SAS Institute Inc.

États‑Unis d’Amérique

Retour au propriétaire

1-100 de 812 pour SAS Institute Inc. et 2 filiales Trier par
Recheche Texte
Affiner par
Type PI
        Brevet 750
        Marque 62
Juridiction
        États-Unis 736
        Canada 35
        International 33
        Europe 8
Propriétaire / Filiale
[Owner] SAS Institute Inc. 810
Memex Technology, Ltd. 1
SAS Institute A/S 1
Date
Nouveautés (dernières 4 semaines) 5
2025 juillet 5
2025 juin 7
2025 mai 10
2025 avril 11
Voir plus
Classe IPC
G06F 17/30 - Recherche documentaire; Structures de bases de données à cet effet 143
G06N 20/00 - Apprentissage automatique 83
G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT] 74
G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques 68
H04L 29/08 - Procédure de commande de la transmission, p.ex. procédure de commande du niveau de la liaison 68
Voir plus
Classe NICE
09 - Appareils et instruments scientifiques et électriques 41
16 - Papier, carton et produits en ces matières 23
42 - Services scientifiques, technologiques et industriels, recherche et conception 22
41 - Éducation, divertissements, activités sportives et culturelles 11
35 - Publicité; Affaires commerciales 9
Voir plus
Statut
En Instance 18
Enregistré / En vigueur 794
  1     2     3     ...     9        Prochaine page

1.

Hybrid quantum/nonquantum approach to NP-hard combinatorial optimization

      
Numéro d'application 18814869
Numéro de brevet 12373720
Statut Délivré - en vigueur
Date de dépôt 2024-08-26
Date de la première publication 2025-07-29
Date d'octroi 2025-07-29
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Cay, Sertalp Bilal
  • Wisotsky, William Lloyd
  • Crain, Charlotte Kay
  • Yi, Jinxin
  • Cay, Pelin
  • Lukas, Justin Joseph
  • Harris, Bryan Christopher
  • Boakye, Jr., Alexius Kofi Ameyaw

Abrégé

A system and method include reformulating an optimization program as a Quadratic Unconstrained Binary Optimization (QUBO) model and in a single iteration, solving the optimization program by inputting the QUBO model into a quantum computing solver, instructing the quantum computing solver to generate a plurality of solutions to the optimization program based on the QUBO model, receiving the plurality of solutions from the quantum computing solver, inputting each of the plurality of solutions into a nonquantum computing solver, wherein the nonquantum computing solver uses each of the plurality of solutions as a starting point to continue solving the optimization program, and outputting an optimal solution to the optimization program from the nonquantum computing solver.

Classes IPC  ?

  • G06N 10/20 - Modèles d’informatique quantique, p. ex. circuits quantiques ou ordinateurs quantiques universels
  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations

2.

EXPEDITING AUTOMATED NEAR-DUPLICATE DETECTION FOR NEW TEXT DOCUMENTS

      
Numéro d'application 19048170
Statut En instance
Date de dépôt 2025-02-07
Date de la première publication 2025-07-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for automated near-duplicate detection for new text documents given text documents that were previously processed using automated near-duplicate detection for text documents. In one example, a system can receive new documents and documents that were previously processed using a predefined processing technique for automated near-duplicate detection. The system can process the new documents and cluster the new documents into multiple predefined clusters previously identified using the predefined processing technique. For each predefined cluster including at least one new document, the system can generate document groups by determining similarity scores using the predefined processing technique as applied to the documents in the predefined clusters. The system can identify a representative document for each document group and generate an output data structure including the document groups and the representative document for each group.

Classes IPC  ?

3.

TEXT STRING COMPARISON FOR DUPLICATE OR NEAR-DUPLICATE TEXT DOCUMENTS IDENTIFIED USING AUTOMATED NEAR-DUPLICATE DETECTION FOR TEXT DOCUMENTS

      
Numéro d'application 19048422
Statut En instance
Date de dépôt 2025-02-07
Date de la première publication 2025-07-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for text string comparison for documents identified using automated near-duplicate detection. In one example, a system can receive a pair of documents. The system can extract text strings from the documents. The system can normalize the extracted text strings using a predefined normalization scheme. The system can identify boilerplate text segments in the normalized text strings. The system can remove the boilerplate text segments from the normalized text strings to generate filtered text strings. The system can divide the filtered text strings by identifying section indicators. The system can, for each section, generate groupings of text strings and determine a similarity score between each pair of corresponding groupings to identify matching groupings of text strings. The system can generate an output for display showing the visual indications of the matched groupings of text strings.

Classes IPC  ?

4.

