This invention relates to a S-free and Cl-free transition metal bearing precursor material, its use for preparing a positive electrode active material; to a positive electrode active material for rechargeable batteries, to a method for preparing this transition metal bearing precursor material and a method for preparing the positive electrode active material; and to a battery comprising said positive electrode active material.
The present invention provides a process for preparing a high-purity nickel sulphate solution, comprising the steps of: i. forming an aqueous mixed metal sulphate solution by reacting sulphuric acid with a raw material feed comprising nickel, manganese, cobalt, and magnesium in an aqueous medium; ii. extracting manganese from said aqueous mixed metal sulphate solution, thereby obtaining a first aqueous raffinate comprising nickel, cobalt and magnesium, and a manganese-rich organic phase; iii. extracting cobalt from said first aqueous raffinate, thereby obtaining a second aqueous raffinate comprising nickel and magnesium, and a cobalt-rich organic phase; and iv. extracting magnesium from said second aqueous raffinate solution, thereby obtaining a high-purity nickel sulphate solution, and a magnesium-rich organic phase.
C22B 3/38 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par extraction liquide-liquide utilisant des composés organiques contenant du phosphore
A composite powder for use in a negative electrode of a battery comprising composite particles, said composite particles comprising a carbon matrix material and silicon-based particles embedded in said carbon matrix material, said composite powder having a Raman spectrum, wherein a D band and a D'band, both corresponding to the carbon matrix material contribution, have their respective maximum intensity ID between 1330 cm−1 and 1360 cm−1 and ID′ between 1600 cm−1 and 1620 cm−1, wherein the ratio ID/ID′ is at least equal to 0.9 and at most equal to 4.0.
A positive electrode active material for lithium-ion rechargeable batteries comprises particles having Li, M′, and oxygen. M′ comprises Ni in a content x, wherein x≥80 at %, relative to M′; Co in a content y, wherein 0.01≤y≤20.0 at %, relative to M′; Mn in a content z, wherein 0≤z≤20.0 at %, relative to M′; Y in a content b, wherein 0.01≤b≤2.0 at %, relative to M′; Zr in a content c, wherein 0.01≤c≤2.0 at %, relative to M′; D in a content a, wherein 0≤ a≤5.0 at %, relative to M′. D is selected from B, Ba, Ca, Cr, Fe, Mg, Mo, Nb, S, Si, Sr, Ti, V, W, and Zn. The material comprises secondary particles, wherein each of the secondary particles consists of at least two primary particles and at most twenty primary particles.
C01G 53/506 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse du type (MnO2)n-, p. ex. Li(NixMn1-x)O2 ou Li(MyNixMn1-x-y)O2 contenant du lithium et du cobalt avec le rapport molaire du nickel par rapport à tous les métaux autres que les métaux alcalins supérieur ou égal à 0,5, p. ex. Li(MzNixCoyMn1-x-y-z)O2 avec x ≥ 0,5 avec le rapport molaire du nickel par rapport à tous les métaux autres que les métaux alcalins supérieur ou égal à 0,8, p. ex. Li(MzNixCoyMn1-x-y-z)O2 avec x ≥ 0,8
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
5.
POSITIVE ELECTRODE MATERIAL FOR RECHARGEABLE LITHIUM ION BATTERIES
A powderous positive electrode material comprises single crystal monolithic particles comprising Ni and Co and having a general formula Li1+a(Niz(Ni1/2Mn1/2)yCox)1−kAk)1−aO2, wherein A is a dopant, −0.03≤a≤0.06, 0.05≤x≤0.35, 0.10≤z≤0.95, x+y+z=1 and k≤0.05. The particles have a particle size distribution with a D50 between 2.0 μm and 8.0 μm and with a span≤1.5.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
6.
A METAL OXIDE PRODUCT FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION RECHARGEABLE BATTERIES
A metal oxide product for manufacturing a positive electrode active material for lithium-ion rechargeable batteries comprises one or more oxides of one or more metals M′, wherein M′ comprises:
Ni in a content x between 20.0 mol % and 100.0 mol %, relative to M′,
Co in a content y between 0.0 mol % and 60.0 mol %, relative to M′,
Mn in a content z between 0.0 mol % and 80.0 mol %, relative to M′,
D in a content a between 0.0 mol % and 5.0 mol %, relative to the total atomic content of M′, wherein D comprises at least one element of the group consisting of: Al, B, Ba, Ca, Cr, Fe, Mg, Mo, Nb, S, Si, Sr, Ti, Y, V, W, Zn, and Zr,
wherein x+y+z+a=100.0 mol %,
wherein the metal oxide product comprises secondary particles each comprising a plurality of primary particles.
C01G 53/44 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
7.
CATHODE ACTIVE MATERIAL FOR RECHARGEABLE BATTERIES
The present invention relates to Li-rich Mn-rich cathode active material comprising high- valence transition metal ions, such as Mo, exhibiting high capacity comprising Li, M and O, wherein M comprises: Ni in a molar ratio x, wherein 0.10 ≤ x ≤ 0.50 relative to M; Mn in a molar ratio y, wherein 0.50 ≤ y ≤ 0.80 relative to M; and Mo in a molar ratio z, wherein 0.001 ≤ z < 0.05 relative to M; wherein the molar ratio of Li to M (Li/M) is between 1.00 and 1.60; and wherein the content of Li, Ni, Mn and Mo is measured by ICP-AES, and x+y+z is 1.00.
C01G 53/50 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse du type (MnO2)n-, p. ex. Li(NixMn1-x)O2 ou Li(MyNixMn1-x-y)O2
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
8.
LITHIUM-MANGANESE-BASED OXIDE AS A CATHODE ACTIVE MATERIAL FOR LITHIUM-ION RECHARGEABLE BATTERIES
A cathode active material for rechargeable batteries comprising lithium, M1, and oxygen, wherein M1 comprises: - Ni in a content x1, wherein 0.0 < x1 < 45.0 at%, relative to M1; - Mn in a content y1, wherein 50.0 < y1 < 98.0 at%, relative to M1; - Co in a content z1, wherein 0.0 < z1< 15.0 at%, relative to M1; - Na in a content w1, wherein 0.0 < w1 < 2.0 at%, relative to M1; - S in a content molar ratio ql, wherein 0.0 < q1 < 5.0 at%, relative to M1; - D1 in a content molar ratio dl, wherein 0.0 < d2 < 2.0 at%, relative to M1, wherein D1 is an element different from Li, Ni, Mn, Co, Na, S and O; wherein the content of Ni, Mn, Co, Na, S and D1 is measured by ICP-OES, and x1+y1+z1+w1+q1+d1 is 100.0 at%, and wherein the cathode active material has a BET value of at least 1.0 m2/g.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
The present patent application relates to a method of recovering valuable metals from waste batteries comprising - a pyrolysis step comprising pyrolysis of the waste batteries at a temperature of from about 700°C to about 1300°C, thus obtaining pyrolyzed batteries; - a size reduction step, comprising size reduction of the pyrolyzed batteries; - a smelting step, comprising smelting the pyrolyzed, size reduced waste batteries at temperatures of 1350°C or higher under oxidizing conditions. The method shows improved control of the smelting step and the temperature, reduces the amount of slag generated as well as the release of explosive gas.
