Disclosed in the present invention is a resistance spot welding method for aluminum-silicon coated hot-formed steel having a tensile strength of 1000-1700 MPa, comprising that: when the thickness T of an alloy layer close to a substrate in a coating of the aluminum-silicon coated hot-formed steel is smaller than 12 μm, single-impulse welding is used; when the thickness T of the alloy layer close to the substrate in the coating of the aluminum-silicon coated hot-formed steel is larger than or equal to 12 μm, multiple-impulse welding is used; and as the welding process progresses, the current in each welding impulse gradually increases, wherein the number n of welding impulses and the thickness T of the alloy layer satisfy: when T is larger than or equal to 12 μm and is smaller than 20 μm, n is equal to 2-3; when T is larger than or equal to 20 μm and is smaller than 25 μm, n is equal to 3-4; when T is larger than or equal to 25 μm and is smaller than 30 μm, n is equal to 4-6; and when T is larger than or equal to 30 μm, n is equal to 5-8. The present invention can better suppress spot welding issues such as spatter and electrode expulsion, thereby widening the welding window and meeting the requirements for practical welding production.
Disclosed in the present invention is an economical cold forging steel, comprising Fe and inevitable impurities, and further comprising the following chemical elements in percentage by mass: C: 0.17-0.23%, Si: 0.15-0.35%, Mn: 0.8-1.2%, Cr: 1.0-1.45%, S: 0.002-0.03%, Ti: 0.04-0.1% and Al: 0.01-0.04%. Also disclosed in the present invention is a manufacturing method for an economical cold forging steel, comprising the steps of: smelting and casting; cast heating; round steel rolling; controlling to cool after rolling; and annealing.
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
3.
RESISTANCE SPOT WELDING METHOD FOR ALUMINUM-SILICON COATED HOT-FORMED STEEL HAVING TENSILE STRENGTH OF 1,700 MPA OR ABOVE
Disclosed in the present invention is a resistance spot welding method for aluminum-silicon coated hot-formed steel having a tensile strength of 1,700 MPa or above, comprising: when the thickness T of an alloy layer, very close to a substrate, in a coating layer of aluminum-silicon coated hot-formed steel is less than 5 μm, using single-pulse welding; when the thickness T of the alloy layer, very close to the substrate, in the coating layer of the aluminum-silicon coated hot-formed steel is greater than or equal to 5 μm, using multi-pulse welding, and, as the welding process progresses, the current of each welding pulse gradually increasing, wherein the number of welding pulses, n, and the thickness T of the alloy layer, very close to the substrate, in the coating layer of the aluminum-silicon coated hot-formed steel satisfy: when 5 μm ≤ T < 10 μm, n = 2-3; when 10 μm ≤ T < 15 μm, n = 3-4; when 15 μm ≤ T < 20 μm, n = 4-6; when 20 μm ≤T < 25 μm, n = 5-7; when 25 μm ≤ T < 30 μm, n = 6-9; and when 30 μm ≤ T, n = 7-10.
Disclosed in the present invention is a system for performing vacuum plating on strip steel. The system is arranged in a vacuum cavity, and comprises a first jet deposition section, a first cooling section, a second jet deposition section and a second cooling section, which are sequentially arranged in the movement direction of strip steel, wherein the first jet deposition section and the second jet deposition section are respectively arranged on a first surface side of the strip steel and a second surface side of the strip steel that is opposite the first surface side; the first jet deposition section is configured to spray plating solution steam onto a first surface of the strip steel; and the second jet deposition section is configured to spray the plating solution steam onto a second surface of the strip steel that is opposite the first surface. Correspondingly, further disclosed in the present invention is a method for performing vacuum plating on strip steel. The present application can avoid the problem of zinc re-evaporation caused by the fact that an excessive temperature rise may occur during the production of a thick coating.
Disclosed is a high-strength petroleum pipe casing, which contains Fe and inevitable impurity elements, and further contains the following chemical elements in percentage by mass: 0.06-0.15% of C, 0.3-0.5% of Si, 1.5-2.2% of Mn, 0.002-0.006% of rare earth (La, Ce), less than or equal to 0.05% of Ti, 0.01-0.03% of Al, and greater than 0 but less than or equal to 0.008% of N. Correspondingly, also disclosed is a manufacturing method for the high-strength petroleum pipe casing. The manufacturing method comprises the steps: (1) smelting and casting; (2) perforation; (3) rolling; (4) sizing; (5) online quenching: controlling the temperature of the pipe casing body before cooling to be not lower than 780° C.; water cooling the outer surface of the pipe casing, the cooling speed being 40-100° C./s, and controlling the final cooling temperature to be not higher than 100° C.; (6) tempering, wherein the tempering temperature is controlled to be 500-620° C., and the heat preservation time is 40-70 min; and (7) hot straightening.
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 9/08 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
A low-nickel high-manganese austenite wear-resistant steel welding wire rod, containing Fe and inevitable impurity elements, and further containing the following chemical elements in percentage by mass: C: 0.05-0.20%, Mn: 5.5-9.0%, Si: 0.2-1.0%, Cr: 16.0-21.0%, Ni: 3.0-5.0%, Nb: 0.10-0.17%, Ti: 0.10-0.20%, N: 0.12-0.17%, and Mo: 0.80-1.25%. Also disclosed are a low-nickel high-manganese austenite wear-resistant steel welding wire, a manufacturing method for the low-nickel high-manganese austenite wear-resistant steel welding wire rod, and a manufacturing method for the low-nickel high-manganese austenite wear-resistant steel welding wire. The welding wire of the present invention can form a full austenite weld during the welding process, and match the welding characteristics of a high-carbon high-manganese wear-resistant steel base material, thereby avoiding the problem of cold cracks that may occur during the welding process of the high-carbon high-manganese austenite wear-resistant steel.
B23K 35/30 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 1550 C
B23K 35/02 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme
B23K 35/40 - Fabrication de fils ou de barres pour le brasage ou le soudage
7.
STABILIZATION TREATMENT LIQUID FOR 690 MPA-GRADE WEATHER-RESISTANT BRIDGE STEEL MEMBER, TREATMENT METHOD AND USE
Disclosed is a stabilization treatment liquid for a 690 MPa-grade weather-resistant bridge steel member. The content in percentage by mass of each component of the stabilization treatment liquid is as follows: the content of ferric trichloride is 3-7%; the content of sodium bisulfite is 1-2%; the content of chromium sulfate is 3-6%; the content of potassium permanganate is 1-4%; the content of polypropylene glycol is 1-2%; the content of sodium carboxymethyl cellulose is 2-5%; and the remainder is deionized water. Also provided is a method for performing stabilization treatment by using the stabilization treatment liquid. According to the present invention, stabilization treatment for a rust layer of a 690 MPa-grade weather-resistant bridge steel member can be achieved, and after treatment, a brown rust layer having uniform color and no rust liquid flow is formed on the surface of the 690 MPa-grade weather-resistant bridge steel member.
C23F 11/18 - Inhibition de la corrosion de matériaux métalliques par application d'inhibiteurs sur la surface menacée par la corrosion ou par addition d'inhibiteurs à l'agent corrosif dans d'autres liquides au moyen d'inhibiteurs inorganiques
8.
STEEL FOR AUTOMOBILE FRAME AND MANUFACTURING METHOD THEREFOR
The present invention provides a steel for an automobile frame, the tensile strength of the steel for an automobile frame ≥ 850 MPa. The steel comprises the following chemical elements in mass percent: C: 0.05-0.18%, Si: 0.02-0.30%, Mn: 0.8-2.5%, Cr: 0.05-0.8%, Ti: 0.08-0.20%, and Al: 0.01-0.10%. The present invention reasonably designs an alloy content ratio, adds no or only a small amount of precious metal and, on the basis, manufactures the steel for an automobile frame by controlling finish rolling temperature and a laminar cooling rate in combination with high-temperature tempering, so as to obtain a microstructure of tempered martensite and ferrite, in which a TiC nano precipitated phase is dispersively distributed. While reducing alloy costs, the steel reaches required strength and exhibits high plasticity and cold bending performance.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
9.
ENERGY-SAVING MNCR-SERIES COLD-FORGING STEEL AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is energy-saving MnCr-series cold-forging steel, which contains Fe and inevitable impurities, and further contains the following chemical elements in percentages by mass: C: 0.16-0.19%, Si: 0.10-0.30%, Mn: 1.0-1.3%, Cr: 0.80-1.10%, S: 0.01-0.02%, Al: 0.015-0.04% and N: 0.008-0.016%. Further disclosed in the present invention is a manufacturing method for the energy-saving MnCr-series cold-forging steel, which method comprises the steps of: smelting and casting; rolling of round steel; controlled cooling after rolling, involving: cooling the round steel to 350-450°C at a cooling speed of 8-12°C/s, and maintaining the temperature for 2-3 h; and annealing, involving: controlling the annealing temperature at 690-710°C.
C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
C21D 11/00 - Commande ou régulation du processus lors de traitements thermiques
C22C 33/04 - Fabrication des alliages ferreux par fusion
10.
ALUMINUM ALLOY SHEET FOR HIGH-STRENGTH, HIGH-TOUGHNESS, AND HIGH-PRESSURE HYDROGEN STORAGE CYLINDER LINER, PREPARATION METHOD, AND GAS CYLINDER LINER
222Cu, thereby enhancing the formability of the aluminum alloy sheet and obtaining a hydrogen storage cylinder liner having high strength, toughness, and fatigue life; moreover, the preparation process is shorter in duration and lower in costs, making it more suitable for industrial promotion and application.
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
C22F 1/047 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le magnésium comme second constituant majeur
F17C 1/14 - Récipients sous pression, p. ex. bouteilles de gaz, réservoirs de gaz, cartouches échangeables en aluminiumRécipients sous pression, p. ex. bouteilles de gaz, réservoirs de gaz, cartouches échangeables en acier amagnétique
F17C 1/16 - Récipients sous pression, p. ex. bouteilles de gaz, réservoirs de gaz, cartouches échangeables en matériaux plastiques
11.
HIGH-PLASTICITY 1500-MPA-GRADE ULTRAHIGH-STRENGTH STEEL AND PREPARATION METHOD THEREFOR
High-plasticity 1500-MPa-grade ultrahigh-strength steel and a manufacturing method therefor. The steel comprises the following components in percentages by weight: 0.35-0.40% of C, 1.0-1.8% of Si, 1.5-2.0% of Mn, 0.3-0.6% of Cr, 0.02-0.05% of Al, 0.02-0.05% of Ti, and 0.002-0.02% of B, with the balance being Fe and other inevitable impurities. Moreover, the steel also satisfies: the carbon equivalent Ceq1 of a peritectic reaction zone is greater than 0.17%, and Ceq1=C−0.03Mn−0.06Si−0.222S−0.04P; and the carbon equivalent Ceq2 for welding is smaller than or equal to 0.56%, and Ceq2=C+Mn/20+Si/30+2P+4S. The ultrahigh-strength steel of the present invention has a yield strength of 1000-1300 MPa, a tensile strength of greater than or equal to 1500 MPa, and an elongation at break of greater than or equal to 18%, has a good surface quality, and is particularly suitable for manufacturing structural members and safety members of vehicles with complex shapes and high requirements for a forming performance, such as A/B pillars, side impact beams, longitudinal beams, and bumpers.
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 33/04 - Fabrication des alliages ferreux par fusion
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C22C 38/34 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de silicium
C22C 38/38 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de manganèse
12.
COMPOSITE COATING, COATING METHOD, STEEL PLATE WITH COATING, AND SPOT-WELDED JOINT
Disclosed in the present invention is a composite coating for steel. The composite coating comprises a first coating and a second coating which are sequentially arranged in the thickness direction of the coating, wherein the first coating is in direct contact with a steel substrate and comprises Mo and/or Cr, and the second coating is a zinc-based coating. Further disclosed in the present invention are a coating method for the composite coating, a steel plate comprising the coating, and a spot-welded joint comprising the steel plate. The present invention can greatly inhibit the phenomenon of liquid metal embrittlement caused by welding during a spot welding process, reduce cracks generated due to the phenomenon, and ensure the performance stability and functional stability of a steel plate, especially a galvanized high-strength steel plate.
