Disclosed are a recarburizer based on a solid iron-containing carbonaceous product derived from a process of pyrolyzing methane in a methane-containing feedstock in the presence of an iron-based catalyst and a method of producing the same, where a solid, iron-containing carbonaceous material formed during methane pyrolysis using the iron-based catalyst can be produced into a molded product having a predetermined shape without a costly purification process, and can thus be employed in high value-added applications such as recarburizers.
Cathodes and lithium secondary batteries including the cathodes are disclosed. In some implementations, a cathode may include a cathode current collector and a cathode active material layer disposed on the cathode current collector and including cathode active material particles such that the cathode active material layer satisfies a specific equation. The cathode active material particles may include lithium metal oxide particles that include nickel, and may have a mole fraction of cobalt of 0.02 or less with respect to all elements except for lithium and oxygen.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
An electrolyte for a lithium secondary battery according to the embodiments of the present disclosure includes a lithium salt, an organic solvent, a phosphate-based additive including a compound represented by the following Formula 1, and a halogenated benzene. A lithium secondary battery including the electrolyte and having improved flame retardancy and high-temperature stability of the electrolyte, as well as improved high-temperature lifespan characteristics and high-temperature storage characteristics may be provided.
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
4.
LUBRICANT COMPOSITION AND METHOD OF PREPARING AN ETHYLENE-BASED POLYMER USING THE SAME
A lubricant composition according to embodiments of the present disclosure may include a base oil, a friction-reducing agent which includes oleic acid, and an antiwear agent which includes a phosphoric acid compound. The friction-reducing agent may be included in the lubricant composition in a predetermined amount such as an amount of 0.02 wt % to 0.9 wt % based on a total weight of the lubricant composition.
C10M 129/40 - Acides carboxyliquesLeurs sels comportant des groupes carboxyle liés à des atomes de carbone acycliques ou cycloaliphatiques comportant au moins 8 atomes de carbone monocarboxyliques
C10M 141/10 - Compositions lubrifiantes caractérisées en ce que l'additif est un mélange d'au moins deux composés couverts par plus d'un des groupes principaux , chacun de ces composés étant un composé essentiel l'un d'eux, au moins, étant un composé organique contenant du phosphore
C10N 30/06 - OnctuositéRésistance du filmAnti-usureRésistance aux pressions extrêmes
C10N 40/30 - Lubrifiants pour machines frigorifiques
5.
ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, METHOD OF PREPARING THE SAME AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
An anode active material for a lithium secondary battery according to embodiments of the present disclosure includes composite particles which comprise a silicon-containing coating formed on a surface of carbon-based particles comprising porous, wherein the composite particles have a C/SiC peak intensity ratio of 1.0 to 4.5, which is measured through X-ray diffraction analysis after performing heat treatment on the composite particles at 900° C. to 1200° C. for 6 hours to 9 hours. The anode active material for a lithium secondary battery has improved capacity characteristics, output characteristics and lifespan characteristics.
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
C01B 32/324 - Préparation caractérisée par les matières de départ à partir de matières résiduelles, p. ex. pneumatiques ou liqueur noire de sulfite résiduaire
C01B 32/336 - Préparation caractérisée par des agents d’activation gazeux
C01B 33/029 - Préparation par décomposition ou réduction de composés de silicium gazeux ou vaporisés autres que la silice ou un matériau contenant de la silice par décomposition de monosilane
A method of preparing a nickel sulfate salt including preparing a fooding solution including a nickel salt and an aqueous sulfuric acid solution, subjecting the feeding solution to crystallization to produce a mixed liquid containing a nickel sulfate solid. The mixed liquid is then subjected to solid-liquid separation to collect the nickel sulfate salt. The filtrate produced from the solid-liquid separation is recycled together with purging.
An anode for a lithium secondary battery includes an anode current collector, and an anode active material layer formed on at least one surface of the anode current collector. The anode active material layer includes an anode active material and an anode binder. The anode active material includes a plurality of composite particles, each of the composite particles include a silicon-based active material particle, and a solid electrolyte interphase (SEI) layer formed on at least a portion of a surface of the silicon-based active material particle. A relative standard deviation of thickness values of the SEI layer of the composite particles, which are measured by an X-ray photoelectron spectroscopy (XPS) from 9 different composite particles among the plurality of composite particles after repeating 100 cycles of charging and discharging is 20% or less.
H01M 4/13 - Électrodes pour accumulateurs à électrolyte non aqueux, p. ex. pour accumulateurs au lithiumLeurs procédés de fabrication
H01M 4/133 - Électrodes à base de matériau carboné, p. ex. composés d'intercalation du graphite ou CFx
H01M 4/136 - Électrodes à base de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFy
H01M 4/1393 - Procédés de fabrication d’électrodes à base de matériau carboné, p. ex. composés au graphite d'intercalation ou CFx
H01M 4/1395 - Procédés de fabrication d’électrodes à base de métaux, de Si ou d'alliages
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/48 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
8.
COMPOSITE SEPARATOR AND SECONDARY BATTERY USING THE SAME
Composite separators and secondary batteries are disclosed. In an embodiment, a composite separator includes a porous substrate and an adhesive layer formed on an outermost layer of at least one surface of the porous separator. The adhesive layer includes first organic particles with a first average particle diameter (D50) and a first glass transition temperature and second organic particles with a second average particle diameter (D50) and a second glass transition temperature. The first glass transition temperature is lower than the second glass transition temperature, and the first average particle diameter is smaller than the second average particle diameter, and the first organic particles and the second organic particles satisfy a specific relation.
H01M 50/449 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches
H01M 50/489 - Séparateurs, membranes, diaphragmes ou éléments d’espacement dans les cellules caractérisés par leurs propriétés physiques, p. ex. degré de gonflement, hydrophilicité ou propriétés pour court-circuiter
Electrochemical devices are disclosed for various applications such as secondary batteries. In an embodiment, an electrochemical device includes a positive electrode, a negative electrode, a separator, and an electrolyte. The separator includes a porous membrane including a core-shell structure that includes formed on at least one polyolefin strand. The coating shell includes one or more of a hydrophilic inorganic material or a hydrophilic polymer. The electrolyte includes a nitrile-based compound. The electrochemical device exhibits high ionic conductivity by including the porous separator having wettability to the electrolyte.
H01M 50/454 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches comprenant une couche non fibreuse et une couche fibreuse superposées l’une sur l’autre
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
H01M 10/0568 - Matériaux liquides caracterisés par les solutés
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
Electrochemical devices are disclosed for various applications such as secondary batteries. In an embodiment, an electrochemical device includes a positive electrode, a negative electrode, a separator, and an electrolyte. The separator includes a porous separator including inorganic fibers or including inorganic particles and a polymer binder, and the electrolyte includes a nitrile-based compound. The electrochemical device exhibits high ionic conductivity by including the porous separator having wettability to the electrolyte.
H01M 50/446 - Matériau composite constitué d’un mélange de matériaux organiques et inorganiques
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
According to an embodiment, a method for producing a recycled lubricating base oil from waste lubricating oil is proposed, the method including a) first pretreating the waste lubricating oil, b) performing distillation to recover a fraction having a specific boiling point from the first pretreated waste lubricating oil, c) second pretreating the fraction recovered in the distillation operation, and d) hydroprocessing the second pretreated fraction in the presence of a catalyst. The recycled lubricating base oil produced by the above method has a viscosity index (VI) equal to or greater than 130. The proposed method makes it possible to produce a high-grade lubricating base oil using only waste lubricating oil as a feed, thereby reducing the cost of raw materials for production of lubricating base oil, and having the advantage of being environmentally friendly.
C10M 175/00 - Traitement des lubrifiants usés pour récupérer les produits utiles
C10G 67/14 - Traitement des huiles d'hydrocarbures, uniquement par au moins un procédé d'hydrotraitement et au moins un procédé de raffinage en l'absence d'hydrogène uniquement par plusieurs étapes en série comprenant au moins deux étapes de raffinage différentes, en l'absence d'hydrogène
C10N 30/00 - Propriétés physiques ou chimiques particulières améliorées par l'additif caractérisant la composition lubrifiante, p. ex. additifs multifonctionnels
12.
ZEOLITE WITH IMPROVED HYDRO-ISOMERIZATION ACTIVITY
According to an aspect of the present invention, provided is a zeolite catalyst having an MRE structure for hydro-isomerization. The zeolite catalyst has an adsorption volume ratio of lutidine to collidine measured by Fourier-transform infrared spectroscopy (FTIR) using lutidine and collidine as adsorbents of greater than 3 and less than or equal to 10. According to an aspect of the present invention, provided is a method of hydro-isomerization for a hydrocarbon feedstock, including subjecting the hydrocarbon feedstock to a hydro-isomerization reaction under conditions of a temperature of 200° C. to 500° C., a hydrogen pressure of 1 to 200 atmospheres, a liquid space velocity (LHSV) of 1.0 to 10.0 hr−1, and the hydrogen/feedstock ratio of 45 to 1780 Nm3/m3 in the presence of the zeolite catalyst.
C07C 5/22 - Préparation d'hydrocarbures à partir d'hydrocarbures contenant le même nombre d'atomes de carbone par isomérisation
B01J 29/70 - Zéolites aluminosilicates cristallinesLeurs composés isomorphes de types caractérisés par leur structure spécifique non prévus dans les groupes
B01J 35/50 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général caractérisés par leur forme ou leur configuration
Electrochemical devices are disclosed for various applications such as secondary batteries. In an embodiment, an electrochemical device including a positive electrode, a negative electrode, a separator, and an electrolyte. Specifically, the separator includes a porous polymer membrane including one or more of hydrophilic inorganic particles or a hydrophilic polymer that are blended in a porous substrate, and the electrolyte includes a nitrile-based compound. The electrochemical device exhibits high ionic conductivity by including the porous separator having wettability to the electrolyte.