C22B 5/02 - Procédés généraux de réduction appliqués aux métaux par voie sèche
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
C22B 23/02 - Obtention du nickel ou du cobalt par voie sèche
The present invention is related to a positive electrode active material powder for lithium-ion rechargeable batteries, wherein the positive electrode active material powder comprises particles, wherein each of the particles consists of at least one primary particle and at most twenty primary particles, wherein the positive electrode active material powder essentially comprises Li, Ni, Mn, Al, and O, and wherein Al is introduced by (i) adding a material formed by heating a mixture comprising a Li source and a transition metal composite precursor essentially comprising Ni and Mn to an aqueous solution comprising a Al-containing compound and (ii) milling the material. Due to the aforementioned introduction of Al, the positive electrode active material powder may have a ratio of Ni3+ to Ni2+ as measured by XPS being at least 1.45.
The present invention relates to a cathode active material for rechargeable batteries comprising Na, M, and O, wherein M consists of Fe in a molar ratio a, wherein 0.05 ≤ a ≤ 0.40 relative to M; Mn in a molar ratio b, wherein 0.50 ≤ b ≤ 0.90 relative to M; and X in a molar ratio c, wherein 0.01 ≤ c ≤ 0.10 relative to M, and wherein X is at least one element selected from B, Si, K, Co, Ga, Rb, Rh, Cs, Re, Tl and Pb; wherein a+b+c is 1.00, the molar ratio of Na to M (Na/M) is between 0.40 and 1.10, and the content of Na, Fe, Mn and X is measured by ICP-OES and relates to a method for manufacturing the same.
The present invention relates to a positive electrode active material comprising Li, Ni, one or both of Mn and Co, and O, wherein the surface layer comprises S and a transition metal. It was found during the temperature and pressure treatment that a sulfur layer is formed between the positive electrode material and sulfide solid electrolyte which strongly enhances the ionic conductivity and the electrochemical performance.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
13.
POSITIVE ELECTRODE COMPOSITE ACTIVE MATERIAL COMPRISING A LITHIUM ELECTRODE MATERIAL WITH A COATING AND A SULFIDE SOLID ELECTROLYTE
The present invention relates to a positive electrode composite active material comprising a coated lithium electrode material and a sulfide solid electrolyte. It was found during the temperature and pressure treatment that a sulfur layer is formed between the coated positive electrode material and sulfide solid electrolyte which strongly enhances the ionic conductivity and the electrochemical performance.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
14.
POSITIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL
A positive electrode active material powder for lithium-ion rechargeable batteries, comprising: a first fraction of polycrystalline particles, each consisting of more than twenty primary particles; a second fraction of first particles and a third fraction of second particles, the first and second particles each consisting of one to twenty primary particles, the polycrystalline particles comprising: Ni in a content of 60.0 to 100.0 at%, Co in a content of 0.0 to 20.0 at%, and Mn in a content of 0.0 to 20.0 at%; the first particles comprising: Ni in a content of 60.0 to 100.0 at%, Co in a content of 0.0 to 20.0 at%, and Mn in a content of 0.0 to 20.0 at%; the second particles comprising: Ni in a content of 0.0 to 10.0 at%, Co in a content of 80.0 to 100.0 at%, and Mn in a content of 0.0 to 10.0 at%.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
The present invention relates to a positive electrode active material for rechargeable batteries, wherein the positive electrode active material comprises lithium, oxygen, nickel, cobalt, and manganese, wherein the positive electrode active material is a powder comprising single particles and/or secondary particles, wherein each of the single particles consists of only one primary particle and each of the secondary particles consists of at least two primary particles and at most twenty primary particles as observed in a SEM image in a field of view of at least 45 μm x at least 60 μm, wherein the atomic content of Ni, relative to the total amount of Ni, Co, and Mn, of 45.0 to 95.0 at%, as determined by ICP-OES; having an atomic content of Al, relative to the total amount of Ni, Co, and Mn, of 0.3 to 3.0 at%, as determined by ICP-OES; wherein the atomic content of Co, relative to the total amount of Ni, Co, and Mn, of 3.0 to 30.0 at%, as determined by ICP-OES; wherein the atomic content of Mn, relative to the total amount of Ni, Co, and Mn, of 3.0 to 35.0 at%, as determined by ICP-OES; wherein the positive electrode active material further comprises: aluminum and has an atomic ratio of Al to the total amount of Ni, Co, and Mn of 1.0 to 7.0, as determined by XPS analysis, and cobalt and has an atomic ratio of Co to the total amount of Ni, Co, and Mn of 0.25 to 0.45, as determined by XPS analysis.
The invention provides a process for preparing a crystallized metal sulphate comprising nickel and/or cobalt, said process comprising the steps of: i. forming an aqueous metal sulphate solution by reacting sulphuric acid with a raw material feed comprising nickel and/or cobalt in water in presence of a reducing agent; ii. crystallizing said metal sulphate from said aqueous metal sulphate solution to form a crystallized metal sulphate in a mother liquor, the mother liquor comprising an uncrystallized metal sulphate and optionally one or more metal impurities; iii. separating said crystallized metal sulphate from said mother liquor comprising an uncrystallized metal sulphate and optionally one or more metal impurities; iv. reacting at least a portion of said uncrystallized metal sulphate in said mother liquor with a sulphidizing agent in an aqueous medium, thereby obtaining a slurry consisting of a solid phase comprising a metal sulphide precipitate and an aqueous phase comprising one or more impurities; and v. separating said solid phase comprising a metal sulphide precipitate and said aqueous phase comprising one or more impurities and sulphuric acid.
C01G 53/82 - Composés contenant du nickel, avec ou sans oxygène ou hydrogène, et contenant plusieurs autres éléments
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 3/44 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
C22B 3/00 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
18.
PROCESS FOR THE OXIDATIVE LEACHING OF NICKEL AND/OR COBALT WITH FERRIC IRON
22-bearing off-gas, and flue dust; and, separating the matte phase from the slag phase. This process offers an alternative scheme for the separation and recovery of metals, in particular Pb and Cu, from slags by converting them into metal sulfides. Substituting carbon with sulfur results in the decarbonization of the industrial recovery process.
The present invention concerns material comprising hydroxide or oxyhydroxide of at least one or more metal elements, and a cathode active material for lithium-ion secondary batteries. The present invention relates to a manganese-containing precursor for cathode active material for secondary batteries, said precursor comprising M and element oxygen, wherein M compress Ni in a content x, wherein 0.0 ≤ x ≤ 50.0 mol%, relative to M, Mn in a content y, wherein 50.0 ≤ y ≤ 90.0 mol%, relative to M, Co in a content z, wherein 0.0 ≤ z ≤ 40.0 mol%, relative to M, at least one element selected from the group consisting of Al, Ti, V, Mg, Cr, Ca, Zr, Nb, Mo, Hf, Ta, and W, in a content t, 0.0≤t≤ 10.0 mol%, relative to M; wherein x, y, z, and t are measured by ICP-OES; and wherein x+y+z+t is 100.0 mol%; and wherein the manganese-containing precursor has a tap density, TD, of at least 1.65 g/cm3 and a ratio of a specific surface area, SSA, to the tap density, SSA/TD, of at least 12.00, expressed in unit (m2*cm3)/g2.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
21.