C23C 28/02 - Revêtements uniquement de matériaux métalliques
C23C 28/00 - Revêtement pour obtenir au moins deux couches superposées, soit par des procédés non prévus dans un seul des groupes principaux , soit par des combinaisons de procédés prévus dans les sous-classes et
Disclosed in the present invention is an ultrahigh-strength cold-rolled steel strip having a tensile strength of 1450 MPa or above, comprising Fe and inevitable impurity elements, and further comprising the following chemical elements in percentage by mass: 0.19-0.245% of C, 0.03-0.45% of Si, 0.8-1.2% of Mn, 0.001-0.004% of B, 0.05-0.15% of Cu, 0.05-0.15% of Zr, 0.005-0.05% of Ti, and 0.01-0.08% of Al. The microstructure of said ultrahigh-strength cold-rolled steel strip comprises a matrix and carbide particles uniformly dispersed in the matrix, wherein the matrix has tempered martensite the volume fraction of which is 95% or above, and the average diameter of the carbide particles does not exceed 0.5 microns. In addition, further disclosed in the present invention is a manufacturing method for said ultrahigh-strength cold-rolled steel strip, comprising the following steps of: (1) smelting and casting, (2) hot rolling, (3) cold rolling after acid pickling, (4) continuous annealing, (5) tempering, and (6) leveling.
C21D 9/52 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour fils métalliquesTraitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour bandes métalliques
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/16 - Alliages ferreux, p. ex. aciers alliés contenant du cuivre
14.
MEDIUM-CARBON ROUND STEEL FOR COLD EXTRUSION AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is a medium-carbon round steel, comprising, in addition to Fe and inevitable impurities, the following chemical elements in percentage by mass: C: 0.36-0.43%, Si: 0.1-0.4%, Mn: 0.6-1.0%, Cr: 0.6-1.0%, Mo: 0.2-0.4%, Ni: 1.4-1.7%, Al: 0.02-0.04%, and N: 0.008-0.015%. The round steel is obtained by annealing, and the microstructure of the round steel is lamellar pearlite and spherical pearlite. In addition, also disclosed in the present invention is a method for manufacturing the medium-carbon round steel, comprising the following steps sequentially conducted: (1) smelting and casting; (2) heating; (3) forging or rolling; (4) stepped annealing; and (5) surface treatment.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
15.
HIGH-STRENGTH TUBING AND CASING RESISTANT TO HYDROGEN SULFIDE CORROSION, AND MANUFACTURING METHOD THEREFOR
22S corrosion, and a manufacturing method therefor. In addition to Fe and inevitable impurities, the tubing and casing comprises the following chemical elements in percentage by mass: C: 0.12-0.2%, Si: 0.1-0.5%, Mn: 0.6-0.9%, Cr: 0.3-0.5%, Mo: 1.1-1.5%, V: 0.05-0.1%, Nb: 0.05-0.1%, W: 0.05-0.18%, Al: 0.01-0.05%, Ce: 0.0005-0.0018%, and B: 0.0015-0.005%.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/22 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du molybdène ou du tungstène
C22C 38/24 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du vanadium
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
16.
HIGH-MAGNETIC-INDUCTION ORIENTED SILICON STEEL AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is a high-magnetic-induction oriented silicon steel. In addition to Fe and other inevitable impurities, the high-magnetic-induction oriented silicon steel further contains the following chemical elements in percentage by mass: less than or equal to 0.005% of C, 3.0-3.8% of Si, 0.010-0.035% of Als, and 0.05-0.20% of Mn. The other inevitable impurities comprise less than or equal to 0.005% of N, less than or equal to 0.005% of S, less than or equal to 0.005% of V, and less than or equal to 0.005% of Ti. The average size of the secondary grains of the high-magnetic-induction oriented silicon steel is 6-16 mm, and the percentage of the area of the secondary grains having the average deviation angle in the range of 0° to 3° to the area of all the secondary grains is greater than 50%. Correspondingly, the present invention further provides a manufacturing method for the high-magnetic-induction oriented silicon steel.
A high-magnetic-induction oriented silicon steel, comprising, in addition to Fe and inevitable impurities, the following chemical elements in percentage by mass: C≤0.005%, Si: 3.0-3.8%, Als: 0.010-0.035%, Mn: 0.05-0.20%, and at least one of Ce and La which satisfy: Ce+La: 0.003-0.3%, wherein among the inevitable impurity elements, N≤0.005%, S≤0.005%, V≤0.005%, and Ti≤0.005%. Also provided is a manufacturing method for the high-magnetic-induction oriented silicon steel. The annealing temperature of a hot rolled plate can be reduced, annealing of the hot rolled plate can be omitted, the thin-gauge high-magnetic-induction oriented silicon steel can be efficiently produced by means of a cold continuous rolling method, and the magnetic performance of a product is improved while the manufacturing cost is reduced.
Disclosed in the present invention are a hot-stamped component having high cold-bending performance and high strength, and a manufacturing method therefor. The method comprises: (1) manufacturing a steel plate for hot stamping; (2) preprocessing a component; (3) heat treatment, transfer and stamping of the component: placing a semi-finished product of the component into a heat treatment furnace, controlling a heat treatment temperature to be 750° C.-960° C., and controlling the total time of heat treatment to be 1.5-10 min and the time for the heat treatment temperature above 880° C. not to be less than 1.2 min; transferring the heat-treated semi-finished product into a mold for mold-closed stamping, and the temperature of the semi-finished product when leaving the heat treatment furnace not being lower than 900° C.; when the thickness of the steel plate forming the component is less than or equal to 1.5 mm, controlling transfer time to be 11 s-20 s, and when the thickness of the steel plate forming the component is greater than 1.5 mm, controlling the transfer time to be 13 s-25 s; and (4) stamping posttreatment: performing thermal insulation homogenization on the component, then performing machining to obtain a finished product. Accordingly, a component having a product of strength and elongation of ≥10 GPa·%, a cold-bending angle of ≥60 degrees, and a three-point bending maximum load of ≥13 KN can be prepared by using the method.
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
B21D 22/02 - Estampage utilisant des dispositifs ou outils rigides
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22C 21/10 - Alliages à base d'aluminium avec le zinc comme second constituant majeur
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C23C 2/02 - Pré-traitement du matériau à revêtir, p. ex. pour le revêtement de parties déterminées de la surface
Disclosed in the present invention are a cold-rolled IF steel and a hot-dip galvanized steel sheet, further comprising following chemical elements in mass percentage: 0.004-0.007% of C, 0.50-0.80% of Mn, 0.025-0.040% of P, 0.04-0.08% of Nb, 0.05-0.2% of Cr and 0.01-0.1% of Al, and further satisfying 1.2≤(Nb×12)/(C×93)≤2.0, wherein each chemical element in the formula is substituted by the numerical value before the percent sign of the mass percentage content thereof. Further disclosed in the present invention is a manufacturing method for the steel sheet, the manufacturing method comprising the following steps: slab preparation; hot rolling; cold rolling; and annealing. The cold-rolled IF steel and the hot-dip galvanized steel sheet of the present invention have good stamping performance stability, excellent surface morphology and better resistance to deformation.
The present disclosure relates to a coated steel sheet for hot stamping and an aqueous surface treatment liquid applicable to the same. A composite coating layer is formed on the surface of a coated steel sheet by using an improved aqueous surface treatment liquid, such that the obtained coated steel sheet for hot stamping has good high-temperature lubricity during hot stamping process, the processability of the coated steel sheet for hot stamping is improved, the wear of the surface of a hot stamping mold is reduced, the frequency of mold repair decreased, and the production efficiency is improved.
Disclosed in the present invention is oriented silicon steel. In addition to Fe and inevitable impurities, the oriented silicon steel further contains the following chemical elements in percentages by mass: C: 0.020-0.080%, Si: 2.00-4.50%, Mn: 0.01-0.30%, 0<S≤0.005%, Als: 0.010-0.040%, N: 0.002-0.01%, Nb: 0.005-0.08%, Sb: 0.01-0.30%, Cr: 0.01-0.30%, Bi: 0.01-0.60%, and at least one of P: 0.01-0.10%, Sn: 0.01-0.30% and Cu: 0.01-0.50%. In addition, further disclosed in the present invention is a manufacturing method for the oriented silicon steel. The oriented silicon steel has excellent magnetic performance and also has relatively low magnetostriction.
A zinc-aluminum-magnesium coated steel plate, comprising a cold-rolled substrate and a coating coated on the cold-rolled substrate, the coating containing Zn and the following chemical elements in percentage by mass: 1-30.0% of Al, 1-10.0% of Mg, 0.01-0.5% of Ca, 0.01-0.5% of Sr, 0
effeff>0.015%, and Tieff=Ti-3.42×N-3×S. In the present invention, a low carbon-low silicon-low manganese component design is utilized, thereby increasing the hole expansion ratio of a steel plate and ensuring a high surface quality while ensuring the strength thereof; and the steel having a high surface hole expansion ratio has a yield strength Rel greater than or equal to 305 MPa, a tensile strength Rm greater than or equal to 440 MPa, an elongation A greater than or equal to 34% and a hole expansion ratio λ greater than or equal to 110%.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/24 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du vanadium
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 33/04 - Fabrication des alliages ferreux par fusion
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
B21B 3/02 - Laminage des alliages ferreux particuliers
B21B 37/74 - Commande de la température, p. ex. en refroidissant ou en chauffant les cylindres ou le produit
C21D 11/00 - Commande ou régulation du processus lors de traitements thermiques
24.
COLD ROLLED STEEL PLATE FOR GALVANIZED STEEL PLATE, GALVANIZED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention a cold rolled steel plate for a galvanized steel plate, containing Fe and inevitable impurities, and also containing the following chemical elements, in mass percent: 0.18-0.25% of C, 1.5-2.0% of Si, 1.5-2.3% of Mn, and 0.01-0.06% of Nb. The microstructure of the cold rolled steel plate is bainite+tempered martensite+residual austenite, wherein the volume fraction of bainite and tempered martensite is great than or equal to 95%. Accordingly, also disclosed in the present invention is a manufacturing method for the galvanized steel plate, comprising the steps: (1) smelting and casting to obtain a steel billet; (2) hot rolling; (3) cold rolling; (4) annealing: the annealing soaking temperature is 890-920° C., the soaking and heat preservation time is 80-150 s, and then cooling is performed at a cooling rate of 30-100° C./s to reach 270-350° C.; (5) overaging: the overaging temperature is 450-475° C., and the overaging time is 40-60 s; (6) entering a zinc pot for galvanizing; (7) alloying; and (8) leveling.
C23C 2/02 - Pré-traitement du matériau à revêtir, p. ex. pour le revêtement de parties déterminées de la surface
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
A low-contact potential difference high-strength high-corrosion-resistance stainless steel-carbon steel composite reinforcing steel bar and a manufacturing method therefor. The composite reinforcing steel bar comprises: a carbon steel reinforcing steel bar and a stainless steel layer wrapping the surface of the carbon steel reinforcing steel bar, and the carbon steel reinforcing steel bar comprises the following components in percentage by weight: C: 0.01-0.08%, Si: 0.05-0.4%, Mn: 0.50-1.70%, Al: 0.020-0.040%, Cr: 0.25-0.8%, Cu, 0.18-0.6%, Ni: 0.2-0.8%, Ti: 0.001-0.02%, and the balance being Fe and other inevitable impurities; and the self-corrosion potential difference between the carbon steel reinforcing steel bar and the stainless steel layer is less than 0.25 V. The potential difference (less than 0.25 V) between the carbon steel reinforcing steel bar and the stainless steel layer is reduced, thus the end face galvanic corrosion is greatly reduced, and the galvanic corrosion rate of the carbon steel at the end of the composite reinforcing steel bar is similar to that of a common reinforcing steel bar, so that good corrosion resistance is achieved. Moreover, the stainless steel and the carbon steel are effectively composited in a metallurgical bonding manner, so that the problem of difficulty in connection is solved.