Electrochemical devices are disclosed for various applications such as secondary batteries. In an embodiment, an electrochemical device includes a positive electrode, a negative electrode, a separator, and an electrolyte. The separator includes a porous hydrophilic polymer membrane, and the electrolyte includes a nitrile-based compound. The electrochemical device exhibits high ionic conductivity by including the porous separator having wettability to the electrolyte.
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
H01M 50/414 - Résines synthétiques, p. ex. thermoplastiques ou thermodurcissables
A composition for vehicle parts based on recycled polypropylene includes: 15 wt % to 55 wt % of recycled polypropylene containing a first filler, a high crystallinity polypropylene, an impact modifier, and a second filler. In particular, the weight ratio of the high crystallinity polypropylene to the impact modifier is in a range of 3:1 to 11:1, the combined weight of the first filler and the second filler is from 20 wt % to 25 wt % based on the total weight of the composition, and the recycled polypropylene has a melt index in a range of 5 g/10 min to 35 g/10 min measured at 230° C. and 21.2 N according to ISO 1133-1.
The present disclosure relates to a method and a system for producing hydrogen, wherein the method comprises the steps of: (S1) introducing a feed gas containing C1 to C4 hydrocarbons into a first reactor and performing dry reforming to produce a first mixed gas; (S2) introducing carbon dioxide and carbon into a second reactor and converting same into a second mixed gas containing carbon monoxide via a reverse Boudouard reaction; (S3) mixing the first mixed gas and the second mixed gas to prepare a third mixed gas; (S4) generating synthetic gas from the third mixed gas through a water gas conversion reaction; and (S5) separating carbon dioxide from the synthetic gas to obtain hydrogen, wherein the carbon dioxide separated in step (S5) is recycled to the second reactor.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/44 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs avec des particules solides mobiles utilisant la technique du lit fluidisé
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
C01B 3/40 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs caractérisée par le catalyseur
17.
Method for Predicting Characteristic of Polymer Composite Materials Based on Material and Device Thereof
A method for predicting characteristics of a polymer composite material and a device thereof may be provided, wherein the method includes inputting a recipe including two or more materials containing at least one polymer and a mixing ratio for each of the two or more materials; predicting properties of the polymer composite material according to the recipe based on a recipe and property prediction model; and outputting the properties of the polymer composite material.
According to the embodiments of the present disclosure, an ammonia decomposition catalyst may be prepared by performing heat treatment on alumina, a lanthanum compound and a cerium compound in a reducing gas atmosphere to form a composite oxide on an alumina support, and supporting an active metal including ruthenium on the composite oxide.
B01J 35/70 - Catalyseurs caractérisés par leur forme ou leurs propriétés physiques, en général caractérisés par leurs propriétés cristallines, p. ex. semi-cristallines
A method for predicting recipes of a polymer composite material and a device thereof may be provided, wherein the method includes: obtaining at least one property for a target polymer composite material; predicting a recipe including at least two materials including at least one polymer for synthesizing the target polymer composite material and a mixing ratio for each of the at least two materials based on at least one property and recipe prediction model; and outputting the recipe.
A cathode active material for a lithium secondary battery according to an embodiment of the present disclosures a plurality of composite particles, each of which comprises a lithium metal phosphate particle, and a carbon coating formed on at least a portion of a surface of the lithium metal phosphate particle. A standard deviation of thickness values of the carbon coating measured by an X-ray photoelectron spectroscopy (XPS) for five different composite particles of the plurality of composite particles is 15 nm or less.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
Ammonia synthesis system including an ammonia synthesis reactor; two or more catalyst beds included in the ammonia synthesis reactor; one or more backflow prevention plates disposed, downstream from each of the catalyst beds except not below a lowest catalyst bed of the two or more catalyst beds, and preventing a gas backflow; distribution devices disposed upstream from each of the two or more catalyst beds and distributing gas to the catalyst bed;
Ammonia synthesis system including an ammonia synthesis reactor; two or more catalyst beds included in the ammonia synthesis reactor; one or more backflow prevention plates disposed, downstream from each of the catalyst beds except not below a lowest catalyst bed of the two or more catalyst beds, and preventing a gas backflow; distribution devices disposed upstream from each of the two or more catalyst beds and distributing gas to the catalyst bed;
hydrogen gas supply lines arranged to supply hydrogen gas to each of the distribution devices; and at least one microwave heating device for emitting microwaves to each of the two or more catalyst beds, and further including a nitrogen gas supply line disposed to supply nitrogen gas to a top-most distribution device of the distribution devices.
A composite laminate according to embodiments of the present disclosure includes a unidirectional tape layer including a thermoplastic resin and continuous fibers, and a first metal layer formed on the unidirectional tape layer. A content of the continuous fibers is 40 wt % or more based on the total weight of the unidirectional tape layer. The flame resistance and lightness of the composite laminate may be improved.
B32B 15/085 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique comprenant des polyoléfines
B32B 5/08 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments les fibres ou filaments d'une couche étant disposés d'une certaine manière ou étant faits de substances différentes
B32B 15/14 - Produits stratifiés composés essentiellement de métal adjacent à une couche fibreuse ou filamenteuse
B32B 15/18 - Produits stratifiés composés essentiellement de métal comportant du fer ou de l'acier
B32B 15/20 - Produits stratifiés composés essentiellement de métal comportant de l'aluminium ou du cuivre
In a method of producing an ethylene-based copolymer according to the embodiments of the present disclosure, a monomer solution including a comonomer and monomethyl ether hydroquinone is discharged into a reactor through a first discharge unit. An ethylene monomer reacts with the comonomer by injecting the ethylene monomer into the reactor. A content of the monomethyl ether hydroquinone in the monomer solution is adjusted to be 210 ppm or more based on a total weight of the comonomer.
A poly(lactic-co-glycolic acid)-containing resin composition according to exemplary embodiments may include a poly(lactic-co-glycolic acid) (PLGA) polymer, a zinc-containing ionomer (Zn ionomer) and an ethylene terpolymer. The PLGA polymer may be 65 wt % or more and less than 100 wt % based on a total weight of the poly(lactic-co-glycolic acid)-containing resin composition.
The present invention relates to a method and a system for producing aviation fuel. This method comprises the steps of: preparing FT synthetic oil as a feed; introducing the feed into a first distillation column for separating the feed into a plurality of fractions including an aviation fuel boiling point range fraction and an aviation fuel boiling point range exceeding fraction; introducing the aviation fuel boiling point range exceeding fraction into an HCK reactor to produce an HCK reaction product; recycling at least a portion of the HCK reaction product into the first distillation column; introducing the aviation fuel boiling point range fraction into an HDI reactor to produce an HDI reaction product; and recovering aviation fuel from the HDI reaction product.
C10G 65/10 - Traitement des huiles d'hydrocarbures, uniquement par plusieurs procédés d'hydrotraitement uniquement par plusieurs étapes en série ne comprenant que des étapes de craquage
C10G 45/58 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales
C10G 7/00 - Distillation des huiles d'hydrocarbures
26.
LUBRICANT COMPOSITION FOR PREPARING ETHYLENE-BASED POLYMER AND METHOD OF PREPARING ETHYLENE-BASED POLYMER USING THE SAME
A lubricant composition for preparing an ethylene copolymer according to embodiments of the present disclosure includes a base oil including a white mineral oil, and an oxidation stabilizer represented by Formula 1. The oxidation stabilizer may have a solubility of 0.1 g/100 g or more in the white mineral oil at 25° C.
Provided are an ammonia synthesis system and its operation method, the system including an ammonia synthesis reactor; two or more catalyst beds included in the ammonia synthesis reactor; a backflow prevention plate disposed downstream from each of the catalyst beds except for the catalyst bed disposed at the lowest of the two or more catalyst beds for preventing a backflow of mixed gas; a distribution device disposed upstream from each of the two or more catalyst beds for distributing the mixed gas to the catalyst bed; mixed gas supply lines arranged to supply the mixed gas to each distribution device; and a mixed gas heat exchanger for supplying heat to the mixed gas by heat-exchanging the mixed gas fed through the mixed gas supply line with a heat storage medium.
An electrode manufacturing system is disclosed. In some implementations, the electrode manufacturing system may include a coating station configured to coat a coating material on a coating substrate traveling along a path, and a drying station configured to dry the coating material. The drying station may include at least one linear infrared lamp configured to irradiate the coating material with infrared light, and opposite ends of the infrared lamp may be disposed to be vertically aligned with opposite edges of the coating material.
F26B 3/30 - Procédés de séchage d'un matériau solide ou d'objets impliquant l'utilisation de chaleur par radiation, p. ex. du soleil à l'aide d'éléments émettant des rayons infrarouges
F26B 3/04 - Procédés de séchage d'un matériau solide ou d'objets impliquant l'utilisation de chaleur par convection, c.-à-d. la chaleur étant transférée d'une source de chaleur au matériau ou aux objets à sécher par un gaz ou par une vapeur, p. ex. l'air le gaz ou la vapeur circulant sur ou autour du matériau ou des objets à sécher
F26B 13/00 - Machines ou appareils à mouvement progressif pour le séchage des tissus, fibres, fils ou autres matériaux en grandes longueurs
Provided is a refining apparatus of a waste plastic pyrolysis oil including a reactor where a waste plastic pyrolysis oil is introduced and hydrotreated, wherein the reactor includes Area 1 including a hydrotreating catalyst having a Mo content of 1 to 15 wt % with respect to the total weight; and Area 2 including a hydrotreating catalyst having a Mo content of 5 to 40 wt % and a Ni or Co content of 4 to 50 wt % with respect to the total weight, and the waste plastic pyrolysis oil is refined by passing through Area 1 and Area 2 sequentially.