CATHODE ACTIVE MATERIAL AND LITHIUM-ION SECONDARY BATTERY
The field of the present invention is the recovery of metals from Pb-bearing metallurgical slags. A process is described for the separation and recovery of metals, in particular Pb, Cu and Ni, from slags, by using a combination of sulfur and hydrogen instead of sources of carbon. Substituting carbon with sulfur and hydrogen significantly reduces the carbon footprint of the process. Target metals are selectively sent to a matte phase, an alloy, a Pb-bullion, or kept in a slag phase, this way allowing more efficient refining.
Centre National De La Recherche Scientifique (France)
UNIVERSITE DE PICARDIE JULES VERNE (France)
Inventeur(s)
Auvergniot, Jérémie
Kjeldgaard, Solveig
Masquelier, Christian
Viallet, Virginie
Shanbhag, Dhanush
Abrégé
The present invention relates to lithium-deficient and halide-rich solid electrolytes. These solid electrolytes display an increased ionic conductivity.
The invention concerns N-type germanium monocrystals comprising phosphorus as a single dopant in an amount of at least 1.0 x 1019/cm³. Such crystals can be obtained by using the Czochralski pulling technique with GeP as dopant, whereby phosphorus is provided as single dopant in an amount of at least 1.0 x 1019/cm³. The obtained crystals show that the amount of surface defects is significantly reduced.
Centre National De La Recherche Scientifique (France)
Université De Montpellier (France)
École Nationale Supérieure De Chimie De Montpellier (France)
Inventeur(s)
Paulsen, Jens Martin
Nguyen, Hongnam
Bechelany, Mikhael
Lamboux, Cassandre
Abrégé
The present invention relates to a lithium manganese-based oxide positive electrode active material comprising an outer layer of Al for lithium-ion secondary batteries (LIBs) suitable for electric vehicle (EV) and hybrid electric vehicle (HEV) applications.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
Process for the separation of Li from oxides of one or more of Co and Ni contained in a feed, comprising the steps of: contacting, in aqueous medium, the feed with a quantity of sulfidizing agent, sufficient to convert a major part of the Co and/or Ni to sulfides, and a quantity of mineral acid sufficient to reach a pH of 1 to 5, thereby forming an aqueous slurry containing solid Co and/or Ni sulfides, and a solution containing Li; and, separating the solids from the solution, thereby obtaining solids containing Co and/or Ni sulfides, and a solution containing at least 70% of the Li. This process allows to convert Co and Ni to solid sulfides and at the same time to efficiently separate them from soluble compounds such as Li, Mn and other impurities.
233, and wherein the Na-loss is a difference between a first Na content in the mixture and a second Na content in the heated material, the first and second Na contents being measured via ICP-OES and being relative to a total amount of the transition metals.
The present invention provides a process for the preparation of a nickel sulphate solution in a column reactor, whereby metal particles containing nickel are reacted with an oxidative leach solution comprising sulphuric acid and hydrogen peroxide in water and whereby the acid in the oxidative leaching solution is substantially depleted.
The present invention relates a positive electrode active material comprising lithium, oxygen, nickel, and at least one metal selected from the group consisting of manganese and cobalt, comprising Ni in a content x', wherein 40.0 ≤ x' ≤ 98.0 mol%, relative to the sum of Ni, Mn, and Co, Mn in a content y', wherein 0.0 ≤ y' ≤ 30.0 mol%, relative to the sum of Ni, Mn, and Co, Co in a content z', wherein 0.0 ≤ z' ≤ 30.0 mol%, relative to the sum of Ni, Mn, and Co, wherein the positive electrode active material has an enriched amount of silicon and boron in the surface layer. This positive electrode active material the electrochemical performance of a battery, such as the first discharge capacity and the cycling efficiency.
01 - Produits chimiques destinés à l'industrie, aux sciences ainsi qu'à l'agriculture
09 - Appareils et instruments scientifiques et électriques
Produits et services
Chemical preparations for scientific purposes, other than for medical or veterinary use; Chemical reagents, other than for medical or veterinary purposes; Galvanizing baths; Galvanizing preparations; Mineral acids. Conductors, electric; Electrolysers; Electrolysis devices; electrolyte analyzer; Electronic chips for the manufacture of integrated circuits; Integrated circuits; Integrated circuits, integrated circuit chips, and integrated circuit modules for encoding and decoding digital video; Printed circuit boards; Printed circuits; Semiconductors.
32.
METHOD FOR MANUFACTURING A BORON TREATED POSITIVE ELECTRODE ACTIVE MATERIAL
The present invention relates to a method for manufacturing a boron treated positive electrode active material and the boron treated positive electrode active material obtainable from said method. The present inventors believe that the boron treated positive electrode active material of the invention has a lithium boron oxide compound on the surface of said positive electrode active material. It was demonstrated that the boron treated positive electrode active material of the invention exhibits exceptionally advantageous properties. For example, compared to untreated variants cycling stability is vastly improved, cross-talk phenomena between positive electrode and negative electrode were mitigated even after 1000 cycles and a stable positive electrode electrolyte interface is achieved with mitigated phase change even after long-term cycling.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
33.
A POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY LITHIUM-ION BATTERIES
A positive electrode active material for lithium-ion secondary batteries comprises Li, Co, O, and optionally M′. M′ comprises Al and/or Ti and optionally one or more elements selected from the group consisting of Ni, Mn, B, Sr, Mg, Nb, W, F, and Zr. A molar ratio of Co to M′+Co (Co/(M′+Co)) is more than 0.90. The positive electrode active material comprises a first LCO powder and a second LCO powder that are both single-crystalline powders. The first LCO powder has a first median particle size D50A of between 12 μm and 25 μm, the second LCO powder has a second median particle size D50B of between 3 μm and 8 μm, and the volume fraction of the second LCO powder relative to the total volume of the positive electrode active material is between 10% and 40%.
The present invention relates to a positive electrode active material for solid-state rechargeable batteries, comprising lithium, oxygen, nickel, and at least one metal selected from the group comprising manganese and cobalt, wherein characterized in that said positive electrode active material further comprises: —fluorine and has an atomic ratio of F to the total amount of Ni, Mn, and/or Co between 0.05 to 3.0, as determined by XPS analysis, and —carbon, wherein the carbon contents are from than 370 ppm to 5000 ppm, by the total weight of said positive electrode active material, as determined by a carbon analyzer.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
35.
A BATTERY COMPRISING A HIGH-CONCENTRATED ELECTROLYTE AND A NEGATIVE ELECTRODE HAVING A METAL SUBSTRATE AND A PROTECTIVE LAYER
The present invention relates to a battery comprising a high-concentrated electrolyte and a negative electrode for a battery comprising a metal substrate, and a protective layer disposed directly on at least a part of the metal substrate, wherein the protective layer comprises a copolymer obtainable by the reaction between two or more monomers, a fluoropolymer additive, and a lithium salt. The present inventors have demonstrated that the combination of the electrolyte and the negative electrode results in a reduced resistance within the battery.