E04C 5/03 - Éléments d'armature en métal, p. ex. avec des revêtements rapportés de faible résistance à la flexion, c.-à-d. s'étendant essentiellement dans une ou deux dimensions avec échancrures, saillies, nervures ou analogues pour augmenter l'adhérence du béton
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/18 - Alliages ferreux, p. ex. aciers alliés contenant du chrome
C22C 38/20 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du cuivre
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
26.
STEEL PLATE HAVING PATTERN ON SURFACE, AND MANUFACTURING METHOD THEREFOR
A steel plate having a pattern on the surface, and a manufacturing method for the steel plate. At least one side surface of the steel plate has two or more regions having different average surface roughness. The surface of the steel plate has a pattern formed by a visual color difference generated by the difference of different average surface roughness.
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
27.
HIGH-STRENGTH STEEL COMPOSITE GALVANIZED SHEET RESISTANT TO LME CRACKING DURING SPOT WELDING, AND PREPARATION METHOD THEREFOR
Disclosed in the present invention are a high-strength steel composite galvanized sheet resistant to LME cracking during spot welding, and a preparation method therefor. The high-strength steel composite galvanized sheet comprises a high-strength steel body (1), low-carbon steel composite layers (2) and a galvanized layer (3), wherein two low-carbon steel composite layers (2) are respectively compounded and rolled on two surfaces of the high-strength steel body (1), the galvanized layer (3) is formed on the surface of at least one low-carbon steel composite layer (2), and a high-strength steel composite galvanized sheet is thus formed. In the present invention, the low-carbon steel composite layers are compounded and rolled on the surfaces of the high-strength steel body, such that liquid metal is prevented from permeating into a base material along a grain boundary during spot welding; therefore, the sensitivity of the high-strength steel composite galvanized sheet to LME during spot welding is reduced, LME cracking during spot welding is effectively avoided, the problem of LME cracking during spot welding is mitigated, the resistance spot-welding performance of the high-strength steel body is improved, and the mechanical properties of a spot-welded joint are obviously improved.
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
28.
DIE-CASTING ALUMINUM ALLOY FREE FROM HEAT TREATMENT, PRODUCT PREPARED FROM SAME, AND PREPARATION METHOD THEREFOR
The present invention relates to a die-casting aluminum alloy free from heat treatment, a product prepared from same, and a preparation method therefor. The die-casting aluminum alloy further comprises, in addition to Al and unavoidable impurity elements, the following chemical components in percentages by mass: Si: 6.5-9.5%, Fe: 0.1-0.3%, Mn: 0.4-0.85%, Mg: 0.1-0.6%, Ti: 0.02-0.12% and Sb: 0.05-0.15%; in addition, the die-casting aluminum alloy satisfies the following expressions: Fe+Mn≥0.65%, and Mn/Fe=2.0-6.6, wherein each element symbol in the expressions is substituted into the mass percentage content of the corresponding element. In the present invention, the alloy die casting can obtain a structure having no obvious hole loosening defects throughout the inside, thereby ensuring that the tensile strength is greater than 200 MPa, the yield strength is greater than 120 MPa, and the elongation throughout the component is greater than 10%.
A corrosion-resistant rolled composite steel plate and a manufacturing method therefor. The corrosion-resistant rolled composite steel plate comprises a base material, a cladding layer, and a transition layer between the base material and the cladding layer; in percentage by weight, the base material is prepared from the following components: C: 0.01-0.10%, Si: 0.2-0.7%, Mn: 0.30-1.70%, Ti: 0.006-0.012%, Als: 0.008-0.018%, Nb: 0.0090-0.050%, B: 0.0010-0.0050%, N: 0.0015-0.0050%, P ≤ 0.017%, S ≤ 0.020%, O ≤ 0.0050%, and the balance being Fe and other unavoidable impurities; and the cladding layer is stainless steel. By preventing or reducing the diffusion of carbon on a carbon steel side of the base material at an interface of the clad steel plate, the possibility of failure caused by intergranular corrosion of the stainless steel at the cladding layer side is reduced, the corrosion resistance and the safety of the rolled clad steel plate in high temperature operating environments are comprehensively improved, and the present invention is suitable for equipment at operating temperatures of approx. 300°C in energy fields such as electrical power and the chemical industry.
The present invention relates to a heat-treatment-free, high-strength and high-toughness die-casting aluminum alloy, a product prepared therefrom, and a preparation method therefor. The die-casting aluminum alloy includes, in addition to Al and unavoidable impurity elements, the following chemical components by mass percentage: 6.5-9.5% of Si, 0.1-0.3% of Fe, 0.4-0.85% of Mn, 0.1-0.6% of Mg, 0.1-0.9% of Cu, 0.02-0.12% of Ti, and 0.05-0.15% of Sb; at the same time, said components satisfy the following equations: Fe + Mn ≥ 0.65%, Mn/Fe = 2.0-6.6, each element symbol in the equations representing the mass percentage content of the corresponding element. The present invention solves the problem with this type of heat treatment-free die-casting alloy that Sb deteriorates and causes a melt to absorb gas, leading to elongation not being stable, thus enabling an aluminum alloy die-cast piece to obtain a structure having no significant holes or porosity defects at any location within, thereby ensuring an elongation of 10% or greater at every position of the part while tensile strength is 230 MPa or greater and yield strength 150 MPa or greater.
A corrosion-resistant rolled clad steel plate for medium-temperature equipment and a manufacturing method therefor. The clad steel plate comprises a base material, a cladding layer, and a transition layer between the base material and the cladding layer; in percentage by weight, the base material is prepared from the following components: C: 0.01%-0.15%, Si: 0.2%-0.7%, Mn: 0.1%-1.70%, Ti: 0.006%-0.025%, Als: 0.004%-0.015%, Nb: 0.0010%-0.050%, V: 0.15%-0.50%, B: 0.0005%-0.0050% N: 0.0015%-0.0050%, P ≤ 0.0165%, S ≤ 0.010%, O ≤ 0.005%, and the balance being Fe and other unavoidable impurities. By preventing or reducing the diffusion of carbon on a carbon steel side of the base material at an interface of the clad steel plate, the possibility of failure caused by intergranular corrosion of stainless steel at the cladding layer side is reduced, the corrosion resistance and the safety of the rolled clad steel plate are comprehensively improved, and the present invention is suitable for 300-450°C medium-temperature equipment in energy production fields such as petroleum refining and the coal chemical industry.
B21B 1/38 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des feuilles de longueur limitée, p. ex. des feuilles pliées, des feuilles superposées
B21C 37/02 - Fabrication de tôles, barres, fils, tubes ou profilés métalliques ou de produits semi-finis similaires, non prévue ailleursFabrication de tubes de forme particulière des tôles
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
32.
CORROSION-RESISTANT ROLLED CLAD STEEL PLATE FOR HIGH-TEMPERATURE EQUIPMENT AND MANUFACTURING METHOD THEREFOR
A corrosion-resistant rolled clad steel plate for high-temperature equipment and a manufacturing method therefor. The clad steel plate comprises a base material, a cladding layer, and a transition layer between the base material and the cladding layer; in percentage by weight, the base material is prepared from the following components: C: 0.08%-0.18%, Si: 0.01%-0.6%, Mn: 0.30%-0.70%, Ti: 0.009%-0.015%, Als: 0.010%-0.015%, Nb: 0.0010%-0.050%, Cr: 1.85%-3.85%, Mo: 0.5%-1.55%, B: 0.0007%-0.0050% N: 0.0025%-0.0050%, P ≤ 0.010%, S ≤ 0.010%, O ≤ 0.004%, and the balance being Fe and other unavoidable impurities. The present invention fully accounts for interfacial characteristics of the clad steel plate, ensures the corrosion resistance of the cladding layer stainless steel, is suitable for high-temperature equipment at operating temperatures of 450-530°C, and is widely applicable in energy industries such as thermal energy, petroleum refining, and the chemical industry.
The present disclosure relates to a T4P-state 6xxx series aluminum alloy plate and a preparation method therefor. The contents of chemical elements in the T4P-state 6xxx series aluminum alloy plate are: in percentage by mass, 0.5-1.0% of Mg, 0.60-1.2% of Si, 0.05-0.2% of Cu, 0.05-0.2% of Mn, Fe ≤ 0.4%, and the balance being Al and other inevitable impurities, wherein the content of a single inevitable impurity is less than or equal to 0.05%; and the contents of Mg and Si meet the following relational expressions: 0.7 ≤ Mg/Si ≤ 1.2 and 1.2% ≤ Mg + Si ≤ 1.8%. The T4P-state 6xxx series aluminum alloy plate of the present disclosure has both high strength and high bending (forming) performance. A T8x-state 6xxx series aluminum alloy plate obtained after simulated paint baking treatment can achieve the performance of a conventional T6-state 6xxx series aluminum alloy and can thus replace a conventional T6-state 6xxx series aluminum alloy plate for use in automobile parts and components having relatively high strength requirements, such as automobile structural members, thereby satisfying the automobile lightweight demand.
C22C 21/02 - Alliages à base d'aluminium avec le silicium comme second constituant majeur
C22F 1/05 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages de type Al-Si-Mg, c.-à-d. contenant du silicium et du magnésium en proportions sensiblement égales
22 environment and a manufacturing method therefor. The pipeline steel comprises the following chemical components in percentage by weight: 0.020-0.070% of C, 0.10-0.30% of Si, 0.80-1.45% of Mn, less than or equal to 0.0080% of P, less than or equal to 0.0015% of S, 0.05-0.35% of Cu, 0.05-0.30% of Ni, 0.20-0.80% of Cr, 0-0.09% of Mo, 0.025-0.055% of Nb, 0-0.050% of V, 0.005-0.020% of Ti, 0.0010-0.0040% of Ca, 0.010-0.040% of Alt, less than or equal to 0.0004% of B, less than or equal to 0.0030% of O, less than or equal to 0.0050% of N, less than or equal to 0.0002% of H, 0.0005-0.0050% of Ce, and the remainder comprising Fe and unavoidable impurities. In addition, the following requirements are met: Ca/S ≥ 1.5; Nb+V+Ti ≤ 0.120%; 0.8 ≤ (Nb+V+Ti)/(C+N+5×B) ≤ 2.5; and (Cr+Cu/3+Ni/3+Mo+Ce×25)/(S+P) ≥ 50. The obtained pipeline steel can reach X65 strength level, and has good weldability, excellent low-temperature toughness and corrosion resistance.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
35.
HOT-ROLLED STEEL PLATE SUITABLE FOR ELECTROSTATIC DRY POWDER ENAMEL AND HAVING ENAMEL-FIRING REINFORCING PERFORMANCE, AND MANUFACTURING METHOD THEREFOR
A hot-rolled steel plate suitable for electrostatic dry powder enamel and having an enamel-firing reinforcing performance, and a manufacturing method therefor. The chemical components, in percentages by weight, of the hot-rolled steel plate are: C: 0.030-0.080%, Si≤0.030%, Mn: 0.30-0.80%, Al: 0.010-0.050%, Cr: 0.010-0.040%, Cu: 0.020-0.080%, N: 0.0040-0.0120%, B: 0.0010-0.0050%, and Mo: 0.005-0.050%, with the balance being Fe and other inevitable impurities; and the hot-rolled steel plate further needs to satisfy: [B]/[N]×[Mo]×103>5. In the present invention, the high-temperature stability of a precipitated phase is ensured by utilizing the strengthening effect of Mo on BN and AlN precipitation; in addition, improving the air cooling hardenability of the steel plate by utilizing the solid-solution-state B and Mo achieves the purpose of improving rather than reducing the yield strength of the steel plate after high-temperature enamel firing on the premise that the steel plate satisfies the requirements of scaling resistance and adhesion performance required by an electrostatic dry powder enamel process.