Distributed nonlinear support vector machines

      
Numéro d'application 18918265
Numéro de brevet 12353501
Statut Délivré - en vigueur
Date de dépôt 2024-10-17
Date de la première publication 2025-07-08
Date d'octroi 2025-07-08
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Omheni, Riadh
  • Griffin, Joshua David

Abrégé

A system and method include dividing training data into training data blocks, determining a support vector subset, distributing the training data blocks and the support vector subset to worker machines, receiving a first set of sub-results from worker machines, combining the first set of sub-results, solving a linear system, distributing a first set of variables to worker machines, receiving a second set of sub-results from worker machines, selecting a step size value and sending the selected step size value to worker machines, receiving updated values of the first set of variables and second set of variables from worker machines, receiving a maximum residual error value from worker machines, selecting a maximum value of the maximum residual error values, responsive to determining that selected maximum value satisfies an optimality condition, outputting a weight value and a bias value, and predicting a label using the weight value and the bias value.

Classes IPC  ?

  • G06F 17/12 - Opérations mathématiques complexes pour la résolution d'équations d'équations simultanées
  • G06F 17/16 - Calcul de matrice ou de vecteur

5.

Decoder-only transformer model for time series data

      
Numéro d'application 18991935
Numéro de brevet 12346404
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de la première publication 2025-07-01
Date d'octroi 2025-07-01
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Zhang, Ruiwen
  • Ding, Bingfeng (ben)
  • Leeman-Munk, Samuel Paul
  • Liu, Rui
  • Basnet, Lochan

Abrégé

A system and method include forecasting a series of future data points in a long sequence time series data using a decoder-only transformer model by dividing the long sequence time series data into a plurality of sequences, converting each sequence of the plurality of sequences into a first vector to obtain a plurality of first vectors, creating a plurality of second vectors from the time stamps associated with the plurality of data points, combining the first vector with the second vector of each sequence of the plurality of sequences to obtain a plurality of third vectors, computing a context matrix from the plurality of third vectors, performing a convolution operation on the context matrix to forecast the series of future data points, and outputting the series of future data points from the prediction layer.

Classes IPC  ?

  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06F 5/01 - Procédés ou dispositions pour la conversion de données, sans modification de l'ordre ou du contenu des données maniées pour le décalage, p. ex. la justification, le changement d'échelle, la normalisation
  • G06F 17/15 - Calcul de fonction de corrélation

6.

Hierarchical modeling node for visual forecasting

      
Numéro d'application 18980190
Numéro de brevet 12340445
Statut Délivré - en vigueur
Date de dépôt 2024-12-13
Date de la première publication 2025-06-24
Date d'octroi 2025-06-24
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Trovero, Michele Angelo
  • Joshi, Mahesh Vijaykumar
  • Mills, Steven Christopher
  • Helmkamp, Phillip Mark
  • Park, Youngjin
  • Farahani, Iman Vasheghani
  • Nath, Rajib
  • Misra, Kritika
  • Muley, Vilochan Suresh
  • Bi, Ran

Abrégé

A system described herein can generate a graphical user interface (GUI) for a piece of forecasting software. The GUI can include graphical nodes arranged on a drag-and-drop canvas to define an overall forecasting pipeline. The graphical nodes can include a hierarchical modeling node that enables a user to define a time series hierarchy. The hierarchical modeling node can also enable separate level pipelines to be customized for each level of the time series hierarchy. The level pipelines can form subparts of the overall forecasting pipeline. The system can then execute the level pipelines to generate multiple forecasts, where each forecast corresponds to a respective level of the time series hierarchy. In some examples, the system can execute a reconciliation process on the forecasts to generate reconciled forecasts. Each reconciled forecast can correspond to one of the forecasts. The system may then generate one or more visualizations of the reconciled forecasts.

Classes IPC  ?

  • G06T 11/20 - Traçage à partir d'éléments de base, p. ex. de lignes ou de cercles
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 8/34 - Programmation graphique ou visuelle
  • G06F 8/38 - Création ou génération de code source pour la mise en œuvre d'interfaces utilisateur

7.

Real-time anomaly detection and mitigation for streaming functional data

      
Numéro d'application 18982812
Numéro de brevet 12341800
Statut Délivré - en vigueur
Date de dépôt 2024-12-16
Date de la première publication 2025-06-24
Date d'octroi 2025-06-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Zeng, Chengpeng
  • Shen, Kai
  • Talebi, Zohreh Asgharzadeh

Abrégé

Functions representing sequences of values of a time-series dataset measured within a particular time period are accessed. For a current time window of the time period, a first discretized covariance function is computed that represents a relationship between each value measured within the current time window. Eigenanalysis of the first covariance function is performed to estimate first eigenfunctions. The current time window is incremented to obtain a subsequent time window that overlaps a majority of the current time window at a shared window region. A second discretized covariance function is computed for the subsequent time window and eigenanalysis is performed to estimate second normalized eigenfunctions. An angle change is computed between a portion of the first normalized eigenfunctions and a corresponding portion of the second normalized eigenfunctions located within the shared window region. Based on the angle change, an anomaly detection output is generated.