A positive electrode active material comprises Li, M′, and oxygen. M′ comprises Ni in a content x, Mn in a content y, Co in a content z, D in a content a, Zr in a content b, wherein 55.0 mol %≤x≤95.0 mol %, 0.0 mol %≤y≤40.0 mol %, 0.0 mol %≤z≤40.0 mol %, 0.0 mol %≤a≤2.0 mol %, and 0.01 mol %≤b≤5.0 mol %. D is at least one element other than Li, Ni, Mn, Co, and O. The positive electrode active material has a Zr content ZrX and a carbon content C. ZrX is expressed as a molar fraction compared to the sum of molar fractions of Co, Mn, Ni, and Zr. C is expressed in wt. % by total weight of the positive electrode active material. The ratio of ZrX to C is between 52−0.413·x and 42−0.413·x.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
22 structure; wherein M' comprises titanium (Ti) and at least one element selected from the group consisting of nickel (Ni) and manganese (Mn); wherein a grain boundary is present between adjacent primary particles of the secondary particles; wherein a concentration of Ti in the grain boundary is greater than a concentration of Ti in the adjacent primary particles; and wherein the positive electrode active material powder has a surface area between 0.3 m2/g and 1.2 m2/g as determined by BET measurement.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
38.
A NEGATIVE ELECTRODE COMPRISING A METAL SUBSTRATE AND A PROTECTIVE LAYER
The present invention relates to a negative electrode for a battery comprising a metal substrate, and a protective layer disposed directly on at least a part of the metal substrate, wherein the protective layer comprises a copolymer obtainable by the reaction between two or more monomers, a fluoropolymer additive, and a lithium salt. The present inventors have demonstrated that the protective layer functions a self-healing film on the negative electrode.
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
39.
A POSITIVE ELECTRODE ACTIVE MATERIAL FOR RECHARGEABLE SOLID-STATE BATTERIES
A positive electrode active material can be used for a solid-state rechargeable battery. The positive electrode active material comprises Li, M′, and oxygen. M′ comprises Ni in a content x, Co in a content y, Mn in a content z, an element other than Li, O, Ni, Co, Mn, Al, B, and W in a content a, B in a content b, Al in a content c, and W in a content d, wherein 50.0≤x≤95.0 mol %, 0≤y≤40.0 mol %, 0≤z≤70.0 mol %, 0≤a≤2.0 mol %, 0.01≤b≤1.6 mol %, 0.00≤c≤1.5 mol %, and 0.00≤d≤1.5 mol %, all relative to M′. The positive electrode active material has a B content BA defined as
A positive electrode active material can be used for a solid-state rechargeable battery. The positive electrode active material comprises Li, M′, and oxygen. M′ comprises Ni in a content x, Co in a content y, Mn in a content z, an element other than Li, O, Ni, Co, Mn, Al, B, and W in a content a, B in a content b, Al in a content c, and W in a content d, wherein 50.0≤x≤95.0 mol %, 0≤y≤40.0 mol %, 0≤z≤70.0 mol %, 0≤a≤2.0 mol %, 0.01≤b≤1.6 mol %, 0.00≤c≤1.5 mol %, and 0.00≤d≤1.5 mol %, all relative to M′. The positive electrode active material has a B content BA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
A positive electrode active material can be used for a solid-state rechargeable battery. The positive electrode active material comprises Li, M′, and oxygen. M′ comprises Ni in a content x, Co in a content y, Mn in a content z, an element other than Li, O, Ni, Co, Mn, Al, B, and W in a content a, B in a content b, Al in a content c, and W in a content d, wherein 50.0≤x≤95.0 mol %, 0≤y≤40.0 mol %, 0≤z≤70.0 mol %, 0≤a≤2.0 mol %, 0.01≤b≤1.6 mol %, 0.00≤c≤1.5 mol %, and 0.00≤d≤1.5 mol %, all relative to M′. The positive electrode active material has a B content BA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
and a content BB. BB is expressed as molar fraction compared to the sum of molar fractions of Ni, Mn, Co, B, Al, and W, as measured by XPS analysis, wherein the ratio BB/BA>10.0.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
CLERMONT AUVERGNE INP (France)
Inventeur(s)
Cabelguen, Pierre-Etienne
Auvergniot, Jérémie
De Windt, Sébastien
Dubois, Marc
Guerin, Katia
Abrégé
The present invention relates to novel transition metal oxyfluoride compounds and methods for manufacturing said novel transition metal oxyfluorides. The inventors have demonstrated that by treating the transition metal oxides with a fluorine containing gas the corresponding transition metal oxyfluoride compounds are obtained.
H01M 4/1315 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx contenant des atomes d'halogène, p. ex. LiCoOxFy
41.
LIQUID COBALT RESINATE COMPOSITIONS AND METHODS OF PREPARING THE SAME
The present invention provides liquid cobalt resinate compositions as a liquid composition for use in auto-oxidizable coatings or as accelerator in unsaturated polyester resins, comprising: i. cobalt resinate, in an amount of 0.5 to 6.0 wt. % cobalt, relative to the total weight of said liquid composition; ii. one or more antioxidants in an amount of 0.1 to 2.5 wt. %, relative to the total weight of said liquid composition; and iii. one or more organic solvents, in an amount of 25 to 90 wt. %, relative to the total weight of said liquid composition.
The present disclosure concerns a process for the removal of Cu and Fe from an acidic aqueous solution further containing one or more of Ni and Co, comprising the steps of: —adding a metallic reagent comprising one or more of Ni and Co to the acidic solution, in oxidizing conditions, thereby neutralizing the acidic solution, and forming a precipitate comprising Cu and Fe, wherein at least part of the Cu and Fe is in the form of a hydroxide; and, —separating the Cu and Fe precipitate from the solution, thereby obtaining a solution depleted in Cu and Fe. The process drastically reduces the need for foreign neutralizing agents, thereby restricting or even completely avoiding the introduction of additional impurities into the process. It is advantageously applied on an acidic aqueous solution obtained by leaching materials having the same composition as the metallic reagent.
C22B 3/46 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques par substitution, p. ex. par cémentation
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
The present invention provides a semi-batch process for the preparation of a nickel or cobalt sulphate solution, whereby sulphuric acid and hydrogen peroxide are peri- odically fed via a feed section to a reaction zone and whereby an acidic aqueous medium is circulated through the reactor until a predetermined concentration of nickel or cobalt, respectively, in said nickel or cobalt sulphate solution is achieved.
The present invention provides a multi-stage solvent extraction process for selectively extracting cobalt from an aqueous mixed metal solution comprising nickel and cobalt, whereby each solvent extraction stage is characterized by maintaining a magnesium concentration in an aqueous phase above a predetermined magnesium concentration.
The present invention provides a process for the batch preparation of a nickel or cobalt sulphate solution in a reactor, whereby metal particles containing nickel or cobalt, respectively, are reacted with sulphuric acid, and whereby hydrogen peroxide is added until the sulphuric acid is sufficiently depleted.
The present invention provides a process for preparing a nickel oxide, said nickel oxide comprising nickel and at least one of cobalt and manganese, said process comprising the steps of: i. extracting nickel and at least one of cobalt and manganese form a feed solution; ii. stripping an obtained organic phase with hydrochloric acid, thereby obtaining an aqueous solution comprising, respectively, nickel chloride, cobalt chloride and/or manganese chloride; iii. mixing nickel chloride and at least one of cobalt chloride and manganese chloride obtained in step ii. in a predetermined ratio; iv. hydropyrolysis of the aqueous solution formed in step iii. to afford a nickel oxide comprising nickel and at least one of cobalt and manganese, and gaseous hydrochloric acid; v. separating the gaseous hydrochloric acid formed in step iv. from said nickel oxide formed in step iv.; and vi. recycling the gaseous hydrochloric acid obtained in step v. upstream of said hydropyrolysis in step iv.
