A61F 9/00 - Procédés ou dispositifs pour le traitement des yeuxDispositifs pour mettre en place des verres de contactDispositifs pour corriger le strabismeAppareils pour guider les aveuglesDispositifs protecteurs pour les yeux, portés sur le corps ou dans la main
A61M 5/142 - Perfusion sous pression, p. ex. utilisant des pompes
2.
METHOD AND APPARATUS FOR THE DELIVERY OF PHOTO-CHEMICAL (CROSS-LINKING) TREATMENT TO SCLERAL TISSUE
Delivery systems and methods for delivering riboflavin (R/F) and UVA irradiation to the sclera are disclosed. The R/F is delivered and then activated with UVA irradiation through the use of LEDs or optical fibers, thereby causing cross-linking of the collagen tissue. Delivery systems include implantable structures which provide surfaces that conform to the sclera. The delivery systems include various types of structures for delivery of R/F onto the sclera surface. Additionally, the delivery systems include UVA sources which provide irradiation of R/F in sclera collagen tissue.
Systems and methods for delivering and infusing formulations containing riboflavin or its analogues, or other ophthalmic formulations, into corneal tissue are disclosed. Systems and methods are further disclosed to cross-link the corneal tissue through exposure to UVA irradiation. The systems and methods for formulation delivery employ micro-needle array delivery devices.
A61F 9/007 - Procédés ou dispositifs pour la chirurgie de l'œil
A61M 35/00 - Dispositifs pour appliquer des agents, p. ex. des remèdes, sur le corps humain
A61M 37/00 - Autres appareils pour introduire des agents dans le corpsPercutanisation, c.-à-d. introduction de médicaments dans le corps par diffusion à travers la peau
A61K 31/525 - Iso-alloxazines, p. ex. riboflavines, vitamine B2
An apparatus and a method are provided for treating a targeted area of ocular tissue in a tissue-sparing manner comprising use of two or more therapeutic modalities, including thermal radiation source (such as an CW infrared fiber laser), operative in a wavelength range that has a high absorption in water, and photochemical collagen cross-linking (CXL), together with one or more specific system improvements, such as peri-operative feedback measurements for tailoring of the therapeutic modalities, an ocular tissue surface thermal control/cooling mechanism and a source of deuterated water/ riboflavin solution in a delivery system targeting ocular tissue in the presence of the ultraviolet radiation. Additional methods of rapid cross-linking (RXL), are provided that further enables cross-linking (CXL) therapy to be combined with thermal therapy.
A solution of deuterated water containing a riboflavin-based photosensitizer is provided in order to extend lifetimes of UVA/Rf photo-generated intra-stromal singlet oxygen, in combination with UVA delivery profiles of pulsing, fractionation, and optionally auxiliary stromal/Rf hyper-oxygenation in order to accelerate protein cross-linking density rates in ocular tissue. A 100% deuterated water solution with 0.1% riboflavin in solution increases singlet oxygen lifetimes by at least an order of magnitude without inducing endothelial cell apoptosis, thereby also permitting use of some combination of lower percentages of deuterated water, lower concentrations of riboflavin or lower dosages of UVA on intact (un-debrided) epithelium for equivalent cross-link densities compared to current acceptable corneal cross-linking procedures. Lower concentrations of deuterated water with regular water, for example, yields shorter singlet oxygen lifetimes in approximately linear proportion to concentration, which are considered acceptable in therapies known or being developed in the art of corneal cross-linking.
Equi-dosed time-fractionated pulsed UVA is employed to irradiate a class of riboflavin/collagen mixture in the presence of copious oxygen to cause rapid crosslinking causing gelation of the riboflavin/collagen mixture in situ and to effect adhesion to underlying structure specifically ocular tissue such as scleral and corneal tissue. Irradiation according to an embodiment of the invention results in depletion of dissolved oxygen at a rate inversely related to irradiance and more particularly depletion of dissolved oxygen occurs rapidly during the process of generation/cross-linking of reactive oxygen species (ROS), specifically singlet oxygen, such that the pulsed fractionation of UVA radiation exposure increases cross-linking efficiency by allowing the re-diffusion of oxygen during pauses in exposure.
A61B 18/18 - Instruments, dispositifs ou procédés chirurgicaux pour transférer des formes non mécaniques d'énergie vers le corps ou à partir de celui-ci par application de radiations électromagnétiques, p. ex. de micro-ondes