Classes IPC  ?

  • H04L 9/40 - Protocoles réseaux de sécurité
  • G16Y 30/10 - Sécurité de l’infrastructure
  • H04L 41/16 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets en utilisant l'apprentissage automatique ou l'intelligence artificielle

8.

Systems and methods for graphical symmetry breaking

      
Numéro d'application 18977112
Numéro de brevet 12332881
Statut Délivré - en vigueur
Date de dépôt 2024-12-11
Date de la première publication 2025-06-17
Date d'octroi 2025-06-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Reese, Brandon Michael
  • Harenberg, Steven

Abrégé

A system and method include breaking symmetry in a query graph by converting the query graph into a transformed query graph by generating a symmetry breaking expression that includes detecting one or more orbits in the transformed query graph, selecting an orbit from the one or more orbits having more than one node, generating an automorphism breaking sub-expression for the selected orbit, assigning a node of the selected orbit a unique node attribute, recalculating the one or more orbits in the transformed query graph, repeating the process until each node is in its own orbit, and combining each of the automorphism breaking sub-expressions to obtain the symmetry breaking expression. Using the symmetry breaking expression, the system and method include finding one or more subgraphs of a main graph that match the symmetry breaking expression of the query graph.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2452 - Traduction des requêtes
  • G06F 16/248 - Présentation des résultats de requêtes

9.

Systems and methods for graphical symmetry breaking

      
Numéro d'application 18976766
Numéro de brevet 12326858
Statut Délivré - en vigueur
Date de dépôt 2024-12-11
Date de la première publication 2025-06-10
Date d'octroi 2025-06-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Reese, Brandon Michael
  • Harenberg, Steven

Abrégé

A system and method include breaking symmetry in a query graph by converting the query graph into a transformed query graph by generating a symmetry breaking expression that includes detecting one or more orbits in the transformed query graph, selecting an orbit from the one or more orbits having more than one node, generating an automorphism breaking sub-expression for the selected orbit, assigning a node of the selected orbit a unique node attribute, recalculating the one or more orbits in the transformed query graph, repeating the process until each node is in its own orbit, and combining each of the automorphism breaking sub-expressions to obtain the symmetry breaking expression. Using the symmetry breaking expression, the system and method include finding one or more subgraphs of a main graph that match the symmetry breaking expression of the query graph.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2452 - Traduction des requêtes
  • G06F 16/248 - Présentation des résultats de requêtes

10.

Systems and methods for graphical symmetry breaking

      
Numéro d'application 18976960
Numéro de brevet 12326859
Statut Délivré - en vigueur
Date de dépôt 2024-12-11
Date de la première publication 2025-06-10
Date d'octroi 2025-06-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Reese, Brandon Michael
  • Harenberg, Steven

Abrégé

A system and method include breaking symmetry in a query graph by converting the query graph into a transformed query graph by generating a symmetry breaking expression that includes detecting one or more orbits in the transformed query graph, selecting an orbit from the one or more orbits having more than one node, generating an automorphism breaking sub-expression for the selected orbit, assigning a node of the selected orbit a unique node attribute, recalculating the one or more orbits in the transformed query graph, repeating the process until each node is in its own orbit, and combining each of the automorphism breaking sub-expressions to obtain the symmetry breaking expression. Using the symmetry breaking expression, the system and method include finding one or more subgraphs of a main graph that match the symmetry breaking expression of the query graph.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2452 - Traduction des requêtes
  • G06F 16/248 - Présentation des résultats de requêtes

11.

Systems and methods for graphical symmetry breaking

      
Numéro d'application 18976654
Numéro de brevet 12326857
Statut Délivré - en vigueur
Date de dépôt 2024-12-11
Date de la première publication 2025-06-10
Date d'octroi 2025-06-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Reese, Brandon Michael
  • Harenberg, Steven

Abrégé

A system and method include breaking symmetry in a query graph by converting the query graph into a transformed query graph by generating a symmetry breaking expression that includes detecting one or more orbits in the transformed query graph, selecting an orbit from the one or more orbits having more than one node, generating an automorphism breaking sub-expression for the selected orbit, assigning a node of the selected orbit a unique node attribute, recalculating the one or more orbits in the transformed query graph, repeating the process until each node is in its own orbit, and combining each of the automorphism breaking sub-expressions to obtain the symmetry breaking expression. Using the symmetry breaking expression, the system and method include finding one or more subgraphs of a main graph that match the symmetry breaking expression of the query graph.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2452 - Traduction des requêtes
  • G06F 16/248 - Présentation des résultats de requêtes

12.