The present invention provides a process for preparing a high-purity nickel sulphate solution, comprising the steps of: i. providing an aqueous feed solution comprising nickel. cobalt, calcium and magnesium: ii. extracting cobalt, calcium, and partly magnesium from said aqueous feed solution using a first solvent comprising a first alkylphosphorus-based acidic extractant, thereby obtaining an aqueous raffinate comprising nickel and magnesium: iii. extracting magnesium from said aqueous raffinate solution comprising nickel and magnesium using a second solvent comprising a second alkylphosphorus-based acidic extractant, thereby obtaining a high-purity aqueous nickel sulphate solution comprising nickel and magnesium: iv. stripping the first loaded solvent comprising cobalt, calcium and magnesium with an aqueous solution comprising a mineral acid.
The present invention relates to a process for the concentration of lithium in metallurgical fumes wherein a metallurgical charge is smelted, thus obtaining a molten bath comprising a slag phase and optionally an alloy phase and fuming the lithium from the molten slag, by addition of a halogen intermediate, wherein the halogen intermediate is produced from the Li halide fumed from the molten slag. The halide is thus efficiently re-used in the process, while the lithium is recovered and isolated.
The present invention relates to a process for the concentration of lithium in metallurgical fumes wherein a metallurgical charge is smelted, thus obtaining a molten bath comprising a slag phase and optionally an alloy phase and fuming the lithium from the molten slag, by addition of a halogen intermediate, wherein said halogen intermediate is a gaseous halogen or gaseous halogen compound.
The present invention relates to aliovalently substituted argyrodite-type solid electrolyte solid electrolytes. These solid electrolytes display and increased ionic conductivity.
The present invention relates to aliovalently substituted argyrodite-type solid electrolyte solid electrolytes. These solid electrolytes display and increased ionic conductivity.
The present invention provides electrochemical wet etching methods and processes useful for manufacturing compound semiconductors, whereby a monocrystalline silicon carbide substrate having a porous surface layer is electrochemically wet etched and whereby the applied voltage is varied during said electrochemical wet etching process step.
The present invention provides electrochemical wet etching methods and processes useful for manufacturing compound semiconductors, whereby a monocrystalline silicon carbide substrate having a porous surface layer is electrochemically wet etched and whereby the applied voltage is varied during said electrochemical wet etching process step.
The present invention relates to a process for the concentration of lithium in metallurgical fumes wherein a metallurgical charge is smelted, thus obtaining a molten bath comprising a slag phase and optionally an alloy phase and fuming the lithium from the molten slag, by addition of a halogen intermediate, wherein the halogen intermediate is produced from the Li halide fumed from the molten slag. The halide is thus efficiently re-used in the process, while the lithium is recovered and isolated.
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
C25C 3/02 - Production, récupération ou affinage électrolytique de métaux par électrolyse de bains fondus des métaux alcalins ou alcalino-terreux
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
The present invention relates to a process for the concentration of lithium in metallurgical fumes wherein a metallurgical charge is smelted, thus obtaining a molten bath comprising a slag phase and optionally an alloy phase and fuming the lithium from the molten slag, by addition of a halogen intermediate, wherein said halogen intermediate is a gaseous halogen or gaseous halogen compound.
The present invention provides a process for the selective separation of iron from a raw material containing nickel and iron, comprising the steps of: contacting the raw material containing nickel and iron with an acid solution thereby obtaining a leach solution containing iron and nickel, and a residue containing a major part of the iron; adding a copper containing material to the leach solution and/or to the raw material containing nickel and iron, thereby precipitating the iron in the leach solution; and separating the leach solution from the residue.
The present invention relates to solid materials which are obtainable by melt-quenching mixtures of lithium sulphide, boron sulphide, boron oxide and lithium halides, thereby forming a glassy solid which is suitable for use as a lithium-ion conducting electrolyte. These sulphide based lithium-ion conducting solid electrolytes exhibit a high ionic conductivity.
C01B 17/20 - Méthodes pour préparer les sulfures ou les polysulfures en général
C01B 17/22 - Sulfures ou polysulfures de métaux alcalins
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
C03C 3/32 - Compositions de verre ne contenant pas d'oxyde, p. ex. halogénures, sulfures ou nitrures de germanium, de sélénium ou de tellure, binaires ou ternaires
C03C 4/18 - Compositions pour verres ayant des propriétés particulières pour verre sensible aux ions
C03C 3/23 - Compositions pour la fabrication du verre contenant un oxyde mais pas de silice contenant un halogène et au moins un oxyde, p. ex. de l'oxyde de bore
The present disclosure is related to a crystallization process for the recovery of metals from starting materials comprising Ni and Li. The starting materials, either in aqueous solution or solid form, are reacted with an aqueous solution, reaching an acidity of preferably at least 500 g/L sulfuric acid, at a temperature of at least 45° C. Upon solid/liquid separation of the reaction products, a solid residue comprising the major part of the Ni as a hydrated sulfate, and an effluent solution comprising the major part of the Li, are obtained. This process is particularly suitable for recycling lithium-ion rechargeable batteries.
C22B 3/22 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques
C22B 3/44 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés chimiques
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
The invention describes a process for the separation of Fe from Cu and one or more of Ni and Co contained in an alloyed powder having more than 1% by weight of Cu, comprising the steps of: —contacting, in oxidizing conditions, the alloyed powder with a stoichiometric amount of an acidic solution selected between a minimum suitable for dissolving 50% of all metallic elements except Fe, and a maximum suitable for dissolving 100% of all metallic elements except 50% of the Fe, thereby obtaining a leach solution containing a major part of the Cu and of the one or more of Ni and Co, and a residue containing a major part of the Fe; and, —separating the leach solution from the residue. Cu, Ni and/or Co from an alloyed powder are dissolved, while the major part of Fe is rejected to a solid residue and separated by solid/liquid separation.
The present invention relates to positive electrode active materials in rechargeable lithium-ion batteries having a difference in cobalt and nickel concentration between the center and the edge of secondary particle and having a specific range of crystallite size.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
61.
Lithium nickel-based composite oxide as a positive electrode active material for rechargeable lithium-ion batteries
The invention relates to a positive electrode active material for suitable for electric vehicle (EV) and hybrid electric vehicle (HEV) applications, wherein said material comprises lithium transition metal-based oxide particles comprising soluble S content and having a high specific surface area.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
A method of electroplating a stress-free copper film on a substrate includes: providing the substrate; providing an electroplating bath that includes a copper salt, an acid, a leveler, a chlorine compound, an accelerator, a suppressor; and water; heating the electroplating bath to 25 to 60° C.; and electroplating the substrate in the electroplating bath to form the stress-free copper film while maintaining the electroplating bath at 25 to 60° C. The leveler is an organic compound containing an amine group. The method further includes annealing the stress-free copper film at 60-260° C. for 0.5 to 2 hours, or at 60-120° C. for 0.5 to 2 hours. A stress-free electroplated copper film is also disclosed.