C10G 49/04 - Traitement des huiles d'hydrocarbures, en présence d'hydrogène ou de composés donneurs d'hydrogène, non prévu dans un seul des groupes , , , ou caractérisé par le catalyseur utilisé contenant du nickel, du cobalt, du chrome, du molybdène ou du tungstène, ou leurs composés
B01J 8/04 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes le fluide passant successivement à travers plusieurs lits
An aqueous dispersion composition according to embodiments of the present disclosure includes a first ethylene-based copolymer having a melting temperature of 84° C. or higher and a second ethylene-based copolymer having a melting temperature of less than 80° C., wherein a content of the second ethylene-based copolymer is 70 wt % to 90 wt % based on a total weight of the first ethylene-based copolymer and the second ethylene-based copolymer, and a total content of the first ethylene-based copolymer and the second ethylene-based copolymer is 50 wt % or more based on a total solid content weight of the aqueous dispersion composition.
C08L 23/0869 - Copolymères de l'éthylène avec des hydrocarbures insaturés contenant des atomes autres que le carbone ou l’hydrogène avec des acides insaturés, p.ex. acide [méth]acryliqueCopolymères de l'éthylène avec des hydrocarbures insaturés contenant des atomes autres que le carbone ou l’hydrogène avec des esters insaturés, p. ex. esters de l’acide [méth]acrylique
Disclosed is a method for producing hydrocarbons, the method comprising the steps of: S1) thermally decomposing a mixed waste to produce a first mixed gas; S2) steam-reforming the first mixed gas, removed of impurities, in a first fluidized bed reactor to produce a second mixed gas; S3) separating the second mixed gas into a first stream containing carbon dioxide and a second stream containing hydrogen and carbon monoxide; S4) introducing the first stream, separated in step S3), into a second fluidized bed reactor and converting the first stream into carbon monoxide through a reverse Boudouard reaction; S5) mixing the second stream and the carbon monoxide, converted in step S4), to produce a third mixed gas, and producing a synthesis gas (Syngas) through a water-gas conversion reaction using the third mixed gas; and S6) producing hydrocarbons from the synthetic gas through a catalytic reaction.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C07C 1/20 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir de composés organiques ne renfermant que des atomes d'oxygène en tant qu'hétéro-atomes
C07C 29/151 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction exclusivement des oxydes de carbone avec de l'hydrogène ou des gaz contenant de l'hydrogène
The present disclosure provides a method for preparing hydrocarbons, comprising the steps of: (S1) heat treating organic waste so as to generate a first mixed gas; (S2) dry reforming the first mixed gas in a first fluidized bed reactor so as to generate a second mixed gas; (S3) separating the second mixed gas into a first stream that comprises carbon dioxide and a second stream that comprises hydrogen and carbon monoxide; (S4) introducing the first stream, which was separated out in step (S3), to a second fluidized bed reactor and converting same into carbon monoxide through a reverse Boudouard reaction; (S5) mixing the second stream and the carbon monoxide, which was converted in step (S4), so as to prepare a third mixed gas; (S6) generating syngas from the third mixed gas through a water-gas shift reaction; and (S7) preparing hydrocarbons from the syngas through a catalytic reaction.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C07C 1/20 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir de composés organiques ne renfermant que des atomes d'oxygène en tant qu'hétéro-atomes
C07C 29/151 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction exclusivement des oxydes de carbone avec de l'hydrogène ou des gaz contenant de l'hydrogène
A ammonia synthesis system, an operation method thereof, and an ammonia synthesis method are provided. The system includes a compressor for compressing mixed gas; a feed supply line for supplying the mixed gas to the compressor; an ammonia synthesis reactor for synthesizing ammonia by feeding the mixed gas compressed by the compressor into the reactor; an ammonia separation device for separating syngas produced by the ammonia synthesis reactor into ammonia and a regeneration stream; a feed recirculation line for recirculating the regeneration stream to the feed supply line; and a buffer tank installed in the feed recirculation line.
An anode active material for a lithium secondary battery includes a silicon-based active material particle doped with a metal element and including pores. A porosity of the silicon-based active material particle is in a range from 0.4% to 3.5%. A lithium secondary battery includes the anode and a cathode facing the anode.
Proposed is a pump failure prediction apparatus which includes at least one processor, a storage, which is communicably connected with the processor and stores a program code which operates in the processor, and a communicator, which is communicably connected with the processor, wherein the program code includes a data collection module, and an abnormality detection module which detects three abnormalities. The first abnormality appears before failure occurrence by inputting the real-time data into a first model which has performed supervised learning of history data. The second abnormality appears outside of a normal operation range of the pump by inputting the real-time data to a second, which has performed unsupervised learning of normal operation data. The third abnormality appears outside an initial normal operation range of the pump by inputting the real-time data to a third model, which has performed unsupervised learning of initial operation data.
An ammonia synthesis system, an operation method thereof, and an ammonia synthesis method are provided. The system includes a compressor for compressing mixed gas; a feed supply line for supplying the mixed gas to the compressor; an ammonia synthesis reactor for synthesizing ammonia by feeding the mixed gas compressed by the compressor into the reactor; an air separation unit for separating nitrogen from air; a first cooler for cooling syngas including ammonia discharged from the ammonia synthesis reactor; and a second cooler for heat-exchanging gaseous nitrogen separated by the air separation unit with the syngas cooled by the first cooler, wherein gaseous nitrogen heat-exchanged by the second cooler is supplied to the feed supply line.
An ammonia synthesis system, an operation method thereof, and an ammonia synthesis method are provided. The system includes a compressor for compressing mixed gas; a feed supply line for supplying the mixed gas to the compressor; an ammonia synthesis reactor for synthesizing ammonia by feeding the mixed gas compressed by the compressor into the reactor; a first ammonia separation device for separating syngas produced by the ammonia synthesis reactor into a sweep gas including nitrogen and hydrogen and into an ammonia rich gas; a second ammonia separation device for separating the ammonia rich gas into the ammonia and a regeneration stream including the nitrogen and the hydrogen; a feed recirculation line for recirculating the regeneration stream to the feed supply line; and a sweep gas recirculation line for recirculating the sweep gas to the ammonia synthesis reactor.
The embodiments of this disclosure are related to a water treatment system comprising a flotation tank, a shell-tube inlet conduit connected to the flotation tank and comprising a shell configured to supply a gas and at least one tube configured to supply untreated water, wherein each of the shell and the tube has a first part exposed to an outside of the flotation tank and a second part extending into the flotation tank, a microbubble forming means positioned on or adjacent to the second part of the shell, and a treated water outlet connected to the flotation tank and configured to allow treated water separated from solids in the flotation tank to be discharged therethrough.
C02F 1/24 - Traitement de l'eau, des eaux résiduaires ou des eaux d'égout par flottation
B01F 23/23 - Mélange de gaz avec des liquides en introduisant des gaz dans des milieux liquides, p. ex. pour produire des liquides aérés
B01F 23/231 - Mélange de gaz avec des liquides en introduisant des gaz dans des milieux liquides, p. ex. pour produire des liquides aérés par barbotage
B01F 101/00 - Mélange caractérisé par la nature des matières mélangées ou par le domaine d'application
39.
POLYOLEFIN MICROPOROUS MEMBRANE, METHOD FOR MANUFACTURING THE MICROPOROUS MEMBRANE, AND SEPARATOR INCLUDING THE MICROPOROUS MEMBRANE
A polyolefin microporous membrane, a method for manufacturing the same, and a separator including the microporous membrane are provided. The polyolefin microporous membrane including 60 wt % to 80 wt % of a polypropylene having a viscosity average molecular weight of 1×106 g/mol to 3×106 g/mol and 20 wt % to 40 wt % of a polyethylene having a weight average molecular weight of 1×105 g/mol to 10×105 g/mol is provided, wherein the polyolefin microporous membrane has a puncture strength of 0.25 N/μm or more, a gas permeability of 1.0×10−5 Darcy or more, a porosity of 30% to 70%, an average pore size of 20 nm to 40 nm, a shutdown temperature of 150° C. or lower, and a meltdown temperature of 180° C. or higher.