Disclosed in the present invention is hot-rolled high-strength steel having good hole-expansion and bending performance. The hot-rolled high-strength steel contains Fe and inevitable impurities, and further contains the following chemical elements in percentages by mass: C: 0.030-0.080%, Si: 0.01-1.20%, Mn: 1.20-1.80%, S: 0.0005-0.0080%, Al: 0.02-1.00%, and B≤0.0035%; at least one of Mg: 0.0002-0.0100% and Ca: 0.0002-0.0100%; at least one of 0
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
37.
HIGH-MAGNESIUM 5XXX SERIES H32 ALUMINUM ALLOY SHEET AND PREPARATION METHOD THEREFOR
The present invention relates to a high-magnesium 5xxx series H32 aluminum alloy sheet and a preparation method therefor. The aluminum alloy sheet comprises the following chemical components in percentage by weight: Si: 0-0.15%, Fe: 0.20-0.30%, Cu: 0-0.05%, Mn: 0.41-0.49%, Mg: 4.0-4.9%, Cr: 0.06-0.14%, Zn: 0-0.05%, Ti: 0.01-0.03%, and the balance being Al and inevitable impurities; the percentage by weight of each of the inevitable impurities is greater than or equal to 0 and less than or equal to 0.05%, and the sum of the total percentages by weight of the inevitable impurities is greater than or equal to 0 and less than or equal to 0.15%; and the following formula is satisfied: (Si+Fe)/Mn≤1, and the numerical value in the corresponding percentage by weight of each element is substituted into the symbol of each element in the formula. The aluminum alloy sheet of the present invention has yield strength greater than or equal to 260 MPa, elongation greater than or equal to 12%, and a 90° bending performance limit bending radius less than or equal to 1.0×sheet thickness, the production process is greatly shortened, the production efficiency is improved, and the performance consistency between batches of sheets is better.
C22C 21/06 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur
C22C 21/08 - Alliages à base d'aluminium avec le magnésium comme second constituant majeur avec du silicium
C22F 1/047 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid de l'aluminium ou de ses alliages d'alliages avec le magnésium comme second constituant majeur
38.
TEMPERED STEEL PLATE HAVING YIELD STRENGTH OF 1000 MPA AND PRODUCTION METHOD THEREFOR
A tempered steel plate having a yield strength of 1000 MPa and a production method therefor. The tempered steel plate comprises the following components in percentages by weight: C: 0.15-0.2%, Si: 0.05-0.3%, Mn: 0.80-1.60%, Cr≥0.6%, Mo≤0.2%, V≥0.06%, N≤0.005%, P≤0.030%, S≤0.005%, and O≤0.004%, with the balance being Fe and inevitable impurities, wherein the contents of the elements must satisfy the following relation: 1%≤3Mo+0.6Cr+5V≤1.5%. In the component design of the present invention, a low content of Mo or even no Mo is used, and the content of C and Mn is relatively low; and under these conditions and by means of the tempering resistance and precipitation strengthening effect of Cr and V, high strength of the steel plate is achieved, the cost is low, and the steel plate has good comprehensive performance, with the yield strength thereof being larger than or equal to 1000 MPa, the tensile strength thereof being larger than or equal to 1050 MPa, the elongation thereof being larger than 18%, and the impact energy thereof at -40ºC being larger than 120 J.
Ultrahigh-strength structural steel with excellent welded joint properties and a production method therefor. The ultrahigh-strength structural steel comprises the following chemical components in percentage by weight: C: 0.15-0.21%, Si: ≤0.50%, Mn: 0.60-1.60%, Ti: 0-0.030%, V: 0.055-0.150%, Nb: 0-0.060%, RE: 0-0.0030%, Cr: 0.65-1.20%, Mo: 0-0.25%, W: 0-0.30%, Ni: 0-0.30%, Cu: 0-0.40%, B: 0.0005-0.0030%, Al: 0.020-0.060%, Ca: 0.0005-0.0040%, N: ≤0.0050%, P: ≤0.020%, S: ≤0.0050%, and the balance being Fe and other inevitable impurities; and the relational expression needs to be satisfied at the same time: 220≤1021×V+523×W+416×Mo+81.3×Cr≤430. By means of the heat treatment process, the size of a VC precipitate is refined, and the VC precipitation strengthening effect is fully exerted, so that a steel plate and a welded joint have high strength and toughness, the requirements of a user for high-strength and high-toughness welding of the steel plate are met, and the welding crack sensitivity is low.
aa of a protrusion on the surface of the scribed area is less than or equal to 3 μm. The present disclosure further relates to a method for performing laser scribing on an oriented silicon steel sheet, comprising: performing laser scribing on the surface of the oriented silicon steel sheet by using laser having an annular spot, so that at least one scribed area is formed on the surface of the oriented silicon steel sheet. The oriented silicon steel sheet of the present disclosure has a low iron loss, a high magnetic induction, and a high lamination factor, and is particularly suitable for manufacturing high-energy-efficiency wound core transformers.
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
solid solutionprecipitationprecipitation≥4. The present invention further provides a manufacturing method for the ultrahigh-strength steel. The ultrahigh-strength steel of the present invention has the technical advantages of green and low-carbon characteristics as well as high strength and decreased weight.
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21C 5/52 - Fabrication de l'acier au four électrique
A low-cost hot-rolled steel plate for electrostatic dry powder enamel and a manufacturing method for the steel plate. The steel plate comprises the following chemical components in percentage by weight: C: 0.015%-0.05%; Si≤0.03%; Mn: 0.1%-0.5%; Al: 0.01%-0.05%; Cr: 0.01%-0.04%; Cu: 0.01%-0.06%; N: 0.004%-0.012%; B: 0.001%-0.0035%; and V: 0.002%-0.015%; and the balance being iron and other inevitable impurities, and the following condition is met: 1.27×[B]/([N]×[V]×103)>1.0. The steel plate has a yield strength greater than or equal to 200 MPa, a tensile strength greater than or equal to 290 MPa, an elongation greater than or equal to 40%, and a reaming rate greater than or equal to 95%, and can meet the scale explosion proof requirement required by the electrostatic enamel process.
The present disclosure provides a high-strength seamless tube, comprising Fe and inevitable impurities, and further comprising the following chemical elements in percentage by mass: 0.14-0.20% of C, 0.15-0.55% of Si, 0.5-1.3% of Mn, 0.5-1.0% of Cr, 0.35-0.85% of Mo, 0.06-0.1% of V, 0.02-0.06% of Nb, 0.01-0.05% of Ti, 0.001-0.005% of B, 0.01-0.05% of Al, and 0.0005-0.005% of Ca. The present disclosure further provides a manufacturing method for the seamless tube, comprising the following steps that are sequentially carried out: smelting and continuous casting; heating, piercing, rolling and sizing; heat treatment; austenitizing at the temperature of 900-930°C, performing heat preservation for 30-60 min, quenching, and then tempering at 580-650°C, the heat preservation time of tempering being 50-80 min; and hot sizing and straightening.
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 33/04 - Fabrication des alliages ferreux par fusion
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 9/08 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux
44.
HIGH-STRENGTH SEAWATER-CORROSION-RESISTANT CHAIN STEEL, CHAIN AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention are a high-strength seawater-corrosion-resistant chain steel, a chain and a manufacturing method therefor. The chain steel comprises the following chemical components in percentage by mass: C: 0.25-0.35%, Si: 0.1-0.6%, Mn: 0.3-0.9%, Cr: 0.3-1.2%, Ni: 1.8-3.2%, Mo: 0.39-1.0%, Al: 0.02-0.05%, V: 0.08-0.30%, N: 0.009-0.02% and the balance being iron and inevitable impurities. The chain of the present invention has high strength, and also good toughness-plasticity matching and good seawater corrosion resistance, and can effectively solve the problem of the service life of existing chains being affected by the mismatching of strength, toughness-plasticity and corrosion resistance.
Disclosed in the present invention is a non-oriented electrical steel plate with good magnetic performance. The non-oriented electrical steel plate contains Fe and inevitable impurities, and further contains the following chemical elements, in percentage by mass: 0
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
46.
HIGH-STRENGTH CHAIN STEEL, HIGH-CORROSION-RESISTANCE ORE CHAIN AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention are a high-strength chain steel, a high-corrosion-resistance ore chain and a manufacturing method therefor. The chain steel comprises the following chemical components in percentage by mass: C: 0.20-0.30%, Si: 0.05-0.6%, Mn: 1.0-1.8%, Cr: 0.4-0.8%, Ni: 0.6-1.2%, Mo: 0.5-0.9%, Ti: 0.01-0.03%, Al: 0.02-0.05%, B: 0.001-0.005%, N: 0.002-0.006% and the balance being iron and inevitable impurities. The high-corrosion-resistance ore chain of the present invention has both high strength and good corrosion resistance, and can be widely applied in environments with more corrosive media such as engineering machinery, mines, ships and ocean engineering.
Disclosed are a high-strength and high-toughness mining chain steel and a manufacturing method therefor. The chain steel comprises the following chemical components in percentage by mass: C: 0.19-0.30%, Si: 0.05-0.6%, Mn: 1.0-1.8%, Cr: 0.4-0.8%, Ni: 0.5-0.9%, Mo: 0.3-0.55%, Ti: 0.015-0.035%, Al: 0.011-0.05%, B: 0.0015-0.005%, and N: 0.002-0.006%, the remainder being iron and unavoidable impurities. The high-strength and high-toughness mining chain steel of the present invention has excellent impact toughness while also having high strength, and can be widely used in fields requiring high-strength steel such as marine engineering and mining machinery.
Disclosed in the present invention is an oil casing. In addition to Fe and inevitable impurities, the oil casing further comprises the following chemical elements in percentage by mass: C: 0.05-0.15%, Si: 0.4-0.8%, Mn: 3-5%, Ni: 0.2-0.5%, Ca: 0.0005-0.005%, Ti: 0.01-0.04%, Al: 0.01-0.05%, and Nb: 0.02-0.04%. The microstructure of the oil casing is ferrite + granular bainite + austenite. Further disclosed in the present invention is a method for manufacturing the oil casing.
Disclosed is a tube, which has, in the thickness direction, a corrosion-resistant layer and a base layer. The corrosion-resistant layer is at least located on the inner wall of the tube. The corrosion-resistant layer, in addition to Fe and inevitable impurities, further contains the following chemical elements in wt %: 0
The present invention discloses a pipe, wherein the pipe has a corrosion-resistant layer and a base layer in the thickness direction, the corrosion-resistant layer being at least disposed on the inner wall of the pipe, and the corrosion-resistant layer further comprises, in addition to Fe and inevitable impurities, the following chemical elements in percentage by weight: 0
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 9/14 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux tuyaux résistant à l'usure ou à la pression
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
51.
HIGH-STRENGTH SEAMLESS PIPE AND MANUFACTURING METHOD THEREFOR
The present disclosure provides a seamless pipe, which contains Fe and unavoidable impurities, and further contains the following chemical elements in percentage by mass: C: 0.19-0.23%, Si: 0.1-0.6%, Mn: 0.6-1.5%, Cr: 0.1-0.4%, Mo: 0.1-0.18%, Nb: 0.02-0.04%, Ti: 0.01-0.03%, B: 0.0015-0.005%, Al: 0.01-0.05%, and Ca: 0.0005-0.005%. The seamless pipe does not contain the elements Ni and W. The present disclosure further provides a manufacturing method for the seamless pipe, comprising the following steps: smelting and continuous casting, to obtain a pipe blank; heating, piercing, rolling, and sizing the pipe blank, to obtain a pipe body; performing heat treatment on the pipe body, the austenitizing temperature being 900-930°C and the holding time being 30-60 min, quenching, then tempering at 550-650°C, the tempering holding time being 50-80 min; and hot sizing and straightening.
C22C 38/22 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du molybdène ou du tungstène
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/30 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du cobalt
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C21D 9/08 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 1/19 - DurcissementTrempe avec ou sans revenu ultérieur par trempe interrompue
52.