Li-bearing slags are typically produced when Li-batteries or their waste are recycled on a smelter. The Li recovery process comprises the steps of: - powdering the metallurgical slag to a particle size distribution having a D50 of less than 100 µm; - contacting, in an aqueous medium, the Li-containing metallurgical slag, and an alkaline Ca-compound, provided in amounts selected to obtain a molar ratio of the Ca in the Ca-compound to Li in the slag of at least 0.75, thereby obtaining a suspension; - heating the suspension to a temperature of more than 80 °C for at least 30 min, thereby obtaining a leached suspension; and, - separating solids from liquids in the leached suspension, thereby obtaining a leach solution containing a major part of the Li, and a solid residue containing Ca. This alkaline leaching process allows for a straightforward recovery of battery-grade LiOH from the leach solution, while consuming less reagents than known acidic leaching processes.
C22B 1/00 - Traitement préliminaire de minerais ou de débris ou déchets métalliques
C22B 3/12 - Extraction de composés métalliques par voie humide à partir de minerais ou de concentrés par lixiviation dans des solutions inorganiques alcalines
C22B 7/00 - Mise en œuvre de matériaux autres que des minerais, p. ex. des rognures, pour produire des métaux non ferreux ou leurs composés
A powder for use in a negative electrode of a battery, the powder comprising particles, the particles comprising a matrix material and silicon-based particles dispersed in said matrix material, the powder having a total specific volume of open porosity at least equal to 0.005 cm3/g and at most equal to 0.05 cm3/g, a total specific volume of closed porosity at least equal to 0.01 cm3/g and at most equal to 0.1 cm3/g, and a ratio of the total specific volume of open porosity over the total specific volume of closed porosity at least equal to 0.01 and at most equal to 0.99.
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 70.0 mol % and 95.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 70.0 mol % and 95.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 70.0 mol % and 95.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
wherein the positive electrode active material has a Zr content ZrB is expressed as molar fraction compared to the sum of molar fractions of Co, Mn, Ni, and Zr all as measured by XPS analysis,
wherein ZrB/ZrA>50.0,
the positive electrode active material comprising secondary particles having a plurality of primary particles,
said primary particles having an average diameter of at least 250 nm.
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (France)
Inventeur(s)
Lavanant, Enora
Tarnopolskiy, Vasily
Babindamana, Dan
Abrégé
The present invention relates to a method for manufacturing a LGPS-type solid sulfide electrolyte. The present inventors have surprisingly found that by heat-treating of the mixed set of precursors at this high temperature and high pressure the solid sulfide electrolyte is obtained in high purity and in a short reaction time.
The present invention relates to solid materials which are obtainable by melt-quenching mixtures of lithium sulphide, boron sulphide, boron oxide and Se, Te, In or a combination thereof, thereby forming a glassy solid which is suitable for use in electrochemical cells, for example as lithium-ion and electronically conducting coating and exhibits a large thermal stability.
Provided is a process for the environmental-friendly treatment of sulfate-containing wastewater. The acidic, sulfate-containing wastewater is treated in a sulfate reducing bioreactor with influent and effluent looped through to the cathode compartment of an electrochemical cell. The electrochemical cell stabilizes the pH in the bioreactor by the in-situ production of base in the cathode compartment. Additionally, hydrogen is produced which is used in the bioreactor as electron donor for the sulfate reduction. The middle compartment of the electrochemical cell contains a sulfide rich aqueous solution in which the extracted cations are displaced by protons from the anode compartment. This results in the acidification of the sulfide rich solution, which is beneficial for the extraction of sulfides as H2S. This H2S can be used for the precipitation of metals in the beginning of the process, forming another loop.
C02F 103/10 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de carrières ou d'activités minières
C02F 103/16 - Nature de l'eau, des eaux résiduaires ou des eaux ou boues d'égout à traiter provenant de procédés métallurgiques, c.-à-d. de la production, de la purification ou du traitement de métaux, p. ex. déchets de procédés électrolytiques
The invention is directed to the use of electrolytic bronze deposits as substitutes for the noble metal electroplating of electronic circuits, e.g. for use in electronic payment cards and identity cards. The invention also relates to a novel layer sequence of bronze layers.
The present invention relates to a lithium nickel-based composite oxide as a positive electrode active material for lithium-ion rechargeable batteries suitable for electric vehicle and hybrid electric vehicle applications, comprising lithium nickel-based oxide particles comprising tungsten.
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/13915 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx contenant des atomes d'halogène, p. ex. LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0565 - Matériaux polymères, p. ex. du type gel ou du type solide
71.
A COMPOSITE POWDER FOR USE IN THE NEGATIVE ELECTRODE OF A BATTERY, A METHOD FOR PRODUCING SUCH A COMPOSITE POWDER AND A BATTERY COMPRISING SUCH A COMPOSITE POWDER
The present invention relates to a composite powder for use in a negative electrode of a battery, the composite powder comprising composite particles, the composite particles comprising a carbonaceous matrix material with silicon-based particles embedded therein and carbon nanotubes, and wherein the surface of the composite particles is at least partially covered by carbon nanotubes.
H01M 4/1395 - Procédés de fabrication d’électrodes à base de métaux, de Si ou d'alliages
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
72.
COMPOSITE SEMICONDUCTOR SUBSTRATES AND PROCESSES OF MANUFACTURING
A compound semiconductor wafer, comprising a composite layer structure with a stack (2) of layers (2a, 2b). The stack comprises a substrate layer of a semiconductor material and a porous layer extending over the substrate layer. The semiconductor material is one of the group consisting of In, GaAs, GaP or Ge. The porous layer is of InP and has a volume porosity of not more than 20%.
The present disclosure concerns a 2-step smelting process, for recovering of Ni and Co from batteries and other sources.
reducing smelting of the obtained slag using a heat source and a reducing agent.
The process is more energy-efficient than a single-step reducing smelting process and provides for a higher purity alloy and for a cleaner final slag.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/54 - Récupération des parties utiles des accumulateurs usagés
74.
NOVEL BISPIDONE LIGANDS AND TRANSITION METAL COMPLEXES THEREOF
The present invention provides novel bispidone ligands and transition metal complexes thereof, especially iron and manganese complexes thereof. Furthermore, the present invention also relates to the use of said bispidone ligands and complexes thereof as a siccative agent in curable liquid compositions.
The present invention provides a compound semiconductor layered structure comprising: a semiconductor substrate having a bottom surface and a top surface; and a compound semiconductor film on top of said semiconductor substrate, said compound semiconductor film comprising a porous, polycrystalline bottom layer in direct contact with said top surface of said semiconductor substrate, and methods of making the same.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/04 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs ayant des barrières de potentiel, p. ex. une jonction PN, une région d'appauvrissement ou une région de concentration de porteurs de charges
76.
LITHIUM NICKEL-BASED COMPOSITE OXIDE AS A POSITIVE ELECTRODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM-ION BATTERIES
The present invention relates to a lithium nickel-based oxide positive electrode active material for lithium-ion secondary batteries suitable for electric vehicle and hybrid electric vehicle applications, comprising lithium transition metal-based oxide particles comprising zirconium, and a preparation method for said positive electrode material.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises: —Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′; —Co in a content y, wherein 0)0, preferably between 0.1 mol % and 4.0 mol %, relative to M′; —W in a content c between 0.1 mol % and 4.0 mol %, relative to M′; —B in a content e, wherein 01.0, wherein the ratio WB/WA>1.0.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
78.