H01M 50/489 - Séparateurs, membranes, diaphragmes ou éléments d’espacement dans les cellules caractérisés par leurs propriétés physiques, p. ex. degré de gonflement, hydrophilicité ou propriétés pour court-circuiter
B29C 48/00 - Moulage par extrusion, c.-à-d. en exprimant la matière à mouler dans une matrice ou une filière qui lui donne la forme désiréeAppareils à cet effet
B29C 48/08 - Moulage par extrusion, c.-à-d. en exprimant la matière à mouler dans une matrice ou une filière qui lui donne la forme désiréeAppareils à cet effet caractérisées par la forme à l’extrusion de la matière extrudée plate, p. ex. panneaux flexible, p. ex. pellicules
B29C 48/91 - Chauffage, p. ex. pour la réticulation
B29K 23/00 - Utilisation de polyalcènes comme matière de moulage
B29K 105/00 - Présentation, forme ou état de la matière moulée
B29K 105/04 - Présentation, forme ou état de la matière moulée cellulaire ou poreuse
A cathode active material for a lithium secondary battery has a structure of a lithium transition metal oxide. A ratio of a crystallite size of a (003) plane to a crystallite size of a (110) plane measured by an X-ray diffraction (XRD) analysis is in a range from 0.7 to 2.0, and a ratio of the crystallite size of the (003) plane to a crystallite size of a (104) plane measured by the XRD analysis is in a range from 0.7 to 2.0. A cathode for a lithium secondary battery and a lithium secondary battery include the cathode active material for a lithium secondary battery.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
C01G 53/50 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse du type (MnO2)n-, p. ex. Li(NixMn1-x)O2 ou Li(MyNixMn1-x-y)O2
C01G 53/504 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse du type (MnO2)n-, p. ex. Li(NixMn1-x)O2 ou Li(MyNixMn1-x-y)O2 contenant du lithium et du cobalt avec le rapport molaire du nickel par rapport à tous les métaux autres que les métaux alcalins supérieur ou égal à 0,5, p. ex. Li(MzNixCoyMn1-x-y-z)O2 avec x ≥ 0,5
C01G 53/506 - Oxydes complexes contenant du nickel et au moins un autre élément métallique contenant des métaux alcalins, p. ex. LiNiO2 contenant du manganèse du type (MnO2)n-, p. ex. Li(NixMn1-x)O2 ou Li(MyNixMn1-x-y)O2 contenant du lithium et du cobalt avec le rapport molaire du nickel par rapport à tous les métaux autres que les métaux alcalins supérieur ou égal à 0,5, p. ex. Li(MzNixCoyMn1-x-y-z)O2 avec x ≥ 0,5 avec le rapport molaire du nickel par rapport à tous les métaux autres que les métaux alcalins supérieur ou égal à 0,8, p. ex. Li(MzNixCoyMn1-x-y-z)O2 avec x ≥ 0,8
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/131 - Électrodes à base d'oxydes ou d'hydroxydes mixtes, ou de mélanges d'oxydes ou d'hydroxydes, p. ex. LiCoOx
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
41.
ANODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
An anode for a lithium secondary battery according to embodiments of the present disclosure includes an anode current collector, a first anode active material layer formed on at least one surface of the anode current collector and including first pores, a second anode active material layer formed on the first anode active material layer and including artificial graphite and second pores, wherein a difference between the first pore aspect ratio and the second pore aspect ratio is 0.5 to 3.0.
A method and a system for recycling a metal from a lithium secondary battery are provided. In the method for recycling a metal from a lithium secondary battery, a cathode active material mixture containing lithium is prepared. A lithium precursor is produced by reducing the cathode active material mixture. A lithium precursor aqueous solution is formed by dissolving the lithium precursor in water. The lithium precursor aqueous solution is passed through an aluminum adsorption resin column to adsorb aluminum to the aluminum adsorption resin column. A first treatment liquid including distilled water is injected into the aluminum adsorption resin column at a flow rate of 100 L/hr to 1,200 L/hr to obtain a regenerated aluminum adsorption resin column from which aluminum is desorbed.
C22B 3/24 - Traitement ou purification de solutions, p. ex. de solutions obtenues par lixiviation par des procédés physiques, p. ex. par filtration, par des moyens magnétiques par adsorption sur des substances solides, p. ex. par extraction avec des résines solides
A negative electrode for a lithium secondary battery, according to embodiments of the present disclosure, comprises: a negative electrode current collector; a first negative electrode active material layer formed on at least one surface of the negative electrode current collector; and a second negative electrode active material layer which is formed on the first negative electrode active material layer and includes artificial graphite, wherein the first Raman peak area ratio of the first negative electrode active material layer is 1 to 2 and the second Raman peak area ratio of the second negative electrode active material layer is 0.2 to 0.5.
Embodiments of the present disclosure provide a system, apparatus, and method for providing a recycling service for a plastic using a blockchain. The system includes a first electronic device of a collection company for collecting recycled materials from waste products; a second electronic device of a recycling company for compounding the recycled material with at least one additive to prepare a composite material; and a third electronic device of a production company for producing a product using the composite material.
Proposed is a method of analyzing microplastic particles in a water system. The method includes providing raw water containing microplastic particles, freezing and thawing the raw water at least once to generate microplastic aggregates in the raw water, recovering the microplastic aggregates, and analyzing the recovered microplastic aggregates. According to the method, the microplastic particles are precipitated in the water system without the use of an additional coagulant, whereby the effect of coagulants on the subsequently recovered microplastic aggregates may be ruled out. In addition, the process configuration is simple because the aggregates can be separated from the supernatant without using any additional treatment process.
A method for manufacturing carbon nanotubes according to embodiments of the present disclosure includes injecting a carbon source, a metal catalyst, a cocatalyst and a transport gas into a reactor, and heating the reactor to manufacture carbon nanotubes. A ratio of a molar flow rate of the carbon source to a molar flow rate of the metal catalyst is 350 to 1,300.
A composite separator including an adhesive layer and a secondary battery including the same. In the composite separator, the adhesive layer contains a particulate organic binder having a glass transition temperature of 60 to 80° C., and when the adhesive layers are brought into contact with each other, pressurized at a temperature of 50° C. and a pressure of 1.7 MPa for 2 hours, and then peeled at a speed of 300 mm/min and an angle of 180°, blocking does not occur between the adhesive layers, and an adhesive strength to a positive electrode is 5 gf/cm or more.
Provided is an ammonia synthesis system including an ammonia synthesis reactor; two or more catalyst beds included in the ammonia synthesis reactor; a backflow prevention plate disposed downstream from each of the catalyst beds except for the catalyst bed disposed at the lowest of the two or more catalyst beds for preventing a backflow of mixed gas; a distribution device disposed upstream from each of the two or more catalyst beds for distributing the mixed gas to the catalyst bed; mixed gas supply lines arranged to supply the mixed gas to each distribution device; and a microwave heating device for emitting microwaves to each of the two or more catalyst beds, wherein the catalyst bed contains a microwave reactive catalyst mixture including a catalyst and a carbon body.
B01J 8/04 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes le fluide passant successivement à travers plusieurs lits
Provided is an ammonia synthesis system including an ammonia synthesis reactor; two or more catalyst beds included in the ammonia synthesis reactor; a backflow prevention plate disposed downstream from each of the catalyst beds except for the catalyst bed disposed at the lowest of the two or more catalyst beds and preventing a backflow of mixed gas; a distribution device disposed upstream from each of the two or more catalyst beds and distributing the mixed gas to the catalyst bed; mixed gas supply lines arranged to supply the mixed gas to each distribution device; and a microwave heating device for emitting microwaves to each of the two or more catalyst beds, wherein the catalyst bed includes a metal nitride catalyst.
B01J 8/04 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes le fluide passant successivement à travers plusieurs lits
A lithium secondary battery includes a cathode including a cathode active material, the cathode active material including a lithium metal oxide that has a form of a secondary particle in which a plurality of primary particles are aggregated and is doped with a doping element, and an anode facing the cathode and including an anode active material, the anode active material including a composite active material of a silicon-containing material and a first carbon-based material, and a second carbon-based active material. An aspect ratio of the primary particles is in a range from 1.4 to 7.0, and a content of the composite active material based on a total weight of the anode active material is in a range from 1 wt % to 50 wt %.
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
The present invention relates to a curtain-type fire response system for an electric vehicle and, more specifically, to a curtain-type fire response system for an electric vehicle, the system comprising: a fire checking unit for checking if a fire is occurring or predicted in an electric vehicle parked in a parking space; fire response curtain units installed above the parking space and configured to, when in operation, lower flame retardant curtains such that at least one portion of at least one side of the parking space is open and at least one of the other sides is blocked; and a fire response control unit which, when a fire is detected or predicted in the electric vehicle parked in the parking space by the fire checking unit, operates the fire response curtain units to prevent the spread of the fire ignited from the electric vehicle.
A62C 3/07 - Prévention, limitation ou extinction des incendies spécialement adaptées pour des objets ou des endroits particuliers dans les véhicules, p. ex. les véhicules routiers
E04H 6/42 - Dispositifs ou dispositions particulières aux garages, non couverts ailleurs, p. ex. dispositifs de blocage, dispositifs de sécurité
G08B 17/12 - Déclenchement par la présence de rayonnement ou de particules, p. ex. de rayonnement infrarouge ou d'ions
G08B 3/10 - Systèmes de signalisation audibleSystèmes d'appel sonore de personnes utilisant une transmission électriqueSystèmes de signalisation audibleSystèmes d'appel sonore de personnes utilisant une transmission électromagnétique
G08B 25/14 - Dispositions centrales pour la réception ou l'indication d'une alarme
The present disclosure provides a method for producing hydrocarbon, comprising the steps of: (S1) generating a first mixed gas by heat-treating organic waste; (S2) generating a second mixed gas by steam-reforming the first mixed gas in a first fixed-bed reactor; (S3) separating the second mixed gas into a first stream including carbon dioxide and a second stream including hydrogen and carbon monoxide; (S4) introducing the first stream obtained by separation in step (S3) into a second fixed-bed reactor and converting the first stream into carbon monoxide through a reverse Boudouard reaction; (S5) producing a third mixed gas by mixing the second stream and the carbon monoxide obtained by conversion in step (S4); (S6) generating a synthetic gas from the third mixed gas through a water gas conversion reaction; and (S7) producing hydrocarbon from the synthetic gas through a catalytic reaction.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C07C 1/20 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir de composés organiques ne renfermant que des atomes d'oxygène en tant qu'hétéro-atomes
C07C 29/151 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction exclusivement des oxydes de carbone avec de l'hydrogène ou des gaz contenant de l'hydrogène
The present disclosure relates to a method for producing light olefins and, more particularly, to a method for producing light olefins which can increase the production yield of light olefins and minimize the generation of carbon dioxide. The method for producing light olefins according to the present disclosure comprises the steps of: S1) pyrolyzing waste plastics to produce pyrolysis oil and pyrolysis gas; S2) separating the pyrolysis oil and pyrolysis gas; S3) producing a first gas from which impurities are removed by purifying the separated pyrolysis gas; S4) steam-reforming the first gas to manufacture a second gas; S5) producing a first synthesis gas from the second gas; S6) producing a second synthesis gas by converting carbon monoxide in the synthesis gas into hydrogen and carbon dioxide through a water gas shift reaction; S7) preparing a first mixed solution containing methanol by converting the second synthesis gas into methanol through a hydrogenation reaction; and (S8) preparing a second mixed solution containing light olefins through an olefin conversion reaction of methanol contained in the first mixed solution, and recovering the light olefins from the second mixed solution.