METAL VAPOUR PRESSURE DETECTION APPARATUS AND DETECTION METHOD
Provided are a metal vapour pressure detection apparatus and detection method. The metal vapour pressure detection apparatus comprises a metal evaporation cavity (1) and a pressure detection mechanism (3) disposed on the outer side the metal evaporation cavity (1). The metal evaporation cavity (1) is used for melting and evaporating metal to form metal vapour. The pressure detection mechanism (3) comprises a displacement generation system and a displacement detection system disposed on the displacement generation system. The displacement generation system comprises a displacement slider sleeve (5), a displacement slider (4) disposed in the displacement slider sleeve (5), and a pressure balance spring (6) connected to the displacement slider (4). In the metal vapour pressure detection apparatus, metal vapour pressure can be directly obtained, providing a basis for online control and adjustment of metal vapour.
G01L 11/00 - Mesure de la pression permanente, ou quasi permanente d'un fluide ou d'un matériau solide fluent par des moyens non prévus dans les groupes ou
Disclosed in the present invention is non-oriented silicon steel, which comprises, in addition to Fe and inevitable impurities, the following chemical elements in percentage by mass: ≤0.0050% of C, 2.0-4.0% of Si, 0.1-2.0% of Mn, 0.001-2.0% of Al, 0.001-5.0% of Cr, 0.001-5.0% of Ni, and 0.001-2.0% of Cu, wherein the mass percentage contents of the corresponding chemical elements also satisfy 0<3×Si+0.5×Al+0.5×Mn-5×Cu-2.5×Cr-Ni≤13.5%, and each element symbol in the formula represents the mass percentage content of the corresponding element. Further disclosed in the present invention is a method for manufacturing the non-oriented silicon steel. Using the solution of the present invention can obtain non-oriented silicon steel plates with good heat conduction performance and electromagnetic performance and excellent comprehensive performance.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/18 - Alliages ferreux, p. ex. aciers alliés contenant du chrome
C22C 38/20 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du cuivre
C22C 38/40 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
54.
COATING SOLUTION FOR ORIENTED SILICON STEEL, AND ORIENTED SILICON STEEL PLATE AND MANUFACTURING METHOD THEREFOR
A coating solution for oriented silicon steel, containing a first dihydrogen phosphate, a second dihydrogen phosphate, and colloidal silicon dioxide, wherein the first dihydrogen phosphate is at least one dihydrogen phosphate selected from Al, Mg, Ca, Sr, Ba, Zn, Ni, and Mn; and the second dihydrogen phosphate contains a copper dihydrogen phosphate. The coating solution does not contain Cr. Also provided is an oriented silicon steel plate, containing a substrate and a coating on the surface of the substrate, wherein the coating is formed by the coating solution. Further provided is a method for manufacturing the oriented silicon steel plate. The coating of the oriented silicon steel plate has excellent tension, moisture absorption resistance, heat resistance, corrosion resistance, and anti-sticking properties.
C09D 1/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, à base de substances inorganiques
C23C 22/00 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux
C23C 22/05 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux au moyen de solutions aqueuses
LOW-CARBON, LOW-ALLOY AND HIGH-FORMABILITY DUAL-PHASE STEEL HAVING TENSILE STRENGTH OF GREATER THAN OR EQUAL TO 590 MPA, HOT-DIP GALVANIZED DUAL-PHASE STEEL, AND MANUFACTURING METHOD THEREFOR
A low-carbon, low-alloy and high-formability dual-phase steel having a tensile strength of greater than or equal to 590 MPa, a hot-dip galvanized dual-phase steel, and a manufacturing method therefor by means of rapid heat treatment. The steel comprises the following components, in percentage by mass: 0.04-0.12% of C, 0.1-0.5% of Si, 1.0-2.0% of Mn, P≤0.02%, S≤0.015%, 0.02-0.06% of Al, and can further comprise one or two of Cr, Mo, Ti, Nb and V, wherein Cr+Mo+Ti+Nb+V≤0.5%, and the balance is Fe and other unavoidable impurities. The manufacturing method therefor includes smelting, casting, hot rolling, cold rolling, and rapid heat treatment processes. In the present invention, by controlling rapid heating, short-term thermal insulation and rapid cooling processes during the process of rapid heat treatment, the recovery of a deformed structure, recrystallization and austenite transformation processes are changed, the nucleation rate is increased, the grain growth time is shortened, grains are refined, the strength and n value of the material are improved, and the interval range of the material performance is expanded.
C21D 9/00 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/24 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du vanadium
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/38 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de manganèse
C23C 2/02 - Pré-traitement du matériau à revêtir, p. ex. pour le revêtement de parties déterminées de la surface
Disclosed in the present invention is a conversion liquid for forming a conversion coating on the surface of a non-oriented silicon steel. The conversion liquid is acidic, and contains solids having a content of 10-30 wt%. The solids comprise an inorganic conversion coating component and a water-based organic resin. Further disclosed in the present invention is a non-oriented silicon steel, comprising a silicon steel substrate and a conversion coating on the surface of the silicon steel substrate. Further disclosed in the present invention is a method for forming the conversion coating on the surface of a silicon steel substrate.
C23C 22/34 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux au moyen de solutions aqueuses au moyen de solutions aqueuses acides d'un pH < 6 contenant des fluorures ou des fluorures complexes
C23C 22/36 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux au moyen de solutions aqueuses au moyen de solutions aqueuses acides d'un pH < 6 contenant des fluorures ou des fluorures complexes et des phosphates
57.
890 MPA-GRADE CYLINDER PIPE AND MANUFACTURING METHOD THEREFOR
A cylinder pipe, comprising Fe and inevitable impurities, and further comprising the following chemical elements in percentage by mass: C: 0.14-0.20%; Si: 0.15-0.55%; Mn: 0.5-1.5%; Cr: 0.5-1.5%; Mo: 0.25-0.65%; W: 0.3-0.8%; V: 0.05-0.1%; Nb: 0.02-0.06%; Al: 0.01-0.05%; and Ca: 0.0005-0.005%. The present invention further provides a manufacturing method for a cylinder pipe. By means of a reasonable chemical element component design, preferably further in combination with a specific process, the cylinder pipe has high strength, has low residual stress and low yield strength ratio, and also has good welding performance.
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
58.
HOT STAMPED STEEL PLATE WITH AL-ZN-MG-SI PLATING AND HOT STAMPING METHOD THEREFOR
Disclosed in the present invention are a hot stamped steel plate with Al—Zn—Mg—Si plating and a hot stamping method therefor; before hot stamping, the initial structure of the Al—Zn—Mg—Si plating is composed of a Zn-rich phase, an Al-rich phase, a MgZn2 phase, an MgSi2 phase, and a Fe—Al—Si alloy layer; after hot stamping, when the heat preservation time of the plating structure is t≤3 min, the plating is composed of an upper and lower layer, the structure of the first layer being composed of an Al-rich phase, a Zn-rich phase, and an MgZn2 phase, and the volume percentage ratio of the sum of the Zn phase and the MgZn2 phase is between 20% and 80%; the structure of the second layer is composed of an FeAl3 phase and a Zn-rich phase, and the volume percentage ratio of the Zn-rich phase does not exceed 5%; when the heat preservation time is t>3 min, the plating is composed of a single-layer alloy layer, and the alloy layer is mostly composed of a FeAl3 phase, wherein a Zn-rich phase and an MgZn2 phase are present between the FeAl3 phase, and the volume percentage ratio of the sum of the Zn phase and the MgZn2 phase is 5-50%; and also relating to a hot stamping method. In the steel plate of the present invention, after hot stamping the plating has good corrosion resistance, and cracks on the substrate caused by liquid metal brittleness can be avoided.
C22C 18/04 - Alliages à base de zinc avec l'aluminium comme second constituant majeur
B21D 22/02 - Estampage utilisant des dispositifs ou outils rigides
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
Disclosed in the present invention is an economical 800 MPa-grade hot-rolled hot-dip galvanized steel sheet, comprising a substrate and a hot-dip galvanized layer. The substrate contains Fe and inevitable impurities. In addition, the substrate further contains the following chemical elements in percentage by mass: 0.05-0.10% of C, 1.4-2.0% of Mn, 0.10-0.15% of Ti, and 0.02-0.08% of Al. The substrate does not contain elements Si, Cr, Mo and Ni. Microstructures of the substrate include a complex-phase structure of granular bainite and ferrite, and second-phase particle precipitates; the volume fraction of the second-phase particle precipitates is not less than 0.2%; and the ratio of the volume fraction of the second-phase particle precipitates having a size not greater than 10 nm to the volume fraction of all the second-phase particle precipitates is greater than 80%. Correspondingly, further disclosed in the present invention is a manufacturing method for the economical 800 MPa-grade hot-rolled hot-dip galvanized steel sheet.
Disclosed in the present invention is a 900 MPa-grade hot-rolled hot-dip galvanized steel plate which comprises a substrate and a hot-dip galvanizing layer. The substrate contains Fe and inevitable impurities, and the substrate further comprises the following chemical elements in percentage by mass: 0.06%-0.10% of C, 1.5-2.15% of Mn, 0.02-0.08% of Al, 0
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/38 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de manganèse
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
The present disclosure relates to a coating, comprising a phosphate salt, a colloidal silica and a chromic acid compound, wherein the phosphate salt comprises magnesium dihydrogen phosphate and aluminum dihydrogen phosphate, and wherein a molar ratio of element Al to element Mg in the phosphate salt is 0.02 to 0.15. The present disclosure also relates to a grain-oriented silicon steel sheet, comprising: a substrate; and a coating layer on a surface of the substrate, wherein the coating layer is formed from the coating according to the present disclosure. The present disclosure further relates to a method for manufacturing a grain-oriented silicon steel sheet, comprising the steps of: applying the coating onto the surface of the substrate, and then performing a sintering treatment, wherein the substrate has a temperature, at which the sintering treatment is performed, of 800 to 880° C. The coating layer formed from the coating according to the present disclosure can impart higher tension and more excellent heat resistance to the grain-oriented silicon steel sheet, and has good promotion prospects and application effects.
C23C 22/20 - Orthophosphates contenant des cations de l'aluminium
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C23C 22/74 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux caractérisé par le procédé pour obtenir des revêtements de conversion cuits
This disclosure relates to the field of metallurgical automation technologies, and discloses a method and device for cross-process use of cold/hot-rolled excess material, medium, and program product. The method is applied in an electronic device. In this method, multiple futures contracts and multiple cold/hot-rolled excess materials with same steel grade are obtained, forming at least one matching pair consisting of a futures contract and a cold/hot-rolled excess material by taking the multiple futures contracts and the multiple cold/hot-rolled excess materials as nodes in a weighted binary graph, to construct a matching relationship graph. In addition, a matching weight of each matching pair in the at least one matching pair is determined. Then, a use solution is obtained by computing the matching relationship graph based on a binary graph maximum weight matching algorithm. By doing so, the automation and scale of cross-process use of cold/hot-rolled excess materials can be implemented, the use efficiency of cold/hot-rolled excess materials and futures contract can be improved, and the optimal use of excess materials can be achieved.
Disclosed is a tube, having a corrosion resistant layer and a base layer in a thickness direction. The corrosion resistant layer is at least located on the inner wall of the tube. In addition to Fe and inevitable impurities, the corrosion resistant layer further contains the following chemical elements in wt %: 0
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
C21D 9/08 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
64.
HIGH-STRENGTH AND CARBON DIOXIDE CORROSION-RESISTANT TUBING AND CASING AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is a high-strength and carbon dioxide corrosion-resistant tubing and casing, comprising Fe and inevitable impurities, and further comprising the following chemical elements: C: 0.10-0.20%, Si: 0.10-0.80%, Mn: 0.10-1.50%, Cr: 3-5%, Mo: 0.10-0.70%, Al: 0.01-0.10%, V: 0.10-0.20%, Ni: 0.1-1.0%, Ce: 0.002-0.01%, and La: 0.002-0.01%. Correspondingly, further disclosed in the present invention is a manufacturing method for the high-strength and carbon dioxide corrosion-resistant tubing and casing. In the present invention, by means of reasonable component design of chemical elements, the tubing and casing having both ultrahigh strength and excellent carbon dioxide corrosion resistance can be obtained.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/18 - Alliages ferreux, p. ex. aciers alliés contenant du chrome
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
65.