LITHIUM NICKEL-BASED COMPOSITE OXIDE AS A POSITIVE ELECTRODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM-ION BATTERIES
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
W content WA defined as
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
W content WA defined as
c
(
x
+
y
+
z
+
b
+
c
+
d
)
,
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
W content WA defined as
c
(
x
+
y
+
z
+
b
+
c
+
d
)
,
and S content SA defined as
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
W content WA defined as
c
(
x
+
y
+
z
+
b
+
c
+
d
)
,
and S content SA defined as
d
(
x
+
y
+
z
+
b
+
c
+
d
)
,
The present invention provides a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 60.0 mol % and 95.0 mol %, relative to M′;
Co in a content y, wherein 0≤y≤40.0 mol %, relative to M′;
Mn in a content z, wherein 0≤z≤70.0 mol %, relative to M′;
D in a content a, wherein 0≤a≤2.0 mol %, relative to M′, wherein D comprises an element other than Li, O, Ni, Co, Mn, F, W and S;
F in a content b, wherein b>0, preferably b is between 0.1 mol % and 4.0 mol %, relative to M′;
W in a content c, wherein c>0, preferably 0.01≤c≤4.0 mol %, relative to M′;
S in a content d, wherein d>0, preferably between 0.01 mol % and 3.0 mol %, relative to M′; and,
B in a content e, wherein 0≤e≤4.0 mol %, relative to M′; and,
wherein x, y, z, a, c, and d are measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES),
wherein b is measured by Ion chromatography (IC),
wherein x+y+z+a+b+c+d is 100.0 mol %,
wherein the positive electrode active material has a F content FA defined as
b
(
x
+
y
+
z
+
b
+
c
+
d
)
,
W content WA defined as
c
(
x
+
y
+
z
+
b
+
c
+
d
)
,
and S content SA defined as
d
(
x
+
y
+
z
+
b
+
c
+
d
)
,
wherein the positive electrode active material has a F content FB, W content WB, and S content SB wherein FB, WB, and SB are determined by X-ray photoelectron spectroscopy (XPS) analysis, wherein FB, WB, and SB are each expressed as molar fraction compared to the sum of molar fractions of Co, Mn, Ni, F, W and S as measured by XPS analysis,
wherein the ratio FB/FA>1.0,
wherein the ratio WB/WA>1.0, and
wherein the ratio SB/SA>1.0.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
79.
PROCESS FOR PREPARING A HIGH-PURITY MANGANESE SULPHATE SOLUTION
The present invention provides a process for preparing a high-purity manganese sulphate solution, comprising the steps of: i) providing an aqueous mixed metal ion solution comprising manganese, cobalt and calcium; ii) extracting manganese and calcium from said aqueous mixed metal ion solution using a first organic phase comprising an alkylphosphorus-based extractant (I) and a first diluent, thereby obtaining a first aqueous raffinate comprising cobalt, and a manganese-and calcium-rich organic phase; iii) stripping said manganese- and calcium-rich organic phase with a mineral acid, thereby obtaining an aqueous solution comprising manganese and calcium; iv) extracting manganese from said aqueous solution obtained in step iii) using a second organic phase comprising an alkylphosphinic acid-based extractant (II) and a second diluent, thereby obtaining a second aqueous raffinate comprising calcium, and a manganese-rich organic phase; and v) stripping said manganese-rich organic phase obtained in step iv) with sulphuric acid, thereby obtaining an aqueous solution comprising manganese sulphate.
The present invention relates to a powderous material of hydroxide or oxyhydroxide of one or more metal elements for preparing positive electrode active material for batteries, wherein the one or more metal elements include at least one of Ni, Co and Mn, wherein the powderous material comprises particles having a core and a shell surrounding the core, wherein the core has a total area (Ac) and the shell has a total area (As) on a cross-section plane of the particle, wherein the shell has a void area percentage of at least 20% and at most 99% based on the total area of the shell (As), as determined based on cross-section SEM image analysis; and wherein the powderous material has a BET specific surface area of at least 7.0 m2/g.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
81.
LITHIUM HYDROXIDE-BASED POWDER FOR USE IN PREPARING A LITHIUM COMPOSITE OXIDE, COMPOSITION COMPRISING THE SAME AND A TRANSITION-METAL HYDROXIDE OR OXYHYDROXIDE, AND METHOD OF MANUFACTURING THE SAME
The present invention relates to a lithium hydroxide-based powder for use in preparing a lithium composite oxide, wherein the lithium hydroxide-based powder has a span of at most 5.0, the span being defined as (D90-D10)/D50, and D10, D50, and D90 being defined as particle sizes at 10%, 50%, and 90% of cumulative volume% distribution when measured by laser scattering method, respectively.
The present invention relates to a method for producing a neodymium (III) alkyl phosphate solution, said method comprising the steps of: (a)reacting neodymium (III) compound with an organophosphorous acid in a solvent in the presence of a promoter thereby obtaining a neodymium (III) alkyl phosphate solution; (b) adding an anti-gelling agent to the neodymium (III) alkyl phosphate solution obtained in step (a); and (c)removing water formed and/or added during step (a) from the obtained neodymium (III) alkyl phosphate solution, thereby obtaining a solution comprising neodymium (III) alkyl phosphate. The invention relates also to a neodymium (III) alkyl phosphate solution obtained by the above-described method as well as use of this solution as a catalyst precursor for diene polymerization.
The present invention relates to a powderous material comprising a hydroxide or oxyhydroxide of one or more metal elements for preparing a positive electrode active material for secondary batteries, wherein the one or more metal elements include at least one of Ni, Co and Mn, wherein the material comprises secondary particles comprising a plurality of primary particles, wherein the material has a median particle size D50 between 3.0 μm and 20.0 μm as determined by laser diffraction, wherein said primary particles have a particle- based thickness distribution as determined by measuring primary particle thickness in an image taken by SEM, wherein said thickness distribution has a median thickness between 180 nm and 600 nm, andwherein the material has a span value (D90-D10)/D50 being at most 0.6, preferably at most 0.4, more preferably at most 0.2.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
84.
POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION BATTERIES, BATTERY COMPRISING THE SAME, AND USE THEREOF
The present invention relates to a positive electrode active material for lithium-ion batteries, wherein the positive electrode active material comprises secondary particles comprising primary particles, wherein the primary particles have an average primary particle size (S1) as determined by SEM image analysis, wherein the positive electrode active material has an average crystallite size (S2) as determined by X-Ray Diffraction measurement, wherein S1/S2 is at least 13, and wherein the positive electrode active material has been treated with an aqueous solution.