C07C 1/20 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir de composés organiques ne renfermant que des atomes d'oxygène en tant qu'hétéro-atomes
C07C 29/151 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction exclusivement des oxydes de carbone avec de l'hydrogène ou des gaz contenant de l'hydrogène
C01B 3/40 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs caractérisée par le catalyseur
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C10J 3/84 - Moyens d'extraction des gaz avec moyens de dépoussiérage ou de dégoudronnage du gaz
C10G 1/10 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon à partir de caoutchouc ou de déchets de caoutchouc
The present disclosure provides a method for producing hydrocarbon, comprising the steps of: (S1) generating a first mixed gas by heat-treating organic waste; (S2) generating a second mixed gas by dry-reforming the first mixed gas in a first fixed-bed reactor; (S3) separating the second mixed gas into a first stream including carbon dioxide and a second stream including hydrogen and carbon monoxide; (S4) introducing the first stream obtained by separation in step (S3) into a second fixed-bed reactor and converting the first stream into carbon monoxide through a reverse Boudouard reaction; (S5) producing a third mixed gas by mixing the second stream and the carbon monoxide obtained by conversion in step (S4); (S6) generating a synthetic gas from the third mixed gas through a water gas conversion reaction; and (S7) producing hydrocarbon from the synthetic gas through a catalytic reaction.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C07C 1/20 - Préparation d'hydrocarbures à partir d'un ou plusieurs composés, aucun d'eux n'étant un hydrocarbure à partir de composés organiques ne renfermant que des atomes d'oxygène en tant qu'hétéro-atomes
C07C 29/151 - Préparation de composés comportant des groupes hydroxyle ou O-métal liés à un atome de carbone ne faisant pas partie d'un cycle aromatique à six chaînons par réduction exclusivement des oxydes de carbone avec de l'hydrogène ou des gaz contenant de l'hydrogène
A cathode for a lithium secondary battery and a lithium secondary battery including the same are provided. The cathode includes a cathode active material layer including a cathode active material and a conductive material, and having a Raman R1 value represented by A1D/A1G and measured on a surface of the cathode active material layer in a range from 1.5 and 4.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
A method for recovering active metals of a lithium secondary battery may supply a cathode active material mixture to a fluidized bed reactor including a reactor body. A reaction gas may be introduced from a lower portion of the fluidized bed reactor to form a fluidized bed including a preliminary precursor mixture within the reactor body. The fluidized bed portion that has entered the upper portion of the fluidized bed reactor may be cooled to descend it into the reactor body, and then a lithium precursor may be recovered from the preliminary precursor mixture. Accordingly, a terminal velocity of the preliminary precursor is reduced, such that even if the particle size of the preliminary precursor is fine, loss due to scattering may be prevented.
C22B 5/14 - Procédés généraux de réduction appliqués aux métaux par voie sèche par des gaz pour des matières fluidisées
B01J 8/18 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés les particules étant fluidisées
Embodiments of the present disclosure relate to a separator having pore diameters D10, D50, and D90 satisfies all of 180 nm≤D10≤350 nm, 380 nm≤D50≤650 nm, and 670 nm≤D90≤1000 nm. The separator according to an embodiment has improved heat resistance by satisfying the predetermined pore diameter ranges, and a battery comprising the separator may have improved performance.
Provided are a separator having significantly improved withstand voltage characteristics and a lithium secondary battery including the same. The separator includes a porous substrate and an inorganic particle layer including a binder and inorganic particles formed on at least one surface of the porous substrate, wherein the separator has a ratio of a breakdown voltage (kV) of the separator to an overall average thickness (μm) of the separator of 0.15 kV/μm or more, has a peak in a range of 1070 cm−1 to 1082 cm−1 in a spectrum by Fourier transform infrared spectroscopy (FT-IR), has heat shrinkage rates in the machine direction and in the transverse direction of 5% or less as measured after being allowed to stand at 150° C. for 60 minutes, and has ΔGurley permeability of 100 sec/100 cc or less.
H01M 50/489 - Séparateurs, membranes, diaphragmes ou éléments d’espacement dans les cellules caractérisés par leurs propriétés physiques, p. ex. degré de gonflement, hydrophilicité ou propriétés pour court-circuiter
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 50/414 - Résines synthétiques, p. ex. thermoplastiques ou thermodurcissables
H01M 50/451 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches comprenant des couches de matériau organique uniquement et des couches comprenant un matériau inorganique
59.
WATER-TANK-TYPE FIRE RESPONSE SYSTEM FOR ELECTRIC VEHICLE
The present invention relates to a water-tank-type fire response system for an electric vehicle and, more specifically, to a water-tank-type fire response system for an electric vehicle, the system comprising: a fire checking unit for checking if a fire is occurring or predicted in an electric vehicle parked in a parking space; a fire response water tank unit installed to be placed on the ground along the edges of the parking space and configured to, when in operation, be elevated by a predetermined height from the bottom of the parking space so as to surround the electric vehicle parked in the parking space, and supply and store firewater therein; and a fire response control unit for operating the fire response water tank unit to flood the battery of the electric vehicle when a fire is detected or predicted in the electric vehicle parked in the parking space by the fire checking unit.
A62C 3/07 - Prévention, limitation ou extinction des incendies spécialement adaptées pour des objets ou des endroits particuliers dans les véhicules, p. ex. les véhicules routiers
E04H 6/42 - Dispositifs ou dispositions particulières aux garages, non couverts ailleurs, p. ex. dispositifs de blocage, dispositifs de sécurité
G08B 3/10 - Systèmes de signalisation audibleSystèmes d'appel sonore de personnes utilisant une transmission électriqueSystèmes de signalisation audibleSystèmes d'appel sonore de personnes utilisant une transmission électromagnétique
G08B 25/14 - Dispositions centrales pour la réception ou l'indication d'une alarme
A62C 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
G09F 19/22 - Moyens de publicité ou de présentation sur des routes, des murs ou des surfaces similaires, p. ex. éclairés
60.
COVER-TYPE FIRE RESPONSE SYSTEM FOR ELECTRIC VEHICLE
The present invention relates to a cover-type fire response system for an electric vehicle and, more specifically, to a cover-type fire response system for an electric vehicle, the system comprising: a fire checking unit for checking if a fire is occurring or predicted in an electric vehicle parked in a parking space; a fire response cover unit installed on one side of the parking space and configured to, when in operation, be deployed along the parking space so as to surround the electric vehicle parked in the parking space; and a fire response control unit which, when a fire is detected or predicted in the electric vehicle parked in the parking space by the fire checking unit, operates the fire response cover unit to prevent the spread of the fire ignited from the electric vehicle.
A62C 3/07 - Prévention, limitation ou extinction des incendies spécialement adaptées pour des objets ou des endroits particuliers dans les véhicules, p. ex. les véhicules routiers
A62C 3/16 - Prévention, limitation ou extinction des incendies spécialement adaptées pour des objets ou des endroits particuliers dans les installations électriques, p. ex. chemins de câbles
A62C 2/24 - Mécanismes de commande ou d'actionnement
E04H 6/42 - Dispositifs ou dispositions particulières aux garages, non couverts ailleurs, p. ex. dispositifs de blocage, dispositifs de sécurité
G08B 25/10 - Systèmes d'alarme dans lesquels l'emplacement du lieu où existe la condition déclenchant l'alarme est signalé à une station centrale, p. ex. systèmes télégraphiques d'incendie ou de police caractérisés par le moyen de transmission utilisant des systèmes de transmission sans fil
G08B 17/00 - Alarmes d'incendieAlarmes réagissant à une explosion
A62C 99/00 - Matière non prévue dans les autres groupes de la présente sous-classe
61.
AVIATION FUEL COMPOSITION AND METHOD FOR PRODUCING SAME
The present disclosure provides a method for producing an aviation fuel composition, and also provides an aviation fuel produced by the method, the method for producing an aviation fuel composition comprising the steps of: (a) introducing a feed into a fluid catalytic cracking (FCC) reaction to produce an FCC reaction product; (b) separating the FCC reaction product into a plurality of fractions including a first fraction and a second fraction, wherein the first fraction is a fraction having a boiling point of 70°C or less, and the second fraction is a fraction having a boiling point of more than 150°C; (c) converting the first fraction into a first oil, wherein the first oil has a boiling point of more than 150°C; (d) hydrotreating the second fraction to produce a second oil; and (e) blending the first oil and the second oil in a predetermined ratio.