ULTRAHIGH-STRENGTH TUBING AND CASING RESISTANT TO HYDROGEN SULFIDE CORROSION AND METHOD FOR MANUFACTURING SAME
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/22 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du molybdène ou du tungstène
C22C 38/24 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du vanadium
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/10 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de corps tubulaires
66.
HIGH-PERFORMANCE-UNIFORMITY SUBSEA PIPELINE STEEL AND MANUFACTURING METHOD THEREFOR
A high-performance-uniformity subsea pipeline steel and a manufacturing method therefor. The chemical components of the high-performance-uniformity subsea pipeline steel comprise, in percent by weight: C: 0.02-0.06%, Si: 0.10-0.30%, Mn: 1.20-1.65%, Cu≤0.30%, Ni≤0.30%, Cr: 0.15-0.30%, Mo≤0.15%, Nb: 0.03-0.05%, V≤0.05%, Ti: 0.008-0.020%, Ca: 0.0012-0.0030%, and Al: 0.015-0.045%, with the balance comprising Fe and inevitable impurities, where it is required to control impurity elements P≤0.01%, S≤0.001%, B≤0.0004%, N≤0.005%, O≤0.0025% and H≤0.0002%. The manufacturing method uses an austenite recrystallization zone and non-recrystallization zone two-stage controlled rolling technology, spread ratio control, and controlled cooling, such that in addition to high performance, obtained subsea pipeline steel also has good performance uniformity.
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
B21B 37/22 - Commande de l'écoulement latéralCommande de largeur, p. ex. par refoulement
B21B 37/76 - Commande du refroidissement sur la table de sortie
67.
PIERCING PLUG FOR HIGH-ALLOY STEEL PIPE ROLLING AND MANUFACTURING METHOD THEREFOR
A piercing plug for high-alloy steel pipe rolling, comprising a plug base body (1), a high-strength alloy layer (2) provided on the plug base body, and an oxide film layer (3) provided on the high-strength alloy layer. The high-strength alloy layer is made of a cobalt-based alloy; and the oxide film layer is made of an iron-based alloy. Also provided are a cobalt-based alloy and an iron-based alloy. According to the piercing plug, the high-strength alloy layer is designed on the plug base body, thereby solving the problem of falling-off of an oxide film on the surface of the plug due to high-temperature softening of a support part, and by designing the oxide film layer, the problem of steel bonding due to large temperature rise of the surface of the plug is solved, so that the piercing plug for high-alloy steel pipe rolling has good high-temperature strength, and the service life is further prolonged.
B21B 25/00 - Mandrins pour laminoirs de tubes métalliques, p. ex. mandrins des types utilisés pour les procédés prévus dans le groupe Accessoires qui leur sont associés
C23C 24/10 - Revêtement à partir de poudres inorganiques en utilisant la chaleur ou une pression et la chaleur avec formation d'une phase liquide intermédiaire dans la couche
C22C 19/07 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de cobalt
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
Disclosed is a bainite steel comprising the following chemical components in percentages by mass: 0.10-0.19% of C, 0.05-0.45% of Si, 1.5-2.2% of Mn, 0.001-0.0035% of B, 0.01-0.05% of Al, 0.05-0.40% of Cr, 0.05-0.40% of Mo, and more than or equal to 90% of Fe. By rationally controlling the contents of C, Si, Mn, B, Al, Cr, Mo, and the other elements in the steel, the steel can spontaneously form a phase having a structural gradient during the preparation process. In addition, the hardenability of the steel is also improved, such that the strength and forming performance of the bainite steel can be improved. Further disclosed in the present invention is a method for preparing the bainite steel. By using the preparation method of the present invention, the bainite steel having a structural gradient in the thickness direction can be prepared, and the bainite steel has good formability
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
69.
HIGH-STRENGTH AND HIGH-HARDNESS REINFORCED WEAR-RESISTANT STEEL AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is high-strength and high-hardness reinforced wear-resistant steel, comprising Fe and inevitable impurities, and further comprising the following chemical elements in percentage by mass: C: 0.22-0.33%; Si: 0.10-1.00%; Mn: 0.50-1.80%; Cr: 0.80-2.30%; Al: 0.010-0.10%; RE: 0.01-0.10%; W: 0.01-1.0%; and at least one of MO: 0.01-0.80%, Ni: 0.01-1.00%, Nb: 0.005-0.080%, V: 0.01-0.20%, and Ti: 0.001-0.50%. In addition, further disclosed in the preset invention is a manufacturing method for the high-strength and high-hardness reinforced wear-resistant steel, comprising the steps of: (1) smelting and casting; (2) heating; (3) rolling; and (4) on-line quenching: wherein the cooling start temperature of primary cooling is (Ar3′+5)-(Ar3′+50)° C., M90
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
70.
LONG-LIFE BEARING STEEL AND PREPARATION METHOD THEREFOR, AND ELECTROSLAG REMELTING MOLD POWDER
1010 value of the bearing steel under 4.5 GPa can be stably increased to 5×107 turns or more, and the use requirements of bearing steel in high-end fields such as high-speed rail bearings, aviation bearings, and wind turbine bearings can be met.
233 inclusions larger than 2.0 µm in size in the non-oriented electrical steel sheet does not exceed 4 per mm2. In addition, the present disclosure also relates to a manufacturing method for the non-oriented electrical steel sheet. The non-oriented electrical steel sheet has the advantages of a high frequency and low iron loss, so that motor loss can be reduced and motor efficiency can be improved, and the non-oriented electrical steel sheet has excellent fatigue performance, so that high-speed and stable operation of motor cores and rotors within a temperature range from room temperature to 150°C can be satisfied, without deformation or breakage.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
72.
NON-ORIENTED ELECTRICAL STEEL SHEET WITH EXCELLENT HIGH-TEMPERATURE FATIGUE PERFORMANCE AND MANUFACTURING METHOD THEREFOR
233 inclusions having a size of 1.5 μm or more in the non-oriented electrical steel sheet does not exceed 4.5 pieces/mm2101000≥135 Nm3/h. After the decarburization ends, the content of free oxygen in molten steel does not exceed 225 ppm.
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
C22C 33/04 - Fabrication des alliages ferreux par fusion
H02K 1/02 - Détails du circuit magnétique caractérisés par le matériau magnétique
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
73.
NON-ORIENTED ELECTRICAL STEEL SHEET WITH EXCELLENT FATIGUE PERFORMANCE AND MANUFACTURING METHOD THEREFOR
233 spinel-type inclusions having a size of 1.5 μm or more in the non-oriented electrical steel sheet is not more than 7 pieces/mm2. The non-oriented electrical steel sheet has excellent fatigue performance, and can meet the requirements of repeated startup and stable operation of a new energy automobile driving motor under complex working conditions without deformation and breakage. Moreover, when the non-oriented electrical steel sheet is used as a stator material, the non-oriented electrical steel sheet has the characteristic of low iron loss at high frequencies after stress relief annealing.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/60 - Alliages ferreux, p. ex. aciers alliés contenant du plomb, du sélénium, du tellure, de l'antimoine, ou plus de 0,04% en poids de soufre
C21D 8/12 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication d'objets à propriétés électromagnétiques particulières
(1) Alloys of common metal; common metals, unwrought or semi-wrought; laths of metal; sheets and plates of metal; steel alloys; steel sheets; aluminum; steel pipes; foundry molds [moulds] of metal; cast steel; tinplate; steel strip; blooms [metallurgy]; building materials of metal; steel, unwrought or semi-wrought; pipes and tubes of metal; railway material of metal; steel wire; soldering wire of metal; iron ores; hot-rolled steel bars; tie plates; sheet piles of metal; ingots of common metal; steel moulding plate; pipework of metal; casings of metal for oilwells; buildings, transportable, of metal; buildings of metal; framework of metal for building; check rails of metal for railways; rails of metal; hoop steel; aluminum wire; tinplate packings; clips of metal for cables and pipes; rings of metal; welding rod; ores of metal;
75.
ENVIRONMENTALLY-FRIENDLY WATER-BASED MODIFICATION TREATMENT AGENT CAPABLE OF IMPROVING SURFACE PROCESSING PERFORMANCE FOR GALVANIZED STEEL SHEET, AND USE
Disclosed in the present invention are an environmentally-friendly water-based modification treatment agent capable of improving the surface processing performance for a galvanized steel sheet, and a use. The environmentally-friendly water-based modification treatment agent comprises the following components which are dissolved in water to form a solution: (A) a fluorine-containing compound, the content of which is 0.02-0.15 mol/L in terms of the molar concentration of fluorine ions; (B) a nonionic polyol surfactant, the content of which is 0.004-0.03 mol/L in terms of the molar concentration of hydroxyl; (C) an oxidizing agent, the content of which is 0.02-0.2 mol/L in terms of the molar concentration of the oxidizing agent; (D) a colloidal dispersion containing colloidal silica particles, the content of which is 0.008-0.06 mol/L in terms of the molar concentration of element Si; and (E) a compound containing a hydroxycarboxylic acid group, the content of which is 0.2-2 mol/L in terms of the molar concentration of carboxyl. The present invention can effectively improve the surface processing performance for a galvanized steel sheet.
C09D 1/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, à base de substances inorganiques
C09D 7/61 - Adjuvants non macromoléculaires inorganiques
C09D 7/63 - Adjuvants non macromoléculaires organiques
C23C 22/44 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux au moyen de solutions aqueuses au moyen de solutions aqueuses acides d'un pH < 6 contenant des molybdates, des tungstates ou des vanadates et des fluorures ou des fluorures complexes
C23C 22/05 - Traitement chimique de surface de matériaux métalliques par réaction de la surface avec un milieu réactif laissant des produits de réaction du matériau de la surface dans le revêtement, p. ex. revêtement par conversion, passivation des métaux au moyen de solutions aqueuses
steel, unwrought or semi-wrought; alloy steel; ingots of common metal; blooms; common metals, unwrought or semi-wrought; steel sheets and plates of metal; alloys of common metal; laths of metal; pipes of metal; pipework of metal
alloys of common metal; common metals, unwrought or semi-wrought; laths of metal; steel sheets and plates of metal; steel alloys; steel sheets; aluminium and its alloys; steel pipes; steel metal formwork tables; foundry moulds of metal
78.
HIGH-STRENGTH STEEL WITH GOOD WEATHER RESISTANCE AND MANUFACTURING METHOD THEREFOR
Disclosed in the present disclosure is a steel. Apart from 90% or more by mass Fe and inevitable impurities, the steel further contains the following chemical elements in percentage by mass: C: 0.22-0.33%, Si: 0.1-1.0%, Mn: 0.3-1.5%, Cr: 0.2-1.6%, Ni: 2.2-3.8%, Mo: 0.1-0.7%, Cu: 0.02-0.3%, Al: 0.01-0.045%, V: 0.01-0.25%, and N≤0.013%. Further disclosed in the present disclosure is a method for manufacturing the steel, comprising: (1) smelting and casting; (2) forging or rolling, involving processing a casting blank to a finished product size by using a roll-in-one-heat process or roll-in-two-heat process; and (3) quenching and tempering: wherein the heating temperature of quenching is 860-1000° C., the holding time is 2-6 h, and water cooling is performed after the quenching; and the tempering temperature is 400-600° C., the holding time is 1-4 h, and air cooling to room temperature is performed after tempering. The steel of the present disclosure has high strength, well matched toughness and plasticity, and good weather resistance, thereby having good application prospects.
Disclosed is a steel pipe for oil cylinder and a manufacturing method therefor. In addition to 90 wt % or more of Fe and inevitable impurities, the steel pipe for oil cylinder further comprises the following chemical elements in wt %: C: 0.16-0.3%, Si: 0.15-0.5%, Mn: 1.2-1.8%, Nb: 0.02-0.04%, Mo: 0.1-0.2%, and optionally Ti: 0.015-0.03% and B: 0.0015-0.0035%. According to the present invention, after tension reduction and quenching of the steel pipe, different stepped cooling processes are adopted respectively, the distribution of phase change and thermal stress in the whole wall thickness of the steel pipe for oil cylinder is controlled by increasing the rigidity and straightness level of the steel pipe, the distribution of ferrite in the microstructure of the steel pipe for oil cylinder is controlled, the residual stress of the steel pipe for oil cylinder is effectively reduced, cracking of the inner wall is avoided, and therefore the steel pipe for oil cylinder with high strength and low residual stress is obtained. The steel pipe for oil cylinder has a yield strength of greater than or equal to 600 MPa, a tensile strength of greater than or equal to 730 MPa, and a residual stress of less than or equal to 50 MPa.
C21D 1/25 - Durcissement combiné à un recuit entre 300 °C et 600 °C, c.-à-d. affinage à chaud dit "Vergüten"
C21D 1/30 - Recuit d'homogénéisation pour détruire les tensions internes
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 9/08 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour corps tubulaires ou tuyaux
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
The present invention relates to a pipeline steel and a manufacturing method therefor. In addition to Fe and inevitable impurities, the pipeline steel further contains the following chemical elements in percentage by mass: 0.015-0.040% of C, 0.10-0.30% of Si, 1.18-1.45% of Mn, 0
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
B21B 37/74 - Commande de la température, p. ex. en refroidissant ou en chauffant les cylindres ou le produit
81.
WATER-BASED SURFACE TREATMENT FLUID FOR GALVANIZED STEEL SHEET, SELF-LUBRICATING GALVANIZED STEEL SHEET AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is a water-based surface treatment fluid for a galvanized steel sheet. The water-based surface treatment fluid comprises deionized water and solid components. The solid components comprise: a water-based cationic polymer resin A, the parts by weight of which in the solid components is 25-65 parts; a compound organosilane coupling agent B, the parts by weight of which in the solid components is 30-65 parts; compound lubricating particles C, the parts by weight of which in the solid components is 3-10 parts, the compound lubricating particles C comprising at least one unsaturated-bond-containing organosilane coupling agent C1 and a mixture of an oxidized polyethylene wax emulsion and a polytetrafluoroethylene wax emulsion; a water-soluble fluorine-containing compound D, the parts by weight of fluorine in the solid components being 1.5-5.3 parts; a water-soluble phosphorus-containing compound E, the parts by weight of phosphorus in the solid components being 1-3 parts; and a water-soluble compound F containing a salt of a group-VIII iron family element, the parts by weight of the group-VIII iron family element in the solid components being 0.2-0.6 parts.
Disclosed in the present invention is a nickel-free annealing-free high-strength weather-resistant steel wire rod for a bolt. The steel wire rod contains Fe and inevitable impurity elements, and further contains the following chemical elements in percentages by mass: C: 0.05-0.14%, Si: 0.01-2.0%, Mn: 0.3-2.2%, Cr: 2.4-4.5%, Cu: 0.2-0.6%, and Al: 0.01-0.1%, wherein the mass percentage content of Cr and C satisfies: Cr/C > 20; and the steel wire rod does not contain Ni. Correspondingly, further disclosed in the present invention is a manufacturing method for the nickel-free annealing-free high-strength weather-resistant steel wire rod for a bolt. The manufacturing method specifically comprises the following steps: (1) smelting and casting; (2) heating; (3) rolling; and (4) cooling, involving: performing cooling to 900-920ºC at a cooling speed of 4-5ºC/s after rolling, and then continuously performing cooling to room temperature at a cooling speed lower than 0.4ºC/s, so as to obtain a steel wire rod.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
83.
ULTRAHIGH-STRENGTH STEEL PLATE HAVING HIGH R VALUE AND MANUFACTURING METHOD THEREFOR
Disclosed in the present invention is an ultrahigh-strength steel plate having a high r value, comprising, in the thickness direction, an upper surface layer, a middle layer, and a lower surface layer. The main bodies of the microstructures of the upper surface layer and the lower surface layer are ferrite, and the carbon content of the upper surface layer and the carbon content of the lower surface layer are both less than or equal to 0.025%; the mass percentages of chemical elements in the upper surface layer and in the lower surface layer respectively meet: Ti-3.42N-3.98C≥0; and the main body of the microstructure of the middle layer is at least one of tempered martensite and bainite. Correspondingly, also disclosed is a manufacturing method for the ultrahigh-strength steel plate having a high r value. The steel plate of the present invention has ultrahigh strength and a high r value. Lighter thickness reduction of the ultrahigh-strength steel plate having a high r value in a deformation process is achieved, and thus the steel plate presents good formability in both global stretching deformation and local deformation.
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
Disclosed is an ultrahigh-strength steel strip, containing Fe and unavoidable impurity elements. Furthermore, the ultrahigh-strength steel strip further contains the following chemical elements in percentage by mass: C: 0.13-0.20%; Si: 0.15-0.50%; Mn: 1.4-2.0%; B: 0.001-0.004%; Al: 0.01-0.04%; Cr: 0.1-0.4%; Mo: 0.1-0.4%; and Ti+V+Nb≤0.02%. The microstructure thereof comprises granular bainite uniformly dispersed in a coral pattern. Correspondingly, further disclosed is a manufacturing method for the ultrahigh-strength steel strip. The ultrahigh-strength steel strip of the present invention has low anisotropy and high in-roll mechanical uniformity while achieving a tensile strength of 1000 MPa.
M/NM/NAAl]/27)/([N]/14). In addition, further disclosed in the present invention is a manufacturing method for the high-strength, high-toughness and high-hardenability gear shaft steel. The high-strength, high-toughness and high-hardenability gear shaft steel of the present invention has high hardenability, narrow hardenability bandwidth, and good high-temperature grain stability.
Alloys of common metal; Common metals, unwrought or semi-wrought; Laths of metal; Sheets and plates of metal; Steel alloys; Steel sheets; Aluminium; Steel pipes; Foundry molds [moulds] of metal; Cast steel; Tinplate; Steel strip; Blooms [metallurgy]; Building materials of metal; Steel, unwrought or semi-wrought; Pipes and tubes of metal; Railway material of metal; Steel wire; Soldering wire of metal; Iron ores; Hot-rolled steel bars; Tie plates; Sheet piles of metal; Ingots of common metal; Metallic moulds for metal casting; Metal mouldings; Pipework of metal; Casings of metal for oilwells; Buildings, transportable, of metal; Buildings of metal; Framework of metal for building; Check rails of metal for railways; Rails of metal; Hoop steel; Aluminium wire; Tinplate packings; Clips of metal for cables and pipes; Rings of metal; Welding rods; Ores of metal.
Alloys of common metal; Common metals, unwrought or semi-wrought; Laths of metal; Sheets and plates of metal; Steel alloys; Steel sheets; Aluminium; Steel pipes; Foundry molds [moulds] of metal; Cast steel; Tinplate; Steel strip; Blooms [metallurgy]; Building materials of metal; Steel, unwrought or semi-wrought; Pipes and tubes of metal; Railway material of metal; Steel wire; Soldering wire of metal; Iron ores; Hot-rolled steel bars; Tie plates; Sheet piles of metal; Ingots of common metal; Metallic moulds for metal casting; Metal mouldings; Pipework of metal; Casings of metal for oilwells; Buildings, transportable, of metal; Buildings of metal; Framework of metal for building; Check rails of metal for railways; Rails of metal; Hoop steel; Aluminium wire; Tinplate packings; Clips of metal for cables and pipes; Rings of metal; Welding rods; Ores of metal.
88.
390MPA-GRADE HOT-ROLLED STRIP STEEL USED FOR BUILDING STRUCTURES AND RESISTANT TO SEA WAVE SPLASH ZONE CORROSION, AND MANUFACTURING METHOD THEREFOR
The present invention provides hot-rolled strip steel used for building structures, the hot-rolled strip steel having a base layer, a corrosion-resistant layer, and an interface transition layer located between the base layer and the corrosion-resistant layer. The hot-rolled strip steel used for building structures of the present invention has a yield strength ≥ 390MPa, a tensile strength ≥ 515MPa, a yield ratio ≤ 0.75, a -40℃ impact energy ≥ 190J, a sea wave splashing corrosion resistance rate ≤ 0.006mm/year, an interface transition layer thickness of ≤ 8 microns, an interface shear strength ≥ 260MPa, and excellent overall performance. The present invention further provides a manufacturing method for the hot-rolled strip steel.
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
B32B 15/18 - Produits stratifiés composés essentiellement de métal comportant du fer ou de l'acier
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
89.
345 MPA-GRADE HOT-ROLLED STEEL PLATE FOR BUILDING STRUCTURES RESISTANT TO SEA WAVE SPLASH ZONE CORROSION AND MANUFACTURING METHOD THEREOF
The present invention provides a hot-rolled steel plate for building structures, the hot-rolled steel plate has a base layer, a corrosion-resistant layer, and an interface transition layer between the base layer and the corrosion-resistant layer. The yield strength of the hot-rolled steel plate of the present invention is ≥350 MPa, the tensile strength is ≥490 MPa, the yield strength ratio is 0.71-0.80, the impact energy at -40°C is ≥190 J, the sea wave splash corrosion rate is ≤0.006 mm/year, the thickness of the interface transition layer is ≤10 μm, the interface shear strength is ≥252 MPa, and steel plate can be used to manufacture structural parts suitable for sea wave splash areas. The present invention further provides a manufacturing method of the hot-rolled steel plate.
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
B32B 15/18 - Produits stratifiés composés essentiellement de métal comportant du fer ou de l'acier
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
90.
COMPONENT-NORMALIZED VARIABLE-STRENGTH DUAL-PHASE STEEL PLATE AND FLEXIBLE MANUFACTURING METHOD THEREFOR
Dual-phase steel and a flexible manufacturing method therefor. The dual-phase steel comprises the following chemical components in percentage by mass: 0.06%-0.08% of C, 0.4%-0.6% of Si, 2.4%-2.6% of Mn, 0.01%-0.05% of Al, 0.02%-0.04% of Ti, 0.0015%-0.0025% of B, and the balance of Fe and inevitable impurities. The microscopic structure of the variable-strength dual-phase steel comprises martensite having a volume fraction of 30% or above; the remaining structure is ferrite, retained austenite, and nano-precipitates; and the formability is good. In the present invention, a component normalization design and a flexible manufacturing process are used, steel of multiple strength levels required for a body-in-white is produced, the dual-phase steel can be flexible to reach a tensile strength of 450-1310 MPa, the formability is good, the product of strength and elongation is larger than 11000%, and the reaming rate is larger than 35%.
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
91.
SEA WAVE SPLASH ZONE CORROSION-RESISTANT 460 MPA GRADE HOT-ROLLED STRIP FOR BUILDING STRUCTURE
The present disclosure relates to a hot-rolled strip for a building structure and a manufacturing method therefor. The hot-rolled strip comprises a base layer, a corrosion resistant layer, and an interfacial transition layer located between the base layer and the corrosion resistant layer. The base layer comprises the following chemical elements in percentage by mass: C: 0.03-0.13%, Si: 0.15-0.35%, Mn: 1.00-1.50%, P: 0.0005-0.003%, S: 0.0005-0.01%, Cr: 0.10-0.65%, Ni: 0.2-1.0%, Cu : 0.10-0.25%, Al: 0.020-0.050%, Ti: 0.0090-0.0160%, Nb: 0.060-0.100%, N: 0.0005-0.0050%, and V: 0.08-0.25%, with the balance being Fe and other inevitable impurities. The corrosion resistant layer is made of commercially pure titanium. According to the hot-rolled strip for a building structure of the present disclosure, the base layer has a yield strength of ≥460 MPa, a tensile strength of ≥580 MPa, a yield-tensile ratio of ≤0.81, and -40°C impact energy of ≥190 J; the corrosion resistant layer has a sea wave splash corrosion resistance rate of ≤0.006 mm/year; and the interfacial transition layer has a thickness of ≤8 μm, and an interfacial shear strength of ≥268 MPa.
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
92.
500 MPA-GRADE HOT-ROLLED STRIP STEEL FOR BUILDING STRUCTURE RESISTANT TO SEA WAVE SPLASHING AREA CORROSION AND MANUFACTURING METHOD FOR HOT-ROLLED STRIP STEEL
The present disclosure relates to a hot-rolled strip steel for a building structure and a manufacturing method for the hot-rolled strip steel. The hot-rolled strip steel comprises a base layer, a corrosion-resistant layer, and an interface transition layer located between the base layer and the corrosion-resistant layer; the mass percentages of chemical elements of the base layer are: C: 0.050-0.100%, Si: 0.15-0.30%, Mn: 1.0-1.8%, P: 0.0005-0.003%, S: 0.0005-0.01%, Cr: 0.80-1.60%, Ni: 0.50-1.20%, Cu: 0.20-0.40%, Al: 0.020-0.050%, Ti: 0.010-0.018%, Nb: 0.020-0.100%, N: 0.0005-0.0050%, Mo: 0.20-0.50%, and the balance of Fe and other inevitable impurities; and the corrosion-resistant layer is prepared from industrial pure titanium. The yield strength of the base layer of the hot-rolled strip steel for a building structure in the present disclosure is greater than or equal to 500 MPa, the tensile strength is greater than or equal to 640 MPa, the yield strength ratio is 0.75-0.85, the impact energy at -40°C is greater than or equal to 190 J, the speed of the sea wave splashing corrosion resistance of the corrosion-resistant layer is lower than or equal to 0.006 mm/year, the thickness of the interface transition layer is smaller than or equal to 8 μm, and the interfacial shear strength is greater than or equal to 263 MPa.
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
93.
STEEL PLATE HAVING ZINC-BASED COATING LAYER AND EXCELLENT CORROSION RESISTANCE, HOT-STAMPED COMPONENT, AND PRODUCTION METHOD THEREFOR
Disclosed is a steel plate having a zinc-based coating layer, wherein the zinc-based coating layer has a zinc mass percentage content of ≥50%, an Al + Mg mass percentage content of <50%, and a thickness of 3-15 microns. Correspondingly, further disclosed is a hot-stamped component prepared from the steel plate having the zinc-based coating layer, a coating layer of the hot-stamped component comprising a surface layer and a ZnFe alloy layer; wherein the surface layer has a mass percentage content of zinc oxide of 5-50%, and a content of manganese oxide of less than 5%; and wherein the ZnFe alloy layer comprises a first ZnFe alloy phase having a mass percentage content of Fe not exceeding 25%, and a second ZnFe alloy phase having a mass percentage content of Fe of 50-70%, with the mass percentage content of Fe in the coating layer of the hot-stamped component gradually increasing from the surface to a steel substrate. Further disclosed are a method for manufacturing the steel plate having the zinc-based coating layer and a method for manufacturing the hot-stamped component. A hot-stamped component prepared using the method has excellent corrosion resistance.
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/14 - Alliages ferreux, p. ex. aciers alliés contenant du titane ou du zirconium
C22C 38/12 - Alliages ferreux, p. ex. aciers alliés contenant du tungstène, du tantale, du molybdène, du vanadium ou du niobium
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/34 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de silicium
C22C 38/38 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et plus de 1,5% en poids de manganèse
C22C 38/28 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du titane ou du zirconium
C22C 38/32 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du bore
C22C 38/26 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du niobium ou du tantale
C22C 38/24 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du vanadium
C22C 38/22 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du molybdène ou du tungstène
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/40 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel
C22C 38/18 - Alliages ferreux, p. ex. aciers alliés contenant du chrome
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C23C 2/28 - Post-traitement thermique, p. ex. par traitement dans un bain d'huile
B21D 22/02 - Estampage utilisant des dispositifs ou outils rigides
B21B 1/38 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des feuilles de longueur limitée, p. ex. des feuilles pliées, des feuilles superposées
94.
STEEL FOR HIGH-TEMPERATURE CARBURIZED GEAR SHAFT AND MANUFACTURING METHOD FOR STEEL
Disclosed are a steel for a high-temperature carburized gear shaft and a manufacturing method for the steel. The steel for the high-temperature carburized gear shaft comprises the following chemical components in percentage by mass: 0.17-0.22% of C, 0.05-0.35% of Si, 0.80-1.40% of Mn, 0.010-0.035% of S, 0.80-1.40% of Cr, 0.020-0.046% of Al, 0.006-0.020% of N, 0.002-0.030% of Nb, V≤0.02%, and Ti≤0.01%. Also disclosed is a manufacturing method for the steel for the high-temperature carburized gear shaft, comprising the steps of: smelting and casting; heating; forging or rolling; and finishing. By reasonably controlling chemical element compositions of the steel, the steel for the gear shaft in the present invention can maintain proper austenite grain size and stability at high temperature, maintains 5-8 grades of the austenite grain size before and after the high-temperature vacuum carburizing at 940-1050° C., can be effectively applied to high-end parts such as a gearbox for a vehicle or a speed reducer and a differential of a new energy vehicle, and has good application prospects and value.
Disclosed in the present invention is a low-coercivity wire rod, which contains Fe and inevitable impurities, and further contains the following chemical elements in percentages by mass: 0
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C21D 8/06 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de barres ou de fils
Disclosed in the present invention is high-resistance laminated steel, which comprises a substrate and a polyester film covering the surface of the substrate, wherein the surface roughness of the substrate is 0.15-0.35 μm, and the surface of the substrate is subjected to an oiling treatment; and the polyester film sequentially comprises a thermal coating layer, a middle layer and a barrier layer from top to bottom in the thickness direction, the thermal coating layer being composed of a modified copolyester, the middle layer being a mixture of a modified copolyester and a homopolyester, and the barrier layer being composed of a non-modified homopolyester. Correspondingly, further disclosed in the present invention is a manufacturing method for the high-resistance laminated steel.
Low-hardenability narrow-bandwidth Mn-Cr series round gear steel and a manufacturing method therefor. The round gear steel comprises the following components in percentages by mass: C: 0.15-0.18%, Si: 0.040-0.10%, Mn: 1.10-1.40%, P≤0.02%, S: 0.015-0.030%, Cr: 1.00-1.20%, Mo: 0.006-0.02%, Ni: 0.020-0.10%, Al: 0.020-0.050%, N: 0.007-0.015%, Al/N≥2.0, Nb: 0.004-0.03%, [O]≤0.0015%, and the balance of Fe and other inevitable impurities. The Mn-Cr series round gear steel satisfies J5=33-36 HRC, J9=25-28 HRC, J15=20-24 HRC, and the hardenability bandwidth before J9 is less than or equal to 3 HRC, such that the purpose of reducing heat treatment distortion is achieved; and the performance requirements of application scenarios such as new energy automobiles for a gear steel material can be met, such that the performance stability and safety of steel for new energy automobiles are improved.
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C21D 9/32 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour roues d'engrenage, roues hélicoïdales, ou équivalent
98.
ONLINE MODIFICATION METHOD FOR SURFACE SCALE OF HOT-ROLLED PRODUCT AND HOT-ROLLED PRODUCT
Disclosed in the present invention is an online modification method for the surface scale of a hot-rolled product, comprising steps: acquiring a hot-rolled substrate, wherein the surface of the hot-rolled substrate is provided with a hot-rolled scale; and coating the surface of the hot-rolled substrate with a treatment liquid containing resin particles, so as to enable the resin particles in the treatment liquid to enter the interior of the hot-rolled scale, and carrying out a self-crosslinking reaction on the interior and surface of the scale to form a film. Correspondingly, further disclosed in the present invention is a hot-rolled product prepared by means of the method. According to the present invention, a scale modified layer formed by compounding a layer of scale and a treatment liquid is formed on the surface of a hot-rolled product, so that effective protection is provided for the hot-rolled product in production and storage and transportation links, and scale shedding and strip steel surface corrosion can be prevented, thereby reducing adverse effects on user production and environment. Additionally, the scale modified layer and a treatment liquid layer almost have no obvious impact on the subsequent processes of cutting, welding, forming, coating and the like of the hot-rolled product.
B05D 7/14 - Procédés, autres que le flocage, spécialement adaptés pour appliquer des liquides ou d'autres matériaux fluides, à des surfaces particulières, ou pour appliquer des liquides ou d'autres matériaux fluides particuliers à du métal, p. ex. à des carrosseries de voiture
B05D 7/24 - Procédés, autres que le flocage, spécialement adaptés pour appliquer des liquides ou d'autres matériaux fluides, à des surfaces particulières, ou pour appliquer des liquides ou d'autres matériaux fluides particuliers pour appliquer des liquides ou d'autres matériaux fluides particuliers
B05D 5/00 - Procédés pour appliquer des liquides ou d'autres matériaux fluides aux surfaces pour obtenir des effets, finis ou des structures de surface particuliers
C09D 5/00 - Compositions de revêtement, p. ex. peintures, vernis ou vernis-laques, caractérisées par leur nature physique ou par les effets produitsApprêts en pâte
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
99.
FABRICATION METHOD FOR STEEL THIN-WALLED TAILOR-WELDED PART AND HOT-STAMPED PART PREPARED USING TAILORED-WELDED PART
A fabrication method for a steel thin-walled tailor-welded part and a hot-stamped part prepared by using the tailored welded part, the method comprising: using steel plates (10, 10, 20) to be welded which have an aluminum or aluminum alloy coating (12, 12′, 22, 22′) is used; by means of adjusting the composition of a shielding gas (50) and the composition of a welding wire (30) during a welding process, in combination with the control of the welding speed and wire-feeding speed, controlling the content of free aluminum in a weld seam to be 0.1 to 4.0 wt. %, which prevents the production of iron-aluminum intermetallic compounds in the weld seam during a tailor welding process while ensuring that an appropriate amount of ferrite which is distributed in a dispersed manner is produced in the weld seam. The weld seam structure of the obtained tailor-welded part is +1 to 15 vol. % martensite, +0 to 5 vol. % ferrite which is distributed in a dispersed manner, and the remainder is austenite. The weld seam structure of the hot-stamped part obtained via hot stamping is +0.1 to 10 vol. % martensite, and ferrite which is distributed in a dispersed manner.
Provided is a replacement system for a metallurgical temperature measuring and sampling probe (200). The replacement system is arranged at a temperature measuring gun (100) for measuring the temperature of a molten metal ladle, and comprises: a six-axis manipulator (1), a clamping tool (2) mounted at a tail end of the six-axis manipulator (1), a shelf (3) for storing the temperature measuring and sampling probe (200), a shearing machine (4), and a waste material box (5), wherein the temperature measuring gun (100), the shelf (3), the shearing machine (4), and the waste material box (5) are sequentially arranged in different directions within a rotation range of the six-axis manipulator (1), respectively; the waste material box (5) is arranged close to the shearing machine (4); the clamping tool (2) comprises a base (21), a clamping jaw (22) configured to clamp the temperature measuring and sampling probe (200) and a positioning jaw (23) which are arranged in parallel at a front end of the base (21), and a detection device (24) located between the clamping jaw (22) and the positioning jaw (23); a center line of a clamping space of the clamping jaw (22) and a center line of a positioning space of the positioning jaw (23) are located on the same axis, and a detection source of the detection device (24) passes through the axis. Instead of manually sleeving or pulling out the temperature measuring and sampling probe (200), the replacement system can reduce the labor intensity of operators, reduce the harm of the high-risk environment to health, and improve the working efficiency. Further disclosed is a replacement method of the replacement system for the metallurgical temperature measuring and sampling probe (200).