STRUCTURED OUTPUT OF DUPLICATE OR NEAR-DUPLICATE TEXT DOCUMENTS IDENTIFIED USING AUTOMATED NEAR-DUPLICATE DETECTION FOR TEXT DOCUMENTS

      
Numéro d'application 19047818
Statut En instance
Date de dépôt 2025-02-07
Date de la première publication 2025-06-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for generation of structured output for documents identified using automated near-duplicate detection. In one example, a system can receive a set of documents including at least one pair of similar documents determined to be similar to one another based on similarity scores generated using a predefined similarity scoring technique. The system can generate document groups by merging together pairs of documents that share at least one document. The system can, for each of the document groups, identify a representative document for the document group. The system can generate an output for display including a section for each document group, in which each section includes the representative document for the document group and, for each document in the document group, the similarity score relative to the representative document for the document group.

Classes IPC  ?

13.

Topological order determination in causal graphs

      
Numéro d'application 18947502
Numéro de brevet 12314874
Statut Délivré - en vigueur
Date de dépôt 2024-11-14
Date de la première publication 2025-05-27
Date d'octroi 2025-05-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Kabisa, Sylvie Tchumtchoua
  • Frame, Dillon
  • Chang, Ming-Chun
  • Gu, Wanxi
  • Walton, Gunce Eryuruk
  • Elsheimer, David Bruce
  • Xu, Chuan

Abrégé

A system and method include generating a topological order of a DAG by creating residual series vectors, calculating normality statistic and MSE values for the residual series vectors, comparing the normality statistic values with a critical value, for each normality statistic value that is less than or equal to the critical value, adding a variable index to a temporary order list and the MSE value to an MSE list, counting a number of elements in the temporary order list, if the number of elements in the temporary order list is zero, updating an order list based on the normality statistic values or if the number of elements in the temporary order list is not zero, updating the order list based on at least one of the temporary order list or the MSE list, and outputting the order list as the topological order of the DAG.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06N 5/04 - Modèles d’inférence ou de raisonnement

14.

AUTOMATED NEAR-DUPLICATE DETECTION FOR TEXT DOCUMENTS

      
Numéro d'application 18896244
Statut En instance
Date de dépôt 2024-09-25
Date de la première publication 2025-05-22
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for automated detection of near-duplicate documents. In one example, a system can cluster documents into a set of clusters based on character frequencies associated with the documents. For a given cluster, the system can generate first similarity scores associated with every pair of documents in the cluster. The system can then select a filtered group of documents associated with first similarity scores that meet or exceed a first predefined similarity threshold. Next, the system can convert the filtered group of documents into matrix representations. The system can generate second similarity scores for every pair of matrix representations. The system can then identify documents, from among the filtered group of documents, associated with second similarity scores that meet or exceed a second predefined similarity threshold. The identified documents can be duplicate or near-duplicate text documents.

Classes IPC  ?

15.

Systems and methods for executing an analytical operation across a plurality of computer processes

      
Numéro d'application 19000641
Numéro de brevet 12307291
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de la première publication 2025-05-20
Date d'octroi 2025-05-20
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Nazari, Mohammadreza
  • Long, Xindian
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Lewis, Lawrence Edmund
  • Dizche, Amirhassan Fallah
  • Abbey, Ralph Walter
  • Silva, Jorge Manuel Gomes Da

Abrégé

A system, method, and computer-program product includes commencing a parent computer process based on receiving a request to perform an analytical operation on one or more datasets, commencing at least one child computer process that is launched by the parent computer process when the parent computer process initiates an execution of the analytical operation on the one or more datasets, transmitting, by the at least one child computer process, a request to the parent computer process to retrieve the one or more datasets, writing, by the parent computer process, the one or more datasets to a cross-process queue based on the parent computer process receiving the requests, reading, by the at least one child computer process, the one or more datasets from the cross-process queue, and executing, using an analytical application executing on the least one child computer process, the analytical operation based on the one or more datasets.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]

16.

SYSTEMS, METHODS, AND GRAPHICAL USER INTERFACES FOR PREDICTING AND ANALYZING ACTION LIKELIHOOD

      
Numéro d'application 18812637
Statut En instance
Date de dépôt 2024-08-22
Date de la première publication 2025-05-15
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Jade, Teresa S.
  • Moreno, Julia
  • Beck, Ashley Mary

Abrégé

A computer-implemented system, computer-implemented method, and computer-program product includes obtaining a text document that includes text describing an action; extracting one or more action tokens from the text document; executing a plurality of linguistic pattern searches that search the text document for one or more likelihood tokens associated with the one or more action tokens; classifying the action to a likelihood category associated with a respective linguistic pattern search of the plurality of linguistic pattern searches that identified the one or more likelihood tokens; classifying the text document to a respective domain; computing a priority value of the action described in the text document based on an input of the likelihood category and the respective domain; and generating a priority summary artifact that visually prioritizes the text document over one or more other text documents when the priority value of the action satisfies a predefined maximum priority threshold value.