C10G 69/04 - Traitement des huiles d'hydrocarbures par au moins un procédé d'hydrotraitement et au moins un autre procédé de conversion uniquement par plusieurs étapes en série comprenant au moins une étape de craquage catalytique en l'absence d'hydrogène
C10G 69/12 - Traitement des huiles d'hydrocarbures par au moins un procédé d'hydrotraitement et au moins un autre procédé de conversion uniquement par plusieurs étapes en série comprenant au moins une étape de polymérisation ou d'alkylation
C10G 11/18 - Craquage catalytique, en l'absence d'hydrogène, des huiles d'hydrocarbures avec catalyseurs solides mobiles préchauffés selon la technique du "lit fluidisé"
C10G 57/00 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, par au moins un procédé de craquage ou de raffinage et au moins un autre procédé de conversion
C10G 7/00 - Distillation des huiles d'hydrocarbures
C10G 45/58 - Raffinage des huiles d'hydrocarbures au moyen d'hydrogène ou de composés donneurs d'hydrogène pour changer la structure du squelette de certains hydrocarbures sans craquer les autres hydrocarbures présents, p. ex. pour abaisser le point d'écoulementHydrocraquage sélectif des paraffines normales
C01B 3/34 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants
C10L 1/04 - Combustibles carbonés liquides à base essentielle de mélanges d'hydrocarbures
The present disclosure provides a method for producing hydrocarbons, comprising steps of: (S1) heat-treating organic waste in a pyrolysis reactor to generate a first mixed gas; (S2) methane reforming the first mixed gas in a reforming reactor to generate a second mixed gas; (S3) separating the second mixed gas into a first stream containing carbon dioxide and a second stream containing hydrogen and carbon monoxide; (S4) injecting the first stream and carbon into a reverse Boudouard reactor and converting same into carbon monoxide through a reverse Boudouard reaction; (S5) generating a third mixed gas by mixing the second stream and the carbon monoxide converted in step (S4); (S6) producing synthesis gas from the third mixed gas through a water gas shift reaction; and (S7) producing hydrocarbons from the synthesis gas through a catalytic reaction, wherein the reforming reactor in step (S2) includes a fluidized bed reforming reactor and a fixed bed reforming reactor connected in parallel, and the first mixed gas is switched and supplied to the fluidized bed reforming reactor or the fixed bed reforming reactor.
C01B 3/24 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures
C01B 3/30 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures avec des particules solides mobiles utilisant la technique du lit fluidisé
C01B 3/26 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés organiques gazeux ou liquides d'hydrocarbures avec des catalyseurs
63.
SEPARATOR AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
Provided are a separator having significantly improved heat resistance and a lithium secondary battery including the same. According to an aspect of the present disclosure, a separator including: a porous substrate; and an inorganic particle layer which is formed on at least one surface of the porous substrate and includes a binder and inorganic particles, wherein the separator has a ratio of a total thickness of the inorganic particle layer to a thickness of the porous substrate of 0.2 to 0.6, has a peak shown in a range of 1070 cm−1 to 1082 cm−1 in a spectrum by Fourier transform infrared spectroscopy (FT-IR), and has heat shrinkage rates in the machine direction and in the transverse direction of 5% or less as measured after being allowed to stand at 150° C. for 60 minutes is provided.
Embodiments of the present disclosure provide a method for producing waste plastic pyrolysis oil with reduced chlorine, the method including a first operation of charging a waste plastic feedstock and modified red mud into a reactor, and a second operation of pyrolyzing the waste plastic feedstock in the reactor and recovering pyrolysis oil, wherein when the modified red mud is subjected to X-ray diffraction (XRD) analysis, an intensity of a first peak at a 2θ diffraction angle of 14±0.1° is higher than an intensity of a second peak at a 2θ diffraction angle of 14.5±0.1°.
C10B 57/06 - Autres procédés de carbonisation ou de cokéfactionCaractéristiques générales des procédés de distillation destructive utilisant des charges de composition spéciale contenant des additifs
C10B 53/02 - Distillation destructive spécialement conçue pour des matières premières solides particulières ou sous forme spéciale de matières contenant de la cellulose
C10B 53/07 - Distillation destructive spécialement conçue pour des matières premières solides particulières ou sous forme spéciale de matières polymères synthétiques, p. ex. pneumatiques
C10G 1/02 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon par distillation
65.
SILICON-CARBON-CONTAINING ELECTRODE MATERIAL AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
A silicon-carbon-containing electrode material including a porous carbon structure and a silicon-containing coating layer formed on the porous carbon structure. A volume ratio of micropores in the porous carbon structure having a pore diameter of 2 nm or less in a total pore volume is greater than 50% and less than 90%. A lithium secondary battery comprising the anode which comprises the silicon-carbon-containing electrode material and a cathode disposed to face to the anode. The lithium secondary battery employing the silicon-containing electrode exhibits improved lifespan and efficiency characteristics.
An electrolyte for a lithium secondary battery including an organic solvent, a lithium salt, and a phosphate-based additive including a compound represented by Formula 1. A lithium secondary battery according to embodiments of the present disclosure may include a cathode, an anode opposite to the cathode, and an electrolyte including the phosphate-based additive represented by Formula 1.
H01M 10/0567 - Matériaux liquides caracterisés par les additifs
C07F 9/06 - Composés du phosphore sans liaisons P—C
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/0568 - Matériaux liquides caracterisés par les solutés
H01M 10/0569 - Matériaux liquides caracterisés par les solvants
67.
SEPARATOR AND SECONDARY BATTERY COMPRISING THE SAME
A separator for a secondary battery and a secondary battery comprising the same. The separator comprises a porous substrate, and an inorganic particle layer which is formed on at least one surface of the porous substrate and comprises a binder and inorganic particles. The separator has a first peak shown in a range of 3800 to 3400 cm−1 and a second peak shown in a range of 1800 to 1500 cm−1 in a spectrum by Fourier-transform infrared spectroscopy (FT-IR) measured after performing 600 cycles of charge and discharge.
Embodiments of the present disclosure provide a method for producing waste plastic pyrolysis oil with reduced chlorine, the method including a first operation of charging a waste plastic raw material and an accelerator containing char into a reactor; a second operation of pyrolyzing the waste plastic raw material in the reactor and recovering pyrolysis oil; and a third operation of recovering the accelerator from the reactor.
C10G 1/10 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon à partir de caoutchouc ou de déchets de caoutchouc
C10G 1/00 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon
Provided is an ammonia synthesis system including an ammonia synthesis reactor; two or more catalyst beds; a distribution plate; a backflow prevention plate; a distribution device; and mixed gas supply lines, wherein the distribution plate has a plurality of openings formed independently of each other, and a percentage of a total region of the openings to a total region of each distribution plate is referred to as an opening ratio, wherein the opening ratio of the distribution plate is decreased toward a lower part.
Provided are a mixed gas distribution system and an ammonia synthesis system comprising the mixed gas distribution system, the mixed gas distribution system comprising a gas distribution device; a mixed gas supply line connected to the gas distribution device; a flow induction guide; an upper area; and a plurality of mixed gas flow pipes fixed to a circumference part of a bottom surface of the upper area, and connected to a plurality of openings formed in the circumference part of the bottom surface to enable a movement of mixed gas.
An anode active material for a lithium secondary battery comprising magnesium-silicon composite oxide particles comprising MgSiO3 and silicon and having a ratio of magnesium to total magnesium, silicon, and oxygen of about 0.07 to about 0.17. A secondary lithium battery comprising the anode active material is provided having enhanced capacity and lifespan.
H01M 4/58 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de composés inorganiques autres que les oxydes ou les hydroxydes, p. ex. sulfures, séléniures, tellurures, halogénures ou LiCoFyEmploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs de structures polyanioniques, p. ex. phosphates, silicates ou borates
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
A cathode for a lithium secondary battery includes lithium metal oxide particles having CM defined by D*(EIT/HIT)/[(Li/Me)2] of of 70 or more. D is an average particle diameter value calculated in micrometers after measuring diameters of particles with a diameter of 4 μm or more in the lithium metal oxide particles included in a scanning electron microscope (SEM) image showing a thickness*width cross-section of the cathode active material layer. EIT is a modulus value of the lithium metal oxide particles measured by a nano indentation method. HIT is a hardness value of the lithium metal oxide particles measured by a nano indentation method. Li/Me is a molar ratio of lithium to metals other than lithium in the lithium metal oxide particles.
H01M 4/525 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'oxydes ou d'hydroxydes inorganiques de nickel, de cobalt ou de fer d'oxydes ou d'hydroxydes mixtes contenant du fer, du cobalt ou du nickel pour insérer ou intercaler des métaux légers, p. ex. LiNiO2, LiCoO2 ou LiCoOxFy
H01M 4/02 - Électrodes composées d'un ou comprenant un matériau actif
73.
METHOD FOR REDUCING WASTE BY RECOVERING LITHIUM PRECURSOR FROM WASTE LITHIUM SECONDARY BATTERY POSITIVE ELECTRODE MATERIAL
A system for reducing waste by recovering a lithium precursor, the system comprising: a first mixer for mixing a waste lithium secondary battery positive electrode material with urea to prepare a first mixture; an oven for firing the first mixture to prepare a second mixture containing lithium hydroxide; and a second mixer for subjecting the second mixture to water washing to separate a lithium precursor.
Provided is an ammonia synthesis system including an ammonia synthesis reactor; at least two catalyst beds included in the ammonia synthesis reactor; a backflow prevention plate disposed downstream from each one of the catalyst beds except for the catalyst bed disposed at the lowest of the at least two catalyst beds for preventing a backflow of mixed gas; a distribution device disposed upstream from each one of the at least two catalyst beds for distributing the mixed gas to the catalyst bed; mixed gas supply lines arranged to supply the mixed gas to each distribution device; and a microwave heating device for emitting microwaves to each of the at least two catalyst beds.
B01J 8/04 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes le fluide passant successivement à travers plusieurs lits
75.
GAS DISTRIBUTION SYSTEM AND AMMONIA SYNTHESIS SYSTEM USING THE SAME
Provided are a gas distribution system for an ammonia synthesis system, the gas distribution system comprising: three or more distribution plates disposed upstream from a catalyst bed disposed inside an ammonia synthesis reactor of the ammonia synthesis system; three or more distribution devices, each disposed upstream from a corresponding one of the distribution plates for distributing a mixed gas to the distribution plates; and three or more mixed gas supply lines, each arranged to supply the mixed gas to a respective one of the distribution devices, wherein the three or more distribution plates have different opening ratios.
B01J 8/02 - Procédés chimiques ou physiques en général, conduits en présence de fluides et de particules solidesAppareillage pour de tels procédés avec des particules immobiles, p. ex. dans des lits fixes
Provided is an ammonia synthesis system including an ammonia synthesis reactor; a single or two or more catalyst beds included in the ammonia synthesis reactor; a distribution device disposed upstream from each of the catalyst beds and distributing mixed gas to the catalyst bed; a mixed gas supply line disposed to supply the mixed gas to the distribution device; and each mixed gas distribution plate is disposed between the catalyst bed and the distribution device and includes a plurality of openings, wherein some openings among the plurality of openings are mounted with a cover at the bottom, and the opening mounted with the cover normally maintains the cover to be closed and to be opened under a fluid pressure.
Provided is a separator having an intensity ratio of peaks corresponding to a (020) plane and a (110) plane in an X-ray diffraction (XRD) analysis graph of 2.6 to 5.7. The separator according to an embodiment has excellent stability at high temperature by satisfying the peak intensity ratio of the XRD analysis graph.
H01M 50/451 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches comprenant des couches de matériau organique uniquement et des couches comprenant un matériau inorganique
H01M 50/446 - Matériau composite constitué d’un mélange de matériaux organiques et inorganiques
H01M 50/489 - Séparateurs, membranes, diaphragmes ou éléments d’espacement dans les cellules caractérisés par leurs propriétés physiques, p. ex. degré de gonflement, hydrophilicité ou propriétés pour court-circuiter
78.
METHOD AND MANUFACTURING APPARATUS FOR MANUFACTURING AVIATION FUEL FROM WASTE PLASTIC PYROLYSIS OIL
The present disclosure provides a method for producing aviation fuel, the method including: a first step of subjecting waste plastic pyrolysis oil to an olefin migration reaction; a second step of subjecting a product obtained in the first step to an olefin branching reaction; a third step of hydrotreating a product obtained in the second step in the presence of a hydrotreating catalyst; and a fourth step of hydrocracking a product obtained in the third step in the presence of a hydrocracking catalyst.
C10G 1/10 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon à partir de caoutchouc ou de déchets de caoutchouc
C10G 69/02 - Traitement des huiles d'hydrocarbures par au moins un procédé d'hydrotraitement et au moins un autre procédé de conversion uniquement par plusieurs étapes en série
79.
METHOD FOR PREPARING ZIEGLER-NATTA CATALYST FOR POLYMERIZATION OF LOW-DENSITY COPOLYMER
The present disclosure relates to a method for preparing a Ziegler-Natta catalyst for polymerization of a low-density copolymer, and in particular, to a method for preparing a Ziegler-Natta catalyst including preparing a magnesium chloride support using an inorganic chloride as a halogen source of the magnesium chloride support. In the method for preparing a Ziegler-Natta catalyst according to an embodiment, an inorganic chloride is used when preparing the magnesium chloride support, such that reaction conditions are mild and generation of impurities is minimized, which is preferable for large-scale preparation of catalysts.
An anode active material for a lithium secondary battery includes a composite particle. The composite particle includes a carbon-based particle including pores, and a silicon-containing coating formed on a surface of the carbon-based particle. A crystallite size of silicon included in the silicon-containing coating after a heat treatment of the composite particle at a temperature of 900° C. to 1200° C. for 6 hours to 9 hours measured by an X-ray diffraction (XRD) analysis is 10 nm or less.
H01M 4/36 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs
C01B 32/05 - Préparation ou purification du carbone non couvertes par les groupes , , ,
H01M 4/38 - Emploi de substances spécifiées comme matériaux actifs, masses actives, liquides actifs d'éléments simples ou d'alliages
H01M 4/587 - Matériau carboné, p. ex. composés au graphite d'intercalation ou CFx pour insérer ou intercaler des métaux légers
H01M 4/62 - Emploi de substances spécifiées inactives comme ingrédients pour les masses actives, p. ex. liants, charges
H01M 10/0525 - Batteries du type "rocking chair" ou "fauteuil à bascule", p. ex. batteries à insertion ou intercalation de lithium dans les deux électrodesBatteries à l'ion lithium
H01M 10/42 - Procédés ou dispositions pour assurer le fonctionnement ou l'entretien des éléments secondaires ou des demi-éléments secondaires
81.
ANODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
An anode for a lithium secondary battery includes an anode current collector, and an anode active material layer disposed on at least one surface of the anode current collector. The anode active material layer includes an anode active material and a conductive material. An electrode peak intensity ratio obtained by a pair distribution function (PDF) analysis of the anode active material layer is in a range from 1.1 to 2.7.
A biodegradable resin composition according to of the present disclosure includes thermoplastic starch, a biodegradable polymer having a melt flow index of greater than 30 g/10 min under conditions of 190° C. and a load of 2.16 kg, and a plasticizer, wherein a content of the biodegradable polymer is 30 wt % based on a total weight of the biodegradable resin composition. The melt flow index of the biodegradable resin composition measured under conditions of 190° C. and a load of 2.16 kg is 2.5 g/10 min to 20 g/10 min. A biodegradable film and a multilayer barrier film according to embodiments of the present disclosure include a resin layer formed from the biodegradable resin composition.
B32B 9/02 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant des substances animales ou végétales
B32B 9/04 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant une telle substance comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
83.
ANODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
An anode for a lithium secondary battery includes an anode current collector, a first anode active material layer disposed on at least one surface of the anode current collector and including a first anode active material, and a second anode active material layer disposed on the first anode active material layer and including a second anode active material. The first anode active material includes a graphite-based active material, and the second anode active material includes a composite particle including silicon. A diffusivity of the first anode active material layer obtained by an X-ray microscope (XRM) analysis is 3.87 or less.
A carbon nanotube production system according to the present disclosure includes a reactor configured to generate a carbon nanotube fluid in a first direction; a conveyor unit which is arranged spaced apart from the reactor in the first direction, and comprises a mesh belt configured to capture carbon nanotube structures from the carbon nanotube fluid while continuously traveling in a second direction perpendicular to the first direction; and a collection unit configured to collect carbon nanotube units from the carbon nanotube structures.
The present disclosure relates to a method for preparing a porous catalyst for the production of a pyrolytically synthesized gas, the method comprising the steps of: mixing a metal precursor including a Group VIIIA element, a ceramic support, and a solvent to prepare a mixed solution; adding an acid to the mixed solution to prepare a precursor gel; mixing the precursor gel with clay to prepare a mixture; adding an inorganic binder to the mixture to prepare a composite catalyst sol; and drying and calcining the composite catalyst sol.
An anode active material for a lithium secondary battery includes a composite particle. The composite particle includes a carbon-based particle including pores, and a silicon-containing coating formed on a surface of the carbon-based particle. A particle peak distance of the composite particle measured by a pair distribution function (PDF) analysis is 0.6 Å or less.
An anode for a lithium secondary battery includes an anode current collector, a first anode active material layer disposed on at least one surface of the anode current collector and including a first anode active material, and a second anode active material layer disposed on the first anode active material layer and including a second anode active material. The first anode active material includes a graphite-based active material, and the second anode active material includes a composite particle including silicon. A tortuosity of the second anode active material layer obtained by an X-ray microscope (XRM) analysis is 2.32 or less.
Separator for a secondary battery and secondary battery comprising the separator. The separator comprises a porous substrate, and an inorganic particle layer on at least one surface of the porous substrate, wherein the inorganic particle layer has a surface roughness (Ra) of 180 nm to 230 nm. The separator improves heat resistance, charge/discharge characteristics, and life characteristics of the secondary battery.
Embodiments of the present disclosure relate to a separator comprising a porous substrate, and an inorganic particle layer comprising inorganic particles on at least one surface of the porous substrate, wherein the inorganic particle layer has a surface roughness (Ra) of 100 nm to 160 nm. The separator according to the embodiments may improve heat resistance, charge/discharge characteristics, and life characteristics of a battery, by having the above surface roughness.
A separator and a secondary battery including the separator, the separator including a porous substrate and an adhesive layer disposed on at least one surface of the porous substrate. The adhesive layer includes a binder and anisotropic particles. The adhesive layer includes 1.2 parts by weight or more of the anisotropic particles with respect to 100 parts by weight of the binder. The anisotropic particles have an aspect ratio of 4 to 1,000 and include one or more selected from first inorganic particles and organic particles. The separator according to the embodiments of the present disclosure may have significantly improved adhesion to an electrode of the secondary battery.
H01M 50/449 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches
H01M 50/489 - Séparateurs, membranes, diaphragmes ou éléments d’espacement dans les cellules caractérisés par leurs propriétés physiques, p. ex. degré de gonflement, hydrophilicité ou propriétés pour court-circuiter
91.
MORDENITE ZEOLITE HAVING EXCELLENT PARTICLE UNIFORMITY AND METHOD FOR PREPARING THE SAME
A mordenite zeolite having excellent particle uniformity and a method for preparing the same are provided. The method includes dissolving a pH-adjusting material and a silica precursor in water to provide a basic silica suspension; dissolving a structure-directing agent and an alumina precursor in water to provide an aqueous solution; dissolving a surfactant in water to provide an aqueous solution; mixing and stirring the basic silica suspension and an alumina aqueous solution to prepare a silica-alumina aqueous solution; adding an surfactant aqueous solution to the silica-alumina aqueous solution to prepare a zeolite synthesis composition; gelating the zeolite synthesis composition; and crystallizing.
The present disclosure relates to a method for removing chlorine from waste plastic pyrolysis oil, the method including: (S1) mixing and reacting waste plastic pyrolysis oil with a neutralizing solution that contains a neutralizer containing M-OR1 and a solvent; and (S2) subjecting a fluid generated in the step (S1) to a water treatment to remove chlorine, wherein M is an alkali metal or an alkaline earth metal, and R1 is a C1 to C10 alkyl group.
C10G 1/10 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon à partir de caoutchouc ou de déchets de caoutchouc
C10G 1/00 - Production de mélanges liquides d'hydrocarbures à partir de schiste bitumineux, de sable pétrolifère ou de matières carbonées solides non fusibles ou similaires, p. ex. bois, charbon
C10G 53/04 - Traitement des huiles d'hydrocarbures, en l'absence d'hydrogène, par plusieurs procédés de raffinage uniquement par plusieurs étapes en série comprenant au moins une étape d'extraction
The present disclosure relates to a method and a system for producing hydrogen, the method comprising the steps of: (S1) purifying landfill gas, thereby generating a first mixed gas; (S2) performing steam reforming on the first mixed gas in a first reactor, thereby generating a second mixed gas; (S3) separating the second mixed gas into a first stream comprising carbon dioxide and a second stream comprising hydrogen and carbon monoxide; (S4) introducing the first stream, separated out in step (S3), into a second reactor and converting same into carbon monoxide through reverse Boudouard reaction; (S5) mixing the second stream and the carbon monoxide converted in step (S4), thereby preparing a third mixed gas; (S6) generating syngas from the third mixed gas through water-gas shift reaction; and (S7) separating carbon dioxide from the syngas, thereby obtaining hydrogen.
C01B 3/38 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants avec des catalyseurs
C01B 3/48 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par réaction de composés organiques gazeux ou liquides avec des agents gazéifiants, p. ex. de l'eau, du gaz carbonique, de l'air par réaction d'hydrocarbures avec des agents gazéifiants suivie par une réaction de la vapeur d'eau avec l'oxyde de carbone
C01B 3/50 - Séparation de l'hydrogène ou des gaz contenant de l'hydrogène à partir de mélanges gazeux, p. ex. purification
A separator and an electrochemical device comprising the separator are provided, the separator comprising a porous substrate, and an inorganic particle layer formed on at least one surface of the porous substrate and comprises a binder and inorganic particles. The separator has a peak shown in a range of 1082.5 to 1086.5 cm−1 in a spectrum by Fourier-transform infrared spectroscopy (FT-IR), and a saturated moisture content measured by a Karl Fischer method of 350 to 1000 ppm.
A method of preparing an EPDM copolymer by solution polymerization using a Ziegler-Natta catalyst system, in which the Ziegler-Natta catalyst system includes VOCl3, ethylaluminum sesquichloride (EASC), and a straight chain or branched chain C4-C6 alkyl amine as a catalyst modifier. The method includes performing polymerization by adding the catalyst modifier before injecting VOCl3 or by adding VOCl3 and the catalyst modifier simultaneously.
C08F 4/20 - Composés métalliques autres que les hydrures et autres que les composés organiques de métalComplexes d'halogénures de bore ou d'halogénures d'aluminium avec des composés organiques contenant de l'oxygène d'antimoine, de bismuth, de vanadium, de niobium, de tantale
A method for removing a pulverized bumper surface material includes a peeling operation of cutting a pulverized bumper by a cutting blade to peel a surface material as a rotating drum rotates by using peeling machine including the rotating drum on which the cutting blade is formed, a transfer operation of transferring the pulverized bumper to which the surface material peeled in the peeling operation is attached to a separation region, and a separation operation of separating the peeled surface material from the pulverized bumper in the separation region, wherein, in the peeling operation, steam is sprayed on the pulverized bumper to peel the surface material from the pulverized bumper due to a difference in a coefficient of thermal expansion between the surface material and the pulverized bumper.
B29B 17/02 - Séparation de matières plastiques des autres matières
B29B 17/04 - Désintégration des matières plastiques
B26D 3/28 - Fendage d'un matériau pour obtenir des feuilletsSéparation mutuelle des couches par coupe
B26D 7/06 - Dispositions pour faire avancer ou évacuer les pièces autres que les feuilles, les bandes ou les filaments
B26D 1/40 - Coupe d'une pièce caractérisée par la nature ou par le mouvement de l'élément coupantAppareils ou machines à cet effetÉléments coupants à cet effet comportant un élément qui ne suit pas le mouvement de la pièce ayant un élément coupant se déplaçant autour d'un axe avec un élément coupant non circulaire se déplaçant autour d'un axe parallèle à la ligne de coupe et coopérant avec un organe rotatif
B26D 5/08 - Moyens pour actionner l'outil de coupe afin d'effectuer la coupe
B26D 7/00 - Parties constitutives de l'appareillage de coupe, découpage, poinçonnage, perforation ou séparation autrement que par coupe
97.
CATALYST FOR AMMONIA OXIDATION, CATALYST SYSTEM AND METHOD OF PREPARING CATALYST FOR AMMONIA OXIDATION
An ammonia oxidation catalyst and a catalyst system and method using the ammonia oxidation catalyst are provided. The catalyst comprises a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system comprises an ammonia decomposition reactor and a catalyst unit which is located downstream from the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
C01B 3/04 - Production d'hydrogène ou de mélanges gazeux contenant de l'hydrogène par décomposition de composés inorganiques, p. ex. de l'ammoniac
H01M 8/0606 - Combinaison d’éléments à combustible avec des moyens de production de réactifs ou pour le traitement de résidus avec des moyens de production des réactifs gazeux
98.
Carbon Dioxide Absorbent Comprising Ionic Liquid and Alcohol Solvent, and Method Of Separating Carbon Dioxide Using the Same
Provided is a carbon dioxide absorbent including an ionic liquid including an imidazole-based anion and an aliphatic alcohol, and since an alcohol solvent included in the carbon dioxide absorbent according to one embodiment has low toxicity and a very high boiling point, the carbon dioxide absorbent has no problem of release into the atmosphere and consequent environmental pollution, and is chemically stable to significantly lower the possibility of release of decomposition products into the atmosphere. In addition, the carbon dioxide absorbent is also effective, since it may absorb carbon dioxide with a higher equivalent than an absorbent input equivalent, and has low regeneration energy so that carbon dioxide is easily desorbed.
B01J 20/22 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation contenant une substance organique
B01J 20/28 - Compositions absorbantes ou adsorbantes solides ou compositions facilitant la filtrationAbsorbants ou adsorbants pour la chromatographieProcédés pour leur préparation, régénération ou réactivation caractérisées par leur forme ou leurs propriétés physiques
99.
HYBRID SEPARATOR AND LITHIUM SECONDARY BATTERY INCLUDING THE SAME
Hybrid separators and lithium secondary batteries including the hybrid separators are disclosed. In an embodiment, a lithium secondary battery includes a negative electrode, a positive electrode, a separator disposed between the negative electrode and the positive electrode, and a liquid electrolyte, wherein the separator is a hybrid separator including a porous substrate and a lithium ion conductive flexible polymer layer disposed on at least one surface of the porous substrate, and a lithium ionic conductivity of the hybrid separator is 10−4 to 10−2 S/cm. The hybrid separator that includes the flexible polymer layer based on some embodiments of the disclosed technology can improve the mechanical strength of the separator and significantly reduce the formation of lithium dendrites during charging and discharging cycles.
H01M 50/451 - Séparateurs, membranes ou diaphragmes caractérisés par le matériau ayant une structure en couches comprenant des couches de matériau organique uniquement et des couches comprenant un matériau inorganique
Embodiments of the present disclosure relate to a separator comprising a porous substrate; and an inorganic particle layer disposed on at least one surface of the porous substrate, the inorganic particle layer comprising a binder and inorganic particles, wherein the separator has a Gurley permeability of 10 to 250 sec/100 cc, a puncture strength of 0.3 N/μm or more, tensile strengths in the machine direction and in the transverse direction of 1500 kgf/cm2 or more, heat shrinkage rates in the machine direction and in the transverse direction measured after being allowed to stand at 130° C. for 60 minutes of 5% or less, and a saturated moisture content measured by a Karl Fischer method of 350 to 1000 ppm.