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
UNIVERSITE DE PICARDIE JULES VERNE (France)
Inventeur(s)
Shanbhag, Dhanush
Viallet, Virginie
Masquelier, Christian
Abrégé
The present invention relates to a lithium-deficient halide-rich solid electrolyte substituted with zinc. The present inventors have surprisingly found that these zinc- substituted lithium-deficient halide-rich solid electrolytes display an increased ionic conductivity and a reduced H2S gas evolution upon contact with moisture.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
UNIVERSITE DE PICARDIE JULES VERNE (France)
Inventeur(s)
Shanbhag, Dhanush
Viallet, Virginie
Masquelier, Christian
Abrégé
This invention relates to a lithium-deficient solid electrolyte substituted with zinc. The present inventors have surprisingly found that these zinc-substituted lithium- deficient solid electrolyte display an increased ionic conductivity. Moreover, these solid electrolyte compositions according to the invention display a reduced H2S gas evolution upon contact with moisture.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
The present invention relates a positive electrode active material for solid-state batteries, comprising lithium, oxygen, nickel, and at least one metal selected from the group consisting of manganese and cobalt, wherein the positive electrode active material has an enriched amount of Si in the surface layer, and wherein the positive electrode active material comprises single-crystalline particles. The present inventors have surprisingly found that the positive electrode active material of the invention improves the storage stability of the positive electrode active material. In particular, a decreased uptake of water and carbon (or carbon dioxide) is observed by applying a surface layer of Si on the positive electrode active material. Moreover, the positive electrode active material improves the electrochemical stability of the battery.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (France)
UNIVERSITE DE PICARDIE JULES VERNE (France)
Inventeur(s)
Auvergniot, Jérémie
Kumakura, Shinichi
Porq, Julien
Viallet, Virginie
Guéry, Claude
Abrégé
The present invention relates to a metal-substituted lithium-rich solid electrolyte, a method for manufacturing said solid electrolyte and a battery comprising said solid electrolyte. These solid electrolytes display an increased ionic conductivity. Furthermore, the battery comprising the solid electrolyte according to the invention have an optimized capacity.
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
The present invention relates a positive electrode active material for solid state batteries comprising Li, M' and O, wherein M' comprises Si and/or Zr. The present inventors have surprisingly found that the positive electrode active material of the invention increases the cycling efficiency of the battery, in particular a sulfide solid-state battery. Moreover, these coated positive electrode active material display a high first discharge capacity.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
The present invention relates to a positive electrode active material, comprising Li, M', and oxygen, wherein M' comprises Ni, Co, Mn, B Q, wherein Q is an element other than Li, O, Ni, Co, Mn, and B and wherein the positive electrode active material has an enriched amount of B in the surface layer and wherein said positive electrode active material comprises secondary particles comprising a plurality of primary particles having a low crystallite size.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
91.
LITHIUM NICKEL-BASED COMPOSITE OXIDE AS A POSITIVE ELECTRODE ACTIVE MATERIAL FOR SULFIDE SOLID-STATE RECHARGEABLE BATTERIES
The present invention relates to a positive electrode active material, comprising Li, M', and oxygen, wherein M' comprises Ni, Co, Mn, B Q, wherein Q is an element other than Li, O, Ni, Co, Mn, and B and wherein the positive electrode active material has an enriched amount of B in the surface layer and wherein said positive electrode active material comprises secondary particles comprising a plurality of primary particles having a low crystallite size.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
92.
METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL
The present invention concerns a method for preparing a positive electrode active material, comprising the steps of: - providing a powder material comprising Li and having a Ni content of at least 60.0 mol% onto a support (2) at a first location (12) of a production line (1); and - contacting the powder material on the support (2) with an aqueous solution to form a wet powder material at a second location (13) of the production line (1), the method being characterized in that it includes a step of continuously moving the support (2) along a direction from the first location (12) to the second location (13).
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
The present invention relates to β-nickel hydroxide doped with aluminum ions, in which the aluminum ions are homogeneously distributed in the crystal lattice of the β-nickel hydroxide, as well as a method for their production. The present invention further relates to the use of the β-nickel hydroxide according to the invention as a precursor material for the production of electrode material for lithium-ion batteries and nickel-metal hydride batteries and as a precursor material in the production of Raney nickel catalysts.
The present invention is directed toward a platinum electrolyte which contains certain additives, and to a method for the electrolytic deposition of a platinum layer with the aid of the electrolyte according to the invention.
The present invention relates to a positive electrode active material for lithium-ion rechargeable batteries, wherein the positive electrode active material comprises Li and transition metals such as Ni, optionally Co, optionally Mn and Nb, wherein the positive electrode active material is coated with B, and wherein a specific surface area of said positive electrode active material is higher than or equal to 0.50 m2/g and lower than or equal to 1.50 m2/g.
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
96.
POSITIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING A POSITIVE ELECTRODE ACTIVE MATERIAL
H01M 4/505 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de manganèse d'oxydes ou d'hydroxydes mixtes contenant du manganèse pour insérer ou intercaler des métaux légers, p. ex. LiMn2O4 ou LiMn2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
97.
LITHIUM NICKEL-BASED COMPOSITE OXIDE AS A POSITIVE ELECTRODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM-ION BATTERIES
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 75.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 75.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 75.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
wherein the positive electrode active material has a Zr content ZrB is expressed as molar fraction compared to the sum of molar fractions of Co, Mn, Ni, and Zr all as measured by XPS analysis,
wherein ZrB/ZrA>50.0,
the positive electrode active material comprising secondary particles having a plurality of primary particles
said primary particles having an average diameter between 170 nm and 340 nm.
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 85.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 85.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
Positive electrode active material for solid-state batteries, comprising Li, M′, and oxygen, wherein M′ comprises:
Ni in a content x between 50.0 mol % and 85.0 mol %,
Co in a content y between 0.0 mol % and 40.0 mol %,
Mn in a content z between 0.0 mol % and 40.0 mol %,
dopants in a content a between 0.0 mol % and 2.0 mol %,
Zr in a content b between 0.1 mol % and 5.0 mol %,
wherein x+y+z+a+b is 100.0 mol %,
wherein
Zr
A
=
b
(
x
+
y
+
z
+
b
)
,
wherein the positive electrode active material has a Zr content ZrB is expressed as molar fraction compared to the sum of molar fractions of Co, Mn, Ni, and Zr all as measured by XPS analysis,
wherein ZrB/ZrA>50.0,
the positive electrode active material comprising secondary particles having a plurality of primary particles
said primary particles having an average diameter between 170 nm and 340 nm.
The present invention provides a process for selective leaching of nickel from a mixed hydroxide precipitate comprising nickel, cobalt, manganese and carbon, wherein carbon is comprised as organically bound carbon and/or graphite in an amount of 0.10 to 10.00 wt.% relative to the weight of said mixed hydroxide precipitate, said process comprising the steps of: i. providing a mixed hydroxide precipitate slurry, and at least partially leaching of nickel in said mixed hydroxide precipitate by adding sulphuric acid; ii. oxidizing the at least partially leached mixed hydroxide precipitate slurry from step i. with peroxymonosulphuric acid and/or a salt thereof in an acidic aqueous medium at a pH of at most 4; iii. acidifying the oxidized mixed hydroxide precipitate slurry obtained from step ii. by adding sulphuric acid to dissolve residual amounts of nickel in the solid phase, thereby obtaining a solid phase comprising cobalt and manganese and an aqueous phase comprising nickel sulphate; and iv. separating said solid phase and said aqueous phase.
The present invention relates to a positive electrode active material for solid-state batteries, wherein the positive electrode active material comprises Li, M', and oxygen, wherein M' comprises Ti. The present inventors have surprisingly found that the positive electrode active material of the invention increases the cycling efficiency of the battery, in particular a sulfide solid-state battery, significantly.
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/1391 - Procédés de fabrication d'électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/485 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques d'oxydes ou d'hydroxydes mixtes pour insérer ou intercaler des métaux légers, p. ex. LiTi2O4 ou LiTi2OxFy
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium