddings to generate initial search results, and for each initial set result, performing N hops within a semantic graph starting from nodes associated with the initial search result to generate related search results. The search engine machine learning model is trained by generating a search engine repository item embeddings according to embedding techniques for respective content categories and generating the semantic graph based at least in part on a measure of similarity for pairs of search engine repository item embeddings.

Classes IPC  ?

  • G06F 16/33 - Requêtes
  • G06F 16/332 - Formulation de requêtes
  • G06F 16/387 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement utilisant des informations géographiques ou spatiales, p. ex. la localisation

64.

SEARCH ANALYSIS AND RETRIEVAL VIA MACHINE LEARNING EMBEDDINGS

      
Numéro d'application US2023015396
Numéro de publication 2023/244286
Statut Délivré - en vigueur
Date de dépôt 2023-03-16
Date de publication 2023-12-21
Propriétaire UNITEDHEALTH GROUP INCORPORATED (USA)
Inventeur(s)
  • Hamilton, Laura D.
  • Garg, Vinit
  • Tomar, Ayush
  • Linenweber, Martin R.
  • Bawa, Preet Kamal S.
  • Armbrust, David
  • Kartha, Rupesh
  • Yu, Lun

Abrégé

N N hops within a semantic graph starting from nodes associated with the initial search result to generate related search results. The search engine machine learning model is trained by generating a search engine repository item embeddings according to embedding techniques for respective content categories and generating the semantic graph based at least in part on a measure of similarity for pairs of search engine repository item embeddings.

Classes IPC  ?

  • G06F 16/9537 - Recherche à dépendance spatiale ou temporelle, p. ex. requêtes spatio-temporelles

65.

Natural language processing techniques for machine-learning-guided summarization using hybrid class templates

      
Numéro d'application 17938089
Numéro de brevet 12361228
Statut Délivré - en vigueur
Date de dépôt 2022-10-05
Date de la première publication 2023-11-30
Date d'octroi 2025-07-15
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sabapathy, Rajesh
  • Mittal, Chirag
  • Awasthi, Gourav
  • Josyula, Aditya Teja
  • Gulati, Ankur
  • Khan, Lubna
  • Bansal, Tarun

Abrégé

As described herein, various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing natural language processing operations for generating guided summaries using summarization templates that are mapped to hybrid classes of a hybrid classification space for a hybrid classification machine learning model. In some embodiments, by using summarization templates, a proposed summarization framework is able to vastly reduce the computational complexity of performing summarization on an input document data object, such as an input multi-party communication transcript data object, by defining the set of dynamic data fields that apply to the input document data object based at least in part on an assigned class/category of the input document data object.

Classes IPC  ?

66.

CLASSIFICATION-BASED MACHINE LEARNING FRAMEWORKS TRAINED USING PARTITIONED TRAINING SETS

      
Numéro d'application 17663893
Statut En instance
Date de dépôt 2022-05-18
Date de la première publication 2023-11-23
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Tal, Eric B.
  • Stremmel, Joel D.
  • Nori, Vijay S.
  • Mulcahy, Daniel J.
  • Bayomi, Mostafa
  • Kayal, Ahmed

Abrégé

Various embodiments of the present invention improve the speed of training classification-based machine learning models by introducing techniques that enable efficient parallelization of such training routines while enhancing the accuracy of each parallel implementation of a training routine. For example, in some embodiments, a classification-based machine learning model is trained via executing N parallel processes each executing a portion of a training routine, where each parallel process is performed using a training set having a uniform distribution of labels associated with the classification-based machine learning model. In this way, each parallel process is more likely to update parameters of the classification-based machine learning model in accordance with a holistic representation of the training data, which in turn improves the overall accuracy of the resulting trained classification-based machine learning models while enabling parallel training of the classification-based machine learning model.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques

67.

Systems and methods for processing machine learning language model classification outputs via text block masking

      
Numéro d'application 18046831
Numéro de brevet 12272168
Statut Délivré - en vigueur
Date de dépôt 2022-10-14
Date de la première publication 2023-10-19
Date d'octroi 2025-04-08
Propriétaire UNITEDHEALTH GROUP INCORPORATED (USA)
Inventeur(s)
  • Stremmel, Joel
  • Halperin, Eran
  • Hill, Brian

Abrégé

Various embodiments of the present disclosure provide methods, apparatus, systems, computing devices, computing entities, and/or the like for processing document classification system outputs, wherein classification routine iterations are performed using masked document data objects comprising one or more masked text blocks. Text block importance score for text blocks are generated and compared to generate predictive data output comprising text blocks determined to be the most influential in classifying the document data objects with respect to one or more classification labels.

Classes IPC  ?

  • G06V 30/414 - Extraction de la structure géométrique, p. ex. arborescenceDécoupage en blocs, p. ex. boîtes englobantes pour les éléments graphiques ou textuels
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques
  • G06V 30/413 - Classification de contenu, p. ex. de textes, de photographies ou de tableaux

68.

Personalized health search engine

      
Numéro d'application 17658221
Numéro de brevet 12299044
Statut Délivré - en vigueur
Date de dépôt 2022-04-06
Date de la première publication 2023-10-12
Date d'octroi 2025-05-13
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Krishnaprasad, Vidhya
  • Hoppock, Amanda R.
  • Ayala, Mary E.
  • Moore, Erin M.

Abrégé

Example devices and techniques are described for personalizing a health-related search. An example computing device includes a memory and one or more processors circuitry. The memory is configured to store a search query. The one or more processors are configured to obtain the search query and determine that the search query is health related. The one or more processors are configured to, based on the determination that the search query is health related, determine a subject of the search query. The one or more processors are configured to determine health information of the subject of the search query. The one or more processors are configured to modify, based on the health information of the subject of the search query, at least one of the search query or an order of search results, and present the search results or the modified search results to the user.

Classes IPC  ?

  • G06F 16/9032 - Formulation de requêtes
  • G16H 70/60 - TIC spécialement adaptées au maniement ou au traitement de références médicales concernant des pathologies

69.

Database management systems using distributed database update management operations

      
Numéro d'application 17683967
Numéro de brevet 12111802
Statut Délivré - en vigueur
Date de dépôt 2022-03-01
Date de la première publication 2023-09-07
Date d'octroi 2024-10-08
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s) Jaisawal, Sudheer

Abrégé

Various embodiments of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for facilitating efficient and effective execution of database management operations. For example, various embodiments of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for facilitating efficient and effective execution of database management operations using distributed database update management techniques that utilize at least one of a field value temporal scoring machine learning model, total field utility measures, and distributed database update routines.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour

70.

MACHINE LEARNING TECHNIQUES FOR CONTEXT-BASED DOCUMENT CLASSIFICATION

      
Numéro d'application 17660940
Statut En instance
Date de dépôt 2022-04-27
Date de la première publication 2023-08-17
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Singh, Rahul
  • P A, Rakesh
  • Natesan, Vijaychandar
  • Ganesan, Ramesh R.
  • Calkins, Maureen E.
  • Eccleston, Caroline N.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing context-based document classification prediction using a hierarchical attention-based keyword classifier machine learning framework. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform context-based document classification prediction using at least one of techniques using contextual keyword classifications, techniques using attention-based keyword classifier machine learning framework, techniques using a greedy matching indicator, and/or the like.

Classes IPC  ?

71.

Managing data objects for graph-based data structures

      
Numéro d'application 18303630
Numéro de brevet 12026154
Statut Délivré - en vigueur
Date de dépôt 2023-04-20
Date de la première publication 2023-08-10
Date d'octroi 2024-07-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Korpman, Ralph A.
  • Hilado, Rudy R.
  • Clegg, W. Randal
  • Post, Cindy A.

Abrégé

Various embodiments provide methods, systems, apparatus, computer program products, and/or the like for managing, ingesting, monitoring, updating, and/or extracting/retrieving information/data associated with an electronic record (ER) stored in an ER data store and/or accessing information/data from the ER data store.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 9/54 - Communication interprogramme
  • G06F 16/23 - Mise à jour
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/245 - Traitement des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet
  • G06F 16/36 - Création d’outils sémantiques, p. ex. ontologie ou thésaurus
  • G06F 16/81 - Indexation, p. ex. balises XMLStructures de données à cet effetStructures de stockage
  • G06F 16/901 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/903 - Requêtes
  • G06F 16/957 - Optimisation de la navigation, p. ex. mise en cache ou distillation de contenus
  • G06F 16/958 - Organisation ou gestion de contenu de sites Web, p. ex. publication, conservation de pages ou liens automatiques
  • G06F 21/31 - Authentification de l’utilisateur
  • G06F 40/205 - Analyse syntaxique
  • G06F 40/295 - Reconnaissance de noms propres
  • G06F 40/30 - Analyse sémantique

72.

MACHINE LEARNING TECHNIQUES FOR PARASOMNIA EPISODE MANAGEMENT

      
Numéro d'application 17648879
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2023-07-27
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sathaye, Ninad D.
  • Kelly, Damian
  • Vorse, Kimberly A.
  • Kumar, Atul
  • Dutta, Rahul
  • Hasija, Love

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations for parasomnia episode management. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations for parasomnia episode management using at least one of pre-sleep parasomnia episode likelihood prediction machine learning models, in-sleep parasomnia episode likelihood prediction machine learning models, augmented parasomnia episode likelihood prediction machine learning models that are configured to generate conditional likelihood scores for candidate parasomnia reduction interventions, deep reinforcement learning machine learning models that are configured to generate recommended parasomnia reduction interventions, and dynamically-deployable parasomnia episode likelihood prediction machine learning models.

Classes IPC  ?

  • A61M 21/02 - Autres dispositifs ou méthodes pour amener un changement dans l'état de conscienceDispositifs pour provoquer ou arrêter le sommeil par des moyens mécaniques, optiques ou acoustiques, p. ex. pour mettre en état d'hypnose pour provoquer le sommeil ou la relaxation, p. ex. par stimulation directe des nerfs, par hypnose ou par analgésie
  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • G16H 20/70 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mentales, p. ex. la thérapie psychologique ou le training autogène

73.

Machine learning techniques for parasomnia episode management

      
Numéro d'application 17583899
Numéro de brevet 12437856
Statut Délivré - en vigueur
Date de dépôt 2022-01-25
Date de la première publication 2023-07-27
Date d'octroi 2025-10-07
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sathaye, Ninad D.
  • Kelly, Damian
  • Vorse, Kimberly A.
  • Kumar, Atul
  • Dutta, Rahul
  • Hasija, Love

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations for parasomnia episode management. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations for parasomnia episode management using at least one of pre-sleep parasomnia episode likelihood prediction machine learning models, in-sleep parasomnia episode likelihood prediction machine learning models, augmented parasomnia episode likelihood prediction machine learning models that are configured to generate conditional likelihood scores for candidate parasomnia reduction interventions, deep reinforcement learning machine learning models that are configured to generate recommended parasomnia reduction interventions, and dynamically-deployable parasomnia episode likelihood prediction machine learning models.

Classes IPC  ?

  • G16H 20/70 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mentales, p. ex. la thérapie psychologique ou le training autogène
  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

74.

MACHINE LEARNING TECHNIQUES FOR PARASOMNIA EPISODE MANAGEMENT

      
Numéro d'application 17583921
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2023-07-27
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Sathaye, Ninad D.
  • Kelly, Damian
  • Vorse, Kimberly A.
  • Kumar, Atul
  • Dutta, Rahul
  • Hasija, Love

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations for parasomnia episode management. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations for parasomnia episode management using at least one of pre-sleep parasomnia episode likelihood prediction machine learning models, in-sleep parasomnia episode likelihood prediction machine learning models, augmented parasomnia episode likelihood prediction machine learning models that are configured to generate conditional likelihood scores for candidate parasomnia reduction interventions, deep reinforcement learning machine learning models that are configured to generate recommended parasomnia reduction interventions, and dynamically-deployable parasomnia episode likelihood prediction machine learning models.

Classes IPC  ?

  • G16H 20/70 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mentales, p. ex. la thérapie psychologique ou le training autogène
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus

75.

Machine learning techniques for determining predicted similarity scores for input sequences

      
Numéro d'application 17560491
Numéro de brevet 11948378
Statut Délivré - en vigueur
Date de dépôt 2021-12-23
Date de la première publication 2023-06-29
Date d'octroi 2024-04-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Dey, Subhodeep
  • Booher, Brad
  • Sverdlin, Edward
  • Ombase, Reshma S.
  • Yadav, Raghvendra Kumar

Abrégé

Systems and methods for dynamically generating a predicted similarity score for a pair of input sequences. A predicted similarity score for a pair of input sequences is determined based at least in part on at least one of a token-level similarity probability score for the pair of input sequences, a target region match indication for the pair of input sequences, a fuzzy match score for the pair of input sequences, a character-level match score for the pair of input sequences, one or more similarity ratio occurrence indicators for the pair of input sequences, and a harmonic mean score of the fuzzy match score for the pair of input sequences and the token-level similarity probability score for the pair of input sequences.

Classes IPC  ?

  • G06V 30/00 - Reconnaissance de caractèresReconnaissance d’encre numériqueReconnaissance de formes basée sur une image orientée documents
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 30/19 - Reconnaissance utilisant des moyens électroniques

76.

IHIP

      
Numéro de série 98061476
Statut En instance
Date de dépôt 2023-06-27
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 36 - Services financiers, assurances et affaires immobilières

Produits et services

Claims administration services in the field of health insurance; Insurance consulting in the field of health insurance; Insurance services, namely, underwriting, issuance and administration of health insurance; Providing information about healthcare insurance plans

77.

PERSONALIZED DETERMINATION OF DRUG CONTRAINDICATIONS USING BIOCHEMICAL KNOWLEDGE GRAPHS

      
Numéro d'application 18082868
Statut En instance
Date de dépôt 2022-12-16
Date de la première publication 2023-06-22
Propriétaire United Health Group Incorporated (USA)
Inventeur(s)
  • Bulu, Irfan
  • Unsal, Cem

Abrégé

Various embodiments of the present disclosure disclose generating contraindication alert communications. A knowledge graph data structure, including a graph-based representation associated with a user identifier and having nodes and edges, is accessed. Edge weights are adjusted based on medical data associated with the user identifier. One or more sequential traversals of the knowledge graph data structure are performed until an equilibrium condition is met. Based on determining that a subset of nodes is associated with visit tallies totaling more than a threshold proportion of all node visits associated with the one or more sequential traversals, a contraindication alert communication, which includes representation of a biological effect for the user identifier, can be generated and transmitted.

Classes IPC  ?

  • G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients

78.

Transfer learning techniques for using predictive diagnosis machine learning models to generate telehealth visit recommendation scores

      
Numéro d'application 17548969
Numéro de brevet 12424338
Statut Délivré - en vigueur
Date de dépôt 2021-12-13
Date de la première publication 2023-06-15
Date d'octroi 2025-09-23
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hamilton, Rick A.
  • Choy, Garry
  • Vasconcellos, Rafael Campos Do Amaral E
  • Boss, Gregory J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by an end-to-end machine learning framework that performs at least the following steps/operations: (i) a service request data object is processed by a diagnosis prediction machine learning model to generate a probabilistic diagnosis data object, (ii) the probabilistic diagnosis data object is processed by the hybrid diagnosis-provider classification machine learning model to generate a variable-length classification for the service request data object, and (iii) the variable-length classification is processed by a telehealth visit recommendation scoring machine learning model to generate a telehealth visit recommendation score for the service request data object.

Classes IPC  ?

  • G16H 80/00 - TIC spécialement adaptées pour faciliter la communication entre les professionnels de la santé ou les patients, p. ex. pour le diagnostic collaboratif, la thérapie collaborative ou la surveillance collaborative de l’état de santé
  • G16H 10/65 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients stockées sur des supports d’enregistrement portables, p. ex. des cartes à puce, des étiquettes d’identification radio-fréquence [RFID] ou des CD
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

79.

MACHINE LEARNING TECHNIQUES FOR ENHANCED REDIRECTION RECOMMENDATION USING REAL-TIME ADJUSTMENT

      
Numéro d'application 17643050
Statut En instance
Date de dépôt 2021-12-07
Date de la première publication 2023-06-08
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hamilton, Rick A.
  • Choy, Garry
  • E Vasconcellos, Rafael Campos Do Amaral
  • Boss, Gregory J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by generating predicted redirection scores based at least in part on: (i) generic redirection scores that are generated using provider evaluation machine learning models, and (ii) real-time redirection scores that are generated using real-time adjustment machine learning models.

Classes IPC  ?

  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques
  • G06N 20/00 - Apprentissage automatique

80.

Machine learning techniques for predictive clinical intervention recommendation

      
Numéro d'application 17538521
Numéro de brevet 12062449
Statut Délivré - en vigueur
Date de dépôt 2021-11-30
Date de la première publication 2023-06-01
Date d'octroi 2024-08-13
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hussain, Reem A.
  • Nori, Vijay S.
  • Mulcahy, Daniel J.
  • Weinberg, Jason E.

Abrégé

Various embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by using an agent machine learning model to determine an optimal clinical intervention based at least in part on the current clinical state and an inferred reinforcement learning policy that is determined based at least in part on a familiarity-adjusted reward function, where the familiarity-adjusted reward function is generated by an environment machine learning framework based at least in part on one or more next state predictions for one or more pruned action-state combinations based at least in part on a historical clinical outcome database, and the one or more pruned action-state combinations are determined based at least in part on one or more pruned clinical actions that are selected from a plurality of candidate clinical actions based at least in part on one or more action pruning criteria.

Classes IPC  ?

  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux
  • G06N 3/082 - Méthodes d'apprentissage modifiant l’architecture, p. ex. par ajout, suppression ou mise sous silence de nœuds ou de connexions
  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G16H 20/00 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients

81.

JOIN FOR ME

      
Numéro de série 98013352
Statut Enregistrée
Date de dépôt 2023-05-25
Date d'enregistrement 2025-05-27
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 41 - Éducation, divertissements, activités sportives et culturelles
  • 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Educational services, namely, providing workshops, training, programs, and personal coaching in the fields of children's diets, nutrition, health, weight management, fitness and wellness Consulting to individuals and communities engaged in group weight loss programs; Counseling services in the fields of health, nutrition and lifestyle wellness; Health care services, namely, health and wellness programs in field of childhood obesity; Providing information about health, wellness and nutrition via a website

82.

MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS

      
Numéro d'application 17528001
Statut En instance
Date de dépôt 2021-11-16
Date de la première publication 2023-05-18
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Kyanam, Subhadradevi
  • Nigam, Apoorva
  • G, Vaishnavi V.
  • Yadav, Raghvendra Kumar
  • Bhattacharjee, Biswajit
  • Wolf, Anders

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal-utility classification for the predictive entity may be determined based at least in part on outputs from a temporal score generation machine learning model and a utility score generation machine learning model.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 5/00 - Agencements informatiques utilisant des modèles fondés sur la connaissance

83.

TRANSFER LEARNING TECHNIQUES FOR USING PREDICTIVE DIAGNOSIS MACHINE LEARNING MODELS TO GENERATE CONSULTATION RECOMMENDATION SCORES

      
Numéro d'application 17530241
Statut En instance
Date de dépôt 2021-11-18
Date de la première publication 2023-05-18
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hamilton, Rick A.
  • Choy, Garry
  • Vasconcellos, Rafael Campos Do Amaral E
  • Boss, Gregory J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by an end-to-end machine learning framework that performs at least the following steps/operations: (i) a service request data object is processed by a diagnosis prediction machine learning model to generate a probabilistic diagnosis data object, (ii) the probabilistic diagnosis data object is processed by the hybrid diagnosis-provider classification machine learning model to generate a variable-length classification for the service request data object, and (iii) the variable-length classification is processed by a recommendation scoring machine learning model to generate a consultation recommendation score for the service request data object.

Classes IPC  ?

  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques

84.

MACHINE LEARNING-BASED SYSTEMS AND METHODS FOR BREATH MONITORING AND ASSISTANCE OF A PATIENT

      
Numéro d'application 17521319
Statut En instance
Date de dépôt 2021-11-08
Date de la première publication 2023-05-11
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Muse, Jon Kevin
  • Gordon, Marilyn L.
  • Khatri, Komal
  • Boss, Gregory J.

Abrégé

Apparatus, systems, and methods for real time monitoring of a patient's breathing utilizing automatically controlled devices and machine learning based techniques to determine a full breath of a patient and to identify splinting points, and to thereby transmit stimulation signals to the patient so as to assist the patient breathe through splinting points. In some embodiments, a wearable breathing monitoring device comprising of one or more sensors configured to monitor the user's breathing and a stimulator apparatus comprising one or more transmitters configured to transmit stimulation signals to the patient at a time corresponding to a detected splinting point is provided. The stimulator apparatus is configured to apply electrical pulses according to a stimulation schedule via the transmitters to target nerves of the user's body.

Classes IPC  ?

  • A61B 5/08 - Dispositifs de mesure pour examiner les organes respiratoires
  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61N 1/36 - Application de courants électriques par électrodes de contact courants alternatifs ou intermittents pour stimuler, p. ex. stimulateurs cardiaques

85.

MACHINE LEARNING TECHNIQUES FOR OPTIMIZED BREATHING THERAPY

      
Numéro d'application 17516167
Statut En instance
Date de dépôt 2021-11-01
Date de la première publication 2023-05-04
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Muse, Jon Kevin
  • Gordon, Marilyn L.
  • Khatri, Komal
  • Boss, Gregory J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing optimized breathing therapy. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform optimized breathing therapy using at least one of interruption score generation machine learning models, observed inspiration-expiration pattern, expected inspiration-expiration patterns, expected musical patterns, and inferred musical patterns.

Classes IPC  ?

  • A61M 16/00 - Dispositifs pour agir sur le système respiratoire des patients par un traitement au gaz, p. ex. ventilateursTubes trachéaux
  • G06N 20/00 - Apprentissage automatique

86.

Movement prediction machine learning models

      
Numéro d'application 17453059
Numéro de brevet 12283129
Statut Délivré - en vigueur
Date de dépôt 2021-11-01
Date de la première publication 2023-05-04
Date d'octroi 2025-04-22
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Muse, Jon Kevin
  • Ravindranathan, Rama S.
  • Gordon, Marilyn L.
  • Boss, Gregory J.

Abrégé

Various embodiments of the present disclosure provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for monitoring a user's movement in real-time and providing or augmenting stimulation. For example, various embodiments provide techniques generating movement prediction profiles using movement prediction machine learning models and for use in conjunction with wearable devices.

Classes IPC  ?

  • G06V 40/20 - Mouvements ou comportement, p. ex. reconnaissance des gestes
  • G06F 1/16 - Détails ou dispositions de structure
  • G06N 20/00 - Apprentissage automatique

87.

MACHINE LEARNING TECHNIQUES FOR GENERATING DOMAIN-AWARE SENTENCE EMBEDDINGS

      
Numéro d'application US2022047643
Numéro de publication 2023/076206
Statut Délivré - en vigueur
Date de dépôt 2022-10-25
Date de publication 2023-05-04
Propriétaire UNITEDHEALTH GROUP INCORPORATED (USA)
Inventeur(s)
  • Yao, Chen
  • Jones, Richard W.
  • Mcshane, Michael T.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for perform predictive data analysis operations using natural language input data. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by using sentence embedding machine learning models that are trained in coordination with similarity-based machine learning models.

Classes IPC  ?

  • G06F 40/279 - Reconnaissance d’entités textuelles
  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 40/30 - Analyse sémantique
  • G06N 20/00 - Apprentissage automatique

88.

Machine learning techniques for generating domain-aware sentence embeddings

      
Numéro d'application 17510875
Numéro de brevet 12086540
Statut Délivré - en vigueur
Date de dépôt 2021-10-26
Date de la première publication 2023-04-27
Date d'octroi 2024-09-10
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Yao, Chen
  • Jones, Richard W.
  • Mcshane, Michael T.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for perform predictive data analysis operations using natural language input data. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by using sentence embedding machine learning models that are trained in coordination with similarity-based machine learning models.

Classes IPC  ?

  • G06F 40/20 - Analyse du langage naturel
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 20/00 - Apprentissage automatique

89.

P-ROCS

      
Numéro de série 97903116
Statut En instance
Date de dépôt 2023-04-24
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 42 - Services scientifiques, technologiques et industriels, recherche et conception
  • 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Providing temporary use of on-line non-downloadable software for tracking, reporting, reviewing and sharing health care data analytics Providing information in the fields of health and wellness; Providing a website featuring information about health, wellness and nutrition

90.

MACHINE LEARNING TECHNIQUES FOR PREDICTIVE RESPIRATORY QUALITY SCORE ASSIGNMENT

      
Numéro d'application 17503742
Statut En instance
Date de dépôt 2021-10-18
Date de la première publication 2023-04-20
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Muse, Jon Kevin
  • Ravindranathan, Rama S.
  • Gordon, Marilyn L.
  • Boss, Gregory J.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive respiratory quality score assignment. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive respiratory quality score assignment using at least one of respiratory quality evaluation scoring machine learning models, explanation generation machine learning model, supplemental feature extraction machine learning model, and observed sensory data.

Classes IPC  ?

  • G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

91.

BROADEN HEALTH

      
Numéro de série 97887609
Statut Enregistrée
Date de dépôt 2023-04-13
Date d'enregistrement 2024-06-18
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ?
  • 35 - Publicité; Affaires commerciales
  • 36 - Services financiers, assurances et affaires immobilières
  • 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Healthcare cost management services for health benefit plans of others; Health care administration services, namely, business administration of healthcare programs; Healthcare utilization and review services; Medical referrals in the nature of doctor and dentist referrals Health insurance underwriting; Health insurance administration services; Health insurance claim processing services; Health insurance brokerage services; Dental health insurance underwriting and administration; Vision health insurance underwriting and administration; Hearing health insurance underwriting and administration; Administration of employee benefit plans and prepaid healthcare plans; Insurance claims processing services in the field of dental, vision, and hearing health insurance; Life insurance underwriting; Life insurance administration services; Insurance services, namely, underwriting, issuance, and administration of supplemental health insurance, accident protection, critical illness protection, and hospital indemnity protection; Insurance services, namely, underwriting, issuance, and administration of short term disability, long term disability, and absence management insurance plans; Insurance claims processing services in the field of life, disability, absence management, accident protection, critical illness protection, and hospital indemnity protection insurance Providing health information; Providing information in the fields of dental health, vision health, and hearing health

92.

Dynamic delivery of modified user interaction electronic document data objects based at least in part on defined trigger events

      
Numéro d'application 18063098
Numéro de brevet 11860952
Statut Délivré - en vigueur
Date de dépôt 2022-12-08
Date de la première publication 2023-04-13
Date d'octroi 2024-01-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Choy, Garry
  • Hamilton, Rick A.
  • Campos Do Amaral E Vasconcellos, Rafael
  • Boss, Gregory J.
  • Holley, Kerrie L.

Abrégé

There is a need to automatically provide one or more electronic documents to the user. In one example, embodiments comprise, generating a facility visit data object for a user describing one or more facility attributes for one or more facilities associated with a potential visit from the user. One or more electronic documents may be determined to be retrieved based at least in part on the facility visit data object. One or more user interaction electronic document data objects may be generated to enable interaction between the user and the one or more electronic document data objects. One or more modified user interaction electronic document data objects may be received and may be provided to one or more facility computing entities in response to one or more trigger events.

Classes IPC  ?

  • G06F 16/93 - Systèmes de gestion de documents
  • G06F 16/9537 - Recherche à dépendance spatiale ou temporelle, p. ex. requêtes spatio-temporelles

93.

PREDICTIVE ANOMALY DETECTION USING DEFINED INTERACTION LEVEL ANOMALY SCORES

      
Numéro d'application 17486272
Statut En instance
Date de dépôt 2021-09-27
Date de la première publication 2023-04-06
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Berls, Matthew H.
  • Haberman, Matthew James
  • Halim, Hadi D.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive anomaly detection. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive anomaly detection by utilizing at least one of defined interaction level anomaly scores, such as defined interaction level anomaly scores for non-constant defined interaction levels that are determined using weighted feature tuple anomaly scores for feature tuple values that are associated with the non-constant defined interaction levels, as well as defined interaction level anomaly scores for constant defined interaction levels that are determined using an anomaly distribution measure for an anomaly quantization metric across a plurality of inferred predictive entities.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique

94.

Machine learning techniques using iterative feature refinement routines

      
Numéro d'application 17449995
Numéro de brevet 12353972
Statut Délivré - en vigueur
Date de dépôt 2021-10-05
Date de la première publication 2023-04-06
Date d'octroi 2025-07-08
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Hane, Christopher A.
  • Nori, Vijay S.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis with respect to categorical data objects. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis with respect to categorical data objects by utilizing at least one of predictive feature hierarchies, feature refinement routines, decision subsets of predictive features that are generated based at least in part on predictiveness measures for the predictive features, and/or the like.

Classes IPC  ?

  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique
  • G06F 18/211 - Sélection du sous-ensemble de caractéristiques le plus significatif
  • G06F 18/2115 - Sélection du sous-ensemble de caractéristiques le plus significatif en évaluant différents sous-ensembles en fonction d'un critère d'optimisation, p. ex. la séparabilité des classes, la sélection en avant ou l’élimination en arrière
  • G06F 18/245 - Techniques de classification relatives à la surface de décision
  • G06F 18/27 - Régression, p. ex. régression linéaire ou logistique

95.

CONTIGO EN LO QUE IMPORTA

      
Numéro de série 97868616
Statut Enregistrée
Date de dépôt 2023-04-01
Date d'enregistrement 2025-07-29
Propriétaire UnitedHealth Group Incorporated ()
Classes de Nice  ? 44 - Services médicaux, services vétérinaires, soins d'hygiène et de beauté; services d'agriculture, d'horticulture et de sylviculture.

Produits et services

Emergency medical services; Health care; Health counseling; Managed health care services; Providing information in the fields of health and wellness; Health care services, namely, wellness programs

96.

Dynamically parameterized machine learning frameworks

      
Numéro d'application 17484571
Numéro de brevet 12456059
Statut Délivré - en vigueur
Date de dépôt 2021-09-24
Date de la première publication 2023-03-30
Date d'octroi 2025-10-28
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Bulu, Irfan
  • Lyng, Gregory D.

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations. For example, certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis operations by dynamically parameterized machine learning frameworks, such as a dynamically parameterized machine learning framework comprising an encoder machine learning model that is configured to generate dynamically generated parameters for a target machine learning model of the dynamically parameterized machine learning framework.

Classes IPC  ?

  • G06N 5/02 - Représentation de la connaissanceReprésentation symbolique
  • G06N 3/004 - Vie artificielle, c.-à-d. agencements informatiques simulant la vie
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

97.

Jugular venous pressure (JVP) measurement

      
Numéro d'application 18060635
Numéro de brevet 11862328
Statut Délivré - en vigueur
Date de dépôt 2022-12-01
Date de la première publication 2023-03-30
Date d'octroi 2024-01-02
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Gordon, Marilyn L.
  • Boss, Gregory J.
  • Ravindranathan, Rama S.
  • Muse, Jon Kevin
  • Bonetti, Guerino

Abrégé

Embodiments of the invention provide apparatuses, systems, and methods for more accurate remote monitoring of a user's body. In some embodiments, a system for monitoring a user's body comprises a wearable device, a video sensor attached at a collar portion of the wearable device, a plurality of audio sensors spaced and attached at a body portion of a wearable device and a controller configured to determine a Jugular Venous Pressure (JVP) of the user, and determine audio characteristics of an output of the plurality of audio sensors to generate an audio heat map corresponding to at least one internal organ of the user.

Classes IPC  ?

  • G16H 30/40 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le traitement d’images médicales, p. ex. l’édition
  • G16H 30/20 - TIC spécialement adaptées au maniement ou au traitement d’images médicales pour le maniement d’images médicales, p. ex. DICOM, HL7 ou PACS
  • G06N 20/00 - Apprentissage automatique
  • G06F 1/16 - Détails ou dispositions de structure
  • G16H 50/20 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour le diagnostic assisté par ordinateur, p. ex. basé sur des systèmes experts médicaux

98.

Method, apparatus and computer program product for graph-based encoding of natural language data objects

      
Numéro d'application 17448292
Numéro de brevet 12087413
Statut Délivré - en vigueur
Date de dépôt 2021-09-21
Date de la première publication 2023-03-23
Date d'octroi 2024-09-10
Propriétaire UNITEDHEALTH GROUP INCORPORATED (USA)
Inventeur(s) Bulu, Irfan

Abrégé

Methods, apparatuses, systems, computing devices, and/or the like are provided. An example method may include retrieving a plurality of natural language data objects from a database; determining, based at least in part on the plurality of natural language data objects and by utilizing an entity extraction machine learning model, a plurality of entity identifiers for the plurality of natural language data objects; determining, based at least in part on the plurality of entity identifiers and by utilizing the entity extraction machine learning model, one or more entity relationship identifiers for the plurality of natural language data objects; generating, based at least in part on the plurality of entity identifiers and the one or more entity relationship identifiers, a graph-based data object for the plurality of natural language data objects; and performing one or more prediction based actions based at least in part on the graph-based data object.

Classes IPC  ?

  • G16H 10/60 - TIC spécialement adaptées au maniement ou au traitement des données médicales ou de soins de santé relatives aux patients pour des données spécifiques de patients, p. ex. pour des dossiers électroniques de patients
  • G06F 16/33 - Requêtes
  • G06F 40/279 - Reconnaissance d’entités textuelles
  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles

99.

Machine learning techniques for prospective event-based classification

      
Numéro d'application 17651873
Numéro de brevet 12230380
Statut Délivré - en vigueur
Date de dépôt 2022-02-21
Date de la première publication 2023-03-23
Date d'octroi 2025-02-18
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Smith, Jeffrey
  • Dent, Marissa N.
  • Wedge, Louis A.
  • Shelley, Cary R.
  • Mansoor, Aliya

Abrégé

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis. Certain embodiments of the present invention utilize systems, methods, and computer program products that perform predictive data analysis by using at least one of prospective coverage score determination machine learning models and prospective event-based classification machine learning models.

Classes IPC  ?

  • G06F 18/2431 - Classes multiples
  • G16H 20/10 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des médicaments ou des médications, p. ex. pour s’assurer de l’administration correcte aux patients

100.

Artificial heart control systems and methods

      
Numéro d'application 17466681
Numéro de brevet 12412657
Statut Délivré - en vigueur
Date de dépôt 2021-09-03
Date de la première publication 2023-03-09
Date d'octroi 2025-09-09
Propriétaire UnitedHealth Group Incorporated (USA)
Inventeur(s)
  • Muse, Jon Kevin
  • Boss, Gregory J.
  • Khatri, Komal
  • Gordon, Marilyn L.

Abrégé

A controller for an artificial heart enables activity-specific adjustments to the operation of an artificial heart by obtaining sensor data from a plurality of sensors monitoring characteristics of a patient's body, and using the sensor data as input to one or more control parameter models for identifying control parameters to be provided to the artificial heart to adjust the operational parameters of the artificial heart. The controller is in wireless communication with the artificial heart via an application program interface (API)-based communication channel that facilitates communication between the controller and the artificial heart. Moreover, a cloud-based management computing entity may be utilized to train and/or execute one or more models to enable real-time updates to the operational characteristics of the artificial heart to enable the artificial heart to appropriately accommodate activities of the patient.

Classes IPC  ?

  • G16H 40/60 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux
  • A61M 60/196 - Pompes ou dispositifs de pompage implantables, c.-à-d. que le sang est pompé à l’intérieur du corps du patient remplaçant l’ensemble du cœur, p. ex. cœurs artificiels totaux
  • A61M 60/531 - Régulation par des données du patient en temps réel par des données de tension artérielle, p. ex. provenant de capteurs de tension
  • A61M 60/892 - Vannes actives, c.-à-d. actionnées par une force externe
  • G06F 9/54 - Communication interprogramme
  • G16H 20/40 - TIC spécialement adaptées aux thérapies ou aux plans d’amélioration de la santé, p. ex. pour manier les prescriptions, orienter la thérapie ou surveiller l’observance par les patients concernant des thérapies mécaniques, la radiothérapie ou des thérapies invasives, p. ex. la chirurgie, la thérapie laser, la dialyse ou l’acuponcture
  • G16H 40/63 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement local
  1     2     3     ...     5        Prochaine page