The present invention relates to an ultra-high molecular weight polyethylene and a process for preparing the same, said ultra-high molecular weight polyethylene has a viscosity-average molecular weight of 150-1000×104 g/mol, a metal element content of 0-50 ppm, a bulk density of 0.30-0.55 g/cm3, a true density of 0.900-0.940 g/cm3, a melting point of 140-152° C., and a crystallinity of 40-75%, and said polyethylene satisfies at least one of condition (1) and condition (2):
Condition (1): tensile elasticity modulus is greater than 250 MPa, preferably greater than 280 MPa, more preferably greater than 300 MPa,
Condition (2): Young's modulus is greater than 300 MPa, preferably greater than 350 MPa.
The present invention relates to an ultra-high molecular weight polyethylene and a process for preparing the same, said ultra-high molecular weight polyethylene has a viscosity-average molecular weight of 150-1000×104 g/mol, a metal element content of 0-50 ppm, a bulk density of 0.30-0.55 g/cm3, a true density of 0.900-0.940 g/cm3, a melting point of 140-152° C., and a crystallinity of 40-75%, and said polyethylene satisfies at least one of condition (1) and condition (2):
Condition (1): tensile elasticity modulus is greater than 250 MPa, preferably greater than 280 MPa, more preferably greater than 300 MPa,
Condition (2): Young's modulus is greater than 300 MPa, preferably greater than 350 MPa.
The ultra-high molecular weight polyethylene has high mechanical properties, high melting point, low metal element content and ash content, and the preparation process is simple, flexible and adjustable, and the ultra-high molecular weight ethylene copolymer has a high tensile elasticity module.
The present invention relates to an ethylene polymer and a process for preparing the same, wherein the ethylene polymer has an average particle size of 50-3000 μm, a bulk density of 0.28-0.55 g/cm3, a true density of 0.930-0.980 g/cm3, a melt index at a load of 2.16 Kg at 190° C. of 0.01-2500 g/10 min, a crystallinity of 30-90%, a melting point of 105-147° C., a comonomer molar insertion rate of 0.01-5 mol %, a weight-average molecular weight of 2×104 g/mol-40×104 g/mol, and a molecular weight distribution of 1.8-10. In the preparation process, raw materials containing ethylene, hydrogen gas and a comonomer are subjected to a tank-type slurry polymerization with an alkane solvent having a boiling point of 5-55° C. or a mixed alkane solvent having a saturated vapor pressure of 20-150 KPa at 20° C. as the polymerization solvent in the presence of a polyethylene catalytic system, at the molar ratio of hydrogen gas to ethylene of 0.01-20:1, preferably 0.015-10:1, at the molar ratio of hydrogen gas to the comonomer of 0.1-30:1, preferably 0.15-25:1 to prepare the ethylene polymer.
C08F 4/52 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi le bore, l'aluminium, le gallium, l'indium, le thallium ou les terres rares
C08F 4/659 - Composant couvert par le groupe contenant une liaison métal de transition-carbone
3.
METHOD FOR CONTINUOUSLY PRODUCING ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE BY USING SLURRY POLYMERIZATION
The present invention relates to a process for continuously producing an ultra-high molecular weight polyethylene by the ethylene slurry polymerization, wherein raw materials containing ethylene and optionally at least one comonomer are subjected to a continuous slurry polymerization in a hydrogen free atmosphere in the ethylene slurry polymerization condition by using 2-6 ethylene slurry polymerization reaction tanks connected in series, and the deviations of the polymerization temperatures, the polymerization pressures, and the gas phase compositions between the tanks each other are controlled to certain ranges. The ultra-high molecular weight polyethylene having the viscosity-average molecular weight of 150-800×104 g/mol can be continuously produced. This process has flexible polymerization manner, large room for adjusting and controlling, and stable polymer performance. Moreover, the obtained ultra-high molecular weight polyethylene has low metal content, low ash content, and excellent mechanical properties.
The present invention relates to a method for continuously producing ultra-high molecular weight polyethylene by using ethylene slurry polymerization. An ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1.5 to 8 million g/mol can be continuously produced under conditions of ethylene slurry polymerization in an atmosphere without hydrogen by using a series mode of 2-6 ethylene slurry polymerization reaction kettles, controlling the deviations of the polymerization temperature, polymerization pressure and gas phase composition between said kettles within certain ranges, and performing continuous slurry polymerization of raw materials comprising ethylene and optionally a comonomer. The polymerization method is flexible, and has a large control margin, and the polymer has stable properties. Furthermore, the obtained ultra-high molecular weight polyethylene has a low metal content, a low ash content, and excellent mechanical properties.
The present invention relates to an ethylene polymer and a preparation method therefor. The ethylene polymer has an average particle size of 50-3,000 μm, a bulk density of 0.28-0.55 g/cm3, a true density of 0.930-0.980 g/cm3, a melt index of 0.01-2,500 g/10min at 190°C under the load of 2.16 Kg, a degree of crystallinity of 30-90%, and a melting point of 105-147°C; and a comonomer has a molar insertion rate of 0.01-5 mol%, a weight average molecular weight of 20 thousand g/mole to 400 thousand g/mole, and a molecular weight distribution of 1.8-10. The preparation method comprises: using an alkane solvent having a boiling point of 5-55°C or a mixed alkane solvent having the saturated vapor pressure of 20-150 KPa at 20°C as a polymerization solvent; and under the presence of a polyethylene catalytic system, and under the conditions that a molar ratio of hydrogen to ethylene is 0.01-20:1, preferably 0.015-10:1, and a molar ratio of hydrogen to a comonomer is 0.1-30:1, preferably 0.15-25:1, performing kettle-type slurry polymerization on raw materials comprising ethylene, hydrogen, and the comonomer, so as to prepare an ethylene polymer.
C08F 2/01 - Procédés de polymérisation caractérisés par des éléments particuliers des appareils de polymérisation utilisés
C08F 4/646 - Catalyseurs contenant au moins deux métaux différents, sous forme de métal ou composé métallique, en plus du composant couvert par le groupe
C08F 210/16 - Copolymères de l'éthylène avec des alpha-alcènes, p. ex. caoutchoucs EP
6.
ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE AND PREPARATION METHOD THEREFOR
The present invention relates to an ultra-high molecular weight polyethylene and a preparation method therefor. The ultra-high molecular weight polyethylene has a viscosity average molecular weight of 1.5 to 10 million g/mol, a metal element content of 0 to 50 ppm, a bulk density of 0.30 to 0.55 g/cm 3, a true density of 0.900 to 0.940 g/cm 3, a melting point of 140 to 152°C, and a crystallinity of 40 to 75%, and the polyethylene meets at least one of the following conditions (1) and (2): (1) the tensile elastic modulus is greater than 250 MPa, preferably greater than 280 MPa, and more preferably greater than 300 MPa; and (2) the Young's modulus is greater than 300 MPa, and preferably greater than 350 MPa. The ultra-high molecular weight polyethylene has good mechanical properties, a high melting point, a low metal element content and an ash content, and the preparation method is simple and easy to operate, and flexible and adjustable, wherein the ultrahigh molecular weight ethylene copolymer has a high tensile elastic modulus.
C08F 4/646 - Catalyseurs contenant au moins deux métaux différents, sous forme de métal ou composé métallique, en plus du composant couvert par le groupe
C08F 210/16 - Copolymères de l'éthylène avec des alpha-alcènes, p. ex. caoutchoucs EP
7.
Supported nonmetallocene catalysts, preparation and use thereof
Disclosed is a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst is characterized by a high catalyst activity for olefin polymerization and a significant monomer effect. Further disclosed is use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization. The polymer produced therewith is characterized by superior particle morphology, a high bulk density, and/or a narrow molecular weight distribution.
B01J 31/00 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques
B01J 37/00 - Procédés de préparation des catalyseurs, en généralProcédés d'activation des catalyseurs, en général
B01J 27/182 - PhosphoreSes composés avec du silicium
B01J 21/00 - Catalyseurs contenant les éléments, les oxydes ou les hydroxydes du magnésium, du bore, de l'aluminium, du carbone, du silicium, du titane, du zirconium ou du hafnium
C08F 4/44 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides
C08F 4/642 - Composant couvert par le groupe avec un composé d'organo-aluminium
This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
B01J 23/00 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe
B01J 23/02 - Catalyseurs contenant des métaux, oxydes ou hydroxydes métalliques non prévus dans le groupe des métaux alcalins ou alcalino-terreux ou du béryllium
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
C08F 4/50 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi les métaux alcalino-terreux, le zinc, le cadmium, le mercure, le cuivre ou l'argent
C08F 4/52 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi le bore, l'aluminium, le gallium, l'indium, le thallium ou les terres rares
C08F 4/64 - Titane, zirconium, hafnium ou leurs composés
C08F 4/76 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux non prévus dans le groupe choisis parmi les métaux réfractaires choisis parmi le titane, le zirconium, le hafnium, le vanadium, le niobium ou le tantale
B01J 31/38 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant en outre des composés métalliques inorganiques non prévus dans les groupes du titane, du zirconium ou du hafnium
10.
Supported nonmetallocene catalyst, preparation and use thereof
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
C08F 4/50 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi les métaux alcalino-terreux, le zinc, le cadmium, le mercure, le cuivre ou l'argent
C08F 4/52 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi le bore, l'aluminium, le gallium, l'indium, le thallium ou les terres rares
C08F 4/64 - Titane, zirconium, hafnium ou leurs composés
C08F 4/76 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux non prévus dans le groupe choisis parmi les métaux réfractaires choisis parmi le titane, le zirconium, le hafnium, le vanadium, le niobium ou le tantale
B01J 31/38 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant en outre des composés métalliques inorganiques non prévus dans les groupes du titane, du zirconium ou du hafnium
11.
Supported nonmetallocene catalyst, preparation and use thereof
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
C08F 4/50 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi les métaux alcalino-terreux, le zinc, le cadmium, le mercure, le cuivre ou l'argent
C08F 4/52 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi le bore, l'aluminium, le gallium, l'indium, le thallium ou les terres rares
C08F 4/64 - Titane, zirconium, hafnium ou leurs composés
C08F 4/76 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux non prévus dans le groupe choisis parmi les métaux réfractaires choisis parmi le titane, le zirconium, le hafnium, le vanadium, le niobium ou le tantale
B01J 31/38 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant en outre des composés métalliques inorganiques non prévus dans les groupes du titane, du zirconium ou du hafnium
12.
Supported nonmetallocene catalyst, preparation and use thereof
This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.
C08F 4/50 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi les métaux alcalino-terreux, le zinc, le cadmium, le mercure, le cuivre ou l'argent
C08F 4/52 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi le bore, l'aluminium, le gallium, l'indium, le thallium ou les terres rares
C08F 4/64 - Titane, zirconium, hafnium ou leurs composés
C08F 4/76 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux non prévus dans le groupe choisis parmi les métaux réfractaires choisis parmi le titane, le zirconium, le hafnium, le vanadium, le niobium ou le tantale
B01J 31/38 - Catalyseurs contenant des hydrures, des complexes de coordination ou des composés organiques contenant en outre des composés métalliques inorganiques non prévus dans les groupes du titane, du zirconium ou du hafnium
The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
C08F 4/50 - MétauxHydrures métalliquesComposés organiques de métalLeur utilisation comme précurseurs de catalyseurs choisis parmi les métaux légers, le zinc, le cadmium, le mercure, le cuivre, l'argent, l'or, le bore, le gallium, l'indium, le thallium, les terres rares ou les actinides choisis parmi les métaux alcalino-terreux, le zinc, le cadmium, le mercure, le cuivre ou l'argent
14.
SUPPORTED NON-METALLOCENE CATALYST, PREPARATION METHOD AND APPLICATION THEREOF
A simple and easy method for preparing supported non-metallocene catalyst is disclosed, which includes the following steps: dissolving magnesium compound and non-metallocene ligand in solvent, mixing optional porous carrier and the obtained magnesium compound solution, drying the obtained mixture or adding precipitator into the obtained mixture, treating the obtained supported carrier with chemical treating agent selected from ⅣB group metal compounds to obtain supported non-metallocene catalyst. Polymerization activity of the said catalyst is flexible and adjustable. The said supported non-metallocene catalyst can be used in olefin homopolymerization /olefin copolymerization with less cocatalyst.
A supported non-metallocene catalyst and preparation method thereof are provided The preparation method of the supported non-metallocene catalyst is simple, and the polymerization activity is flexible and adjustable The supported non-metallocene catalyst can be used in olefin homopolymeπzation/ copolymeπzation with a reduced amount of cocatalysts
A supported non-metallocene catalyst, manufacturing method and application thereof are provided. The manufacturing method of said supported non-metallocene catalyst comprises:(a) dissolving a magnesium compound and a non-metallocene complex in a solvent to obtain a magnesium compound solution, (b)mixing a porous carrier which is optionally treated by thermal activation with the magnesium compound to obtain a mixed slurry, (c)drying the mixed slurry or adding a precipitating agent into the mixed slurry to obtain a supported non-metallocene catalyst. Or after the step of drying the mixed slurry or adding a precipitating agent into the mixed slurry to obtain a composite carrier, the manufacturing method further involves processing the composite carrier by chemical treatment agents selected from IVB group metal compounds to obtain a supported non-metallocene catalyst. The supported non-metallocene catalyst can be used in olefins homopolymerization/copolymerization with a reduced amount of co-catalysts and easily adjustable polymerization activity.
A supported non-metallocene catalyst and preparation method thereof are provided. The said preparation method comprises the following steps: dissolving a magnesium compound and a non-metallocene complex into a solvent to obtain a magnesium compound solution; drying the said magnesium compound solution or adding a precipitator into the said magnesium compound solution to obtain the supported non-metallocene catalyst. Said method has the characteristics that the process is easy and simple to perform and the catalyst has a freely adjustable polymerization activity in a wide range, etc. When the supported non-metallocene catalyst and a co-catalyst composition is used for olefin homopolymerization/copolymerization, only less co-catalyst is used, however high polymerization activity can be obtained.
A supported non-metallocene catalyst which is obtained in situ through a supported method by reacting a non-metallocene ligand with a metal compound with catalytic activity on a carrier is disclosed. Such method is industrially practicable, and the supported amount of the non-metallocene ligand and the polymerization activity of the catalyst can be adjusted in a wide range. In the case that the supported non-metallocene catalyst is combined with a cocatalyst to make an olefin polymerized, even if less cocatalyst is used, high polymerization activity can be obtained. Also, the resulting polymer has good a particle shape and high bulk density.
A non-metallocene catalyst supported on a magnesium compound is disclosed. The catalyst is obtained either in situ through a supported method by directly contacting a non-metallocene ligand with a magnesium compound containing a metal with catalytic activity, or in situ through a supported method by directly contacting a metal compound with catalytic activity with a magnesium compound containing a non-metallocene ligand. In such methods the processes are industrially practicable, there are more adjustable parameters for the polymerization activity of catalyst, and the supported amount of the non-metallocene ligand and the polymerization activity of the catalyst can be adjusted in a wide range. In the case that the non-metallocene catalyst supported on the magnesium compound of this invention is combined with a cocatalyst to make an olefin polymerized, even if less cocatalsyt is used, high polymerization activity can be obtained. Also, the resulting polymer has high bulk density and its molecular weight distribution is adjustable.