Classes IPC  ?

  • G06F 16/35 - PartitionnementClassement
  • G06F 16/34 - NavigationVisualisation à cet effet
  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence

17.

Optimized hampel filtering for outlier detection

      
Numéro d'application 18932008
Numéro de brevet 12298963
Statut Délivré - en vigueur
Date de dépôt 2024-10-30
Date de la première publication 2025-05-13
Date d'octroi 2025-05-13
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Hu, Hongtao
  • Joshi, Mahesh V

Abrégé

A new value is written from a dataset to a data structure comprising a set of sorted values. The new value replaces an oldest value and is inserted in a sorted position. The data structure is modified by subtracting a median value from each value of the set of sorted values to obtain sorted signed deviation values. The sorted signed deviation values are segmented to obtain data substructures comprising subsets of sorted absolute deviation values. A binary search is performed on the data substructures to identify a median absolute deviation value. A difference is computed between a particular value and the median value, and based on whether the difference is less than a threshold value computed from the median absolute deviation value, an outlier decision output is generated indicative of whether the particular value comprises an outlier value.

Classes IPC  ?

  • G06F 16/23 - Mise à jour
  • G06F 7/08 - Tri, c.-à-d. rangement des supports d'enregistrement dans un ordre de succession numérique ou autre, selon la classification d'au moins certaines informations portées sur les supports
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2455 - Exécution des requêtes

18.

Systems and methods for multi-language training of machine learning models

      
Numéro d'application 19000697
Numéro de brevet 12299503
Statut Délivré - en vigueur
Date de dépôt 2024-12-24
Date de la première publication 2025-05-13
Date d'octroi 2025-05-13
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Long, Xindian
  • Cai, Liping
  • Du, Xingqi
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Xu, Yan
  • Pope, Scott Russell
  • Lewis, Lawrence Edmund

Abrégé

A system, method, and computer-program product includes receiving, by a worker process, a plurality of chunks of data from a client process; deriving, by the worker process, an input pattern for feeding the plurality of chunks of data to a machine learning model; caching, by the worker process, a subset of data elements of the plurality of chunks of data specified by the input pattern based on a data caching policy; and training the machine learning model by feeding the subset of data elements cached by the worker process and a remainder of data elements in the plurality of chunks of data when requested by the input pattern.

Classes IPC  ?

19.

Runtime creation of container images for event stream processing

      
Numéro d'application 18989920
Numéro de brevet 12293213
Statut Délivré - en vigueur
Date de dépôt 2024-12-20
Date de la première publication 2025-05-06
Date d'octroi 2025-05-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Combaneyre, Frédéric
  • Bhattacharya, Joydeep

Abrégé

A system and method include creating a project package for an Event Stream Processing (ESP) project, generating a first manifest file from the project package, creating a first container pod on a cluster based on the first manifest file, executing a container file generator software and a build kit software on the first container pod, executing an ESP server on the container file generator software, executing the ESP project on the ESP server such that data is not streaming to the ESP server, identifying a list of required software components needed to execute the ESP project, creating a container file having a subset of software components based on the list of required software components, generating a ESP project container image for the ESP server based on the container file, and deploying the ESP project using the ESP project container image to analyze data streamed to the ESP project.

Classes IPC  ?

  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 8/61 - Installation

20.

Detection and mitigation of unsafe behaviors using computer vision

      
Numéro d'application 18924261
Numéro de brevet 12293602
Statut Délivré - en vigueur
Date de dépôt 2024-10-23
Date de la première publication 2025-05-06
Date d'octroi 2025-05-06
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Prabhudesai, Kedar Shriram
  • Desai, Hardi
  • Mcelhinney, Jonathan James
  • Walker, Jonathan Lee
  • Heda, Sanjeev Shyam
  • Matveenko, Andrey
  • Valsaraj, Varunraj
  • De Ruiter, Rik Peter

Abrégé

In some examples, a system can access video data collected from one or more image sensors, the video data showing a region of interest proximate to a machine. The system can execute an object detection model to detect that a person is within the region of interest proximate to the machine based on the video data. The system can detect a motion status of a component of the machine. The system can execute a pose estimation model on the video data to estimate a pose of the person with respect to the machine. The system can detect a safety rule violation based on the pose of the person with respect to the machine, and the motion status of the machine. The system can transmit a signal to a controller of the machine in response to detecting the safety rule violation.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • F16P 3/14 - Dispositifs de sécurité agissant en conjonction avec la commande ou le fonctionnement d'une machineCommandes exigeant l'emploi simultané de plusieurs parties du corps humain avec dispositifs, p. ex. des éléments sensibles, qui agissent sur la commande ou le fonctionnement de la machine lorsqu'une partie du corps humain se trouve dans ou près de la zone de danger les dispositifs étant des cellules photo-électriques ou d'autres dispositifs sensibles sans contact mécanique
  • G06Q 50/26 - Services gouvernementaux ou services publics
  • G06T 7/00 - Analyse d'image
  • G06T 7/20 - Analyse du mouvement
  • G06T 7/254 - Analyse du mouvement impliquant de la soustraction d’images
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion
  • G06V 10/56 - Extraction de caractéristiques d’images ou de vidéos relative à la couleur
  • G06V 10/70 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique
  • G06V 10/75 - Organisation de procédés de l’appariement, p. ex. comparaisons simultanées ou séquentielles des caractéristiques d’images ou de vidéosApproches-approximative-fine, p. ex. approches multi-échellesAppariement de motifs d’image ou de vidéoMesures de proximité dans les espaces de caractéristiques utilisant l’analyse de contexteSélection des dictionnaires
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 20/40 - ScènesÉléments spécifiques à la scène dans le contenu vidéo
  • G06V 20/52 - Activités de surveillance ou de suivi, p. ex. pour la reconnaissance d’objets suspects
  • G06V 40/10 - Corps d’êtres humains ou d’animaux, p. ex. occupants de véhicules automobiles ou piétonsParties du corps, p. ex. mains
  • G06V 40/20 - Mouvements ou comportement, p. ex. reconnaissance des gestes
  • G08B 21/02 - Alarmes pour assurer la sécurité des personnes

21.

TECHNIQUES AND ARCHITECTURE FOR SECURING LARGE LANGUAGE MODEL ASSISTED INTERACTIONS WITH A DATA CATALOG

      
Numéro d'application 18904206
Statut En instance
Date de dépôt 2024-10-02
Date de la première publication 2025-05-01
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Weik, David Hermann Peter

Abrégé

A computer-implemented system, computer-implemented method, and computer-program product includes receiving a natural language query from a user for executing an analytical task; generating an analytical large language model (LLM) prompt based on the natural language query and, in response to generating the analytical LLM prompt, orchestrating an LLM-directed workflow for handling the natural language query by: automatically prompting, using the analytical LLM prompt, an analytical task-oriented LLM to generate a structured query for querying a data catalog application; querying the data catalog application using the structured query generated by the analytical task-oriented LLM; obtaining query results from the data catalog application, where the query results include metadata associated with at least one element accessible to the data catalog application; prompting the analytical task-oriented LLM to identify a given analytical task associated with a given analytical agent; and automatically executing, by the given analytical agent, the analytical task.

Classes IPC  ?

22.

TECHNIQUES AND ARCHITECTURE FOR SECURING LARGE LANGUAGE MODEL ASSISTED INTERACTIONS WITH A DATA CATALOG

      
Numéro d'application US2024049568
Numéro de publication 2025/090261
Statut Délivré - en vigueur
Date de dépôt 2024-10-02
Date de publication 2025-05-01
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Weik, David, Hermann Peter

Abrégé

A computer-implemented system, computer -implemented method, and computer¬ program product includes receiving a natural language query from a user for executing an analytical task; generating an analytical large language model (LLM) prompt based on the natural language query and, in response to generating the analytical LLM prompt, orchestrating an LLM-directed workflow for handling the natural language query by: automatically prompting, using the analytical LLM prompt, an analytical task-oriented LLM to generate a structured query for querying a data catalog application; querying the data catalog application using the structured query generated by the analytical task- oriented LLM; obtaining query results from the data catalog application, where the query results include metadata associated with at least one element accessible to the data catalog application; prompting the analytical task-oriented LLM to identify a given analytical task associated with a given analytical agent; and automatically executing, by the given analytical agent, the analytical task.

Classes IPC  ?

23.

Systems and methods for graphical symmetry breaking

      
Numéro d'application 18808240
Numéro de brevet 12287783
Statut Délivré - en vigueur
Date de dépôt 2024-08-19
Date de la première publication 2025-04-29
Date d'octroi 2025-04-29
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Reese, Brandon Michael
  • Harenberg, Steven

Abrégé

A system and method include breaking symmetry in a query graph by converting the query graph into a transformed query graph by generating a symmetry breaking expression that includes detecting one or more orbits in the transformed query graph, selecting an orbit from the one or more orbits having more than one node, generating an automorphism breaking sub-expression for the selected orbit, assigning a node of the selected orbit a unique node attribute, recalculating the one or more orbits in the transformed query graph, repeating the process until each node is in its own orbit, and combining each of the automorphism breaking sub-expressions to obtain the symmetry breaking expression. Using the symmetry breaking expression, the system and method include finding one or more subgraphs of a main graph that match the symmetry breaking expression of the query graph.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 16/2452 - Traduction des requêtes
  • G06F 16/248 - Présentation des résultats de requêtes

24.

SYSTEMS AND METHODS FOR DYNAMIC ALLOCATION OF COMPUTE RESOURCES VIA A MACHINE LEARNING-INFORMED FEEDBACK SEQUENCE

      
Numéro de document 03263095
Statut En instance
Date de dépôt 2024-04-04
Date de disponibilité au public 2025-04-28
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wellum, Richard Keith
  • Gelpi, John Hardin
  • Daehnrich, Alexander

Abrégé

A system, method, and computer-program product includes obtaining an analytical request that specifies an analytical task to be performed using computing resources of an adaptive analytics compute service, determining, by the adaptive analytics compute service, an initial set of compute resources for executing the analytical request based on identifying a type of the analytical request, deploying, by the adaptive analytics compute service, a compute environment for executing the analytical request based on the initial set of compute resources, observing utilization data of the initial set of compute resources during a period of executing the analytical request within the compute environment, and commencing a machine learning-informed feedback sequence for autonomously adapting the compute environment, wherein one iteration of the machine learning-informed feedback sequence includes: generating a proposed set of compute resources, and encoding, based on the proposed set of compute resources, a set of instructions for automatically adapting the compute environment.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 11/30 - Surveillance du fonctionnement
  • G06N 20/00 - Apprentissage automatique

25.

Systems and methods for multi-language training of machine learning models

      
Numéro d'application 19000691
Numéro de brevet 12282807
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de la première publication 2025-04-22
Date d'octroi 2025-04-22
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Long, Xindian
  • Cai, Liping
  • Du, Xingqi
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Xu, Yan
  • Pope, Scott Russell
  • Lewis, Lawrence Edmund

Abrégé

A system, method, and computer-program product includes receiving, by a controller node, a request to execute a client process associated with a first programming language and a plurality of threads; launching, by the controller node, a plurality of multi-language worker processes based on a number of threads associated with the client process; and instructing, by the controller node, the plurality of multi-language worker processes to execute the plurality of threads associated with the client process.

Classes IPC  ?

26.

Systems and methods for executing an analytical operation across a plurality of computer processes

      
Numéro d'application 19000671
Numéro de brevet 12277410
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de la première publication 2025-04-15
Date d'octroi 2025-04-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Nazari, Mohammadreza
  • Long, Xindian
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Lewis, Lawrence Edmund
  • Dizche, Amirhassan Fallah
  • Abbey, Ralph Walter
  • Silva, Jorge Manuel Gomes Da

Abrégé

A system, method, and computer-program product includes commencing a parent computer process based on receiving a request to perform an analytical operation on one or more datasets, commencing at least one child computer process that is launched by the parent computer process when the parent computer process initiates an execution of the analytical operation on the one or more datasets, transmitting, by the at least one child computer process, a request to the parent computer process to retrieve the one or more datasets, writing, by the parent computer process, the one or more datasets to a cross-process queue based on the parent computer process receiving the requests, reading, by the at least one child computer process, the one or more datasets from the cross-process queue, and executing, using an analytical application executing on the least one child computer process, the analytical operation based on the one or more datasets.

Classes IPC  ?

  • G06F 8/35 - Création ou génération de code source fondée sur un modèle
  • G06F 8/52 - Binaire à binaire

27.

Systems and methods for executing an analytical operation across a plurality of computer processes

      
Numéro d'application 19000677
Numéro de brevet 12277224
Statut Délivré - en vigueur
Date de dépôt 2024-12-23
Date de la première publication 2025-04-15
Date d'octroi 2025-04-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Nazari, Mohammadreza
  • Long, Xindian
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Lewis, Lawrence Edmund
  • Dizche, Amirhassan Fallah
  • Abbey, Ralph Walter
  • Silva, Jorge Manuel Gomes Da

Abrégé

A system, method, and computer-program product includes commencing a parent computer process based on receiving a request to perform an analytical operation on one or more datasets, commencing at least one child computer process that is launched by the parent computer process when the parent computer process initiates an execution of the analytical operation on the one or more datasets, transmitting, by the at least one child computer process, a request to the parent computer process to retrieve the one or more datasets, writing, by the parent computer process, the one or more datasets to a cross-process queue based on the parent computer process receiving the requests, reading, by the at least one child computer process, the one or more datasets from the cross-process queue, and executing, using an analytical application executing on the least one child computer process, the analytical operation based on the one or more datasets.

Classes IPC  ?

  • G06F 21/00 - Dispositions de sécurité pour protéger les calculateurs, leurs composants, les programmes ou les données contre une activité non autorisée
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 21/56 - Détection ou gestion de programmes malveillants, p. ex. dispositions anti-virus
  • G06F 21/57 - Certification ou préservation de plates-formes informatiques fiables, p. ex. démarrages ou arrêts sécurisés, suivis de version, contrôles de logiciel système, mises à jour sécurisées ou évaluation de vulnérabilité

28.

Systems, methods, and graphical user interfaces for training a code generation model for low-resource languages

      
Numéro d'application 18895119
Numéro de brevet 12277409
Statut Délivré - en vigueur
Date de dépôt 2024-09-24
Date de la première publication 2025-04-15
Date d'octroi 2025-04-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Leeman-Munk, Samuel Paul
  • Cheng, Xiaozhuo
  • Li, Xiaolong

Abrégé

A system, method, and computer-program product includes identifying a plurality of code synthesis items for a target programming language, generating a code synthesis prompt based on a first sampling of the plurality of code synthesis items, synthesizing, via a large language model, a plurality of raw code segments using the code synthesis prompt, executing the plurality of raw code segments with a code interpreter associated with the target programming language, determining one or more valid code segments of the plurality of raw code segments that the code interpreter successfully executed, aggregating, via a second sampling, the one or more valid code segments into one or more validated code synthesis training samples, and training a code generation model using the one or more validated code synthesis training samples. User interfaces may be provided to allow target coding tasks to be specified via text or speech.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel
  • G06F 8/35 - Création ou génération de code source fondée sur un modèle
  • G06F 11/3604 - Analyse de logiciel pour vérifier les propriétés des programmes

29.

External-language execution node for visual forecasting

      
Numéro d'application 18762480
Numéro de brevet 12282753
Statut Délivré - en vigueur
Date de dépôt 2024-07-02
Date de la première publication 2025-04-10
Date d'octroi 2025-04-22
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Farahani, Iman Vasheghani
  • Joshi, Mahesh V.
  • Helmkamp, Phillip M.
  • Nath, Rajib
  • Muley, Vilochan Suresh
  • Delgado, Javier
  • Trovero, Michele Angelo

Abrégé

In one example, a computer system can generate a graphical user interface (GUI) for forecasting software including a drag-and-drop canvas with a set of rearrangeable nodes defining a forecasting pipeline. The computer system can detect a user interaction for attaching an external-language execution node to the pipeline, which can be used to insert custom code defined using an external programming language. The computer system can receive the custom code. The computer system can receive a user input to initiate execution of the pipeline. The computer system can generate wrapped custom code by augmenting the custom code with additional program code including shared variables. The computer system can provide the wrapped custom code to a set of execution threads configured to execute the wrapped custom code as part of the pipeline to generate one or more forecasts. The computer system can output the forecasts in the GUI.

Classes IPC  ?

  • G06F 8/34 - Programmation graphique ou visuelle
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/0486 - Glisser-déposer
  • G06F 8/41 - Compilation
  • G06F 9/54 - Communication interprogramme
  • G06F 16/25 - Systèmes d’intégration ou d’interfaçage impliquant les systèmes de gestion de bases de données
  • G06F 16/38 - Recherche caractérisée par l’utilisation de métadonnées, p. ex. de métadonnées ne provenant pas du contenu ou de métadonnées générées manuellement
  • G06F 40/30 - Analyse sémantique
  • H04L 65/1101 - Protocoles de session
  • H04L 67/01 - Protocoles

30.

Systems, methods, and graphical user interfaces for mitigating bias in a machine learning-based decisioning model

      
Numéro d'application 18764967
Numéro de brevet 12321847
Statut Délivré - en vigueur
Date de dépôt 2024-07-05
Date de la première publication 2025-04-10
Date d'octroi 2025-06-03
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Kauffmann, Luiz Henrique Outi
  • Emídio, Aline Riquetti Campos

Abrégé

A system, method, and computer-program product includes obtaining a decisioning dataset comprising a plurality of favorable decisioning records and at least one unfavorable decisioning record; detecting, via a machine learning algorithm, a favorable decisioning record of the plurality of favorable decisioning records that has a vector value closest to a vector value of the unfavorable decisioning record; executing a counterfactual assessment between the favorable decisioning record and the unfavorable decisioning record; generating an explainability artifact based on one or more bias intensity metrics to explain a bias in a machine learning-based decisioning model; and in response to generating the explainability artifact, displaying the explainability artifact in a user interface.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06N 3/0475 - Réseaux génératifs
  • G06N 5/045 - Explication d’inférenceIntelligence artificielle explicable [XAI]Intelligence artificielle interprétable

31.

SYSTEMS, METHODS, AND GRAPHICAL USER INTERFACES FOR MITIGATING BIAS IN A MACHINE LEARNING-BASED DECISIONING MODEL

      
Numéro d'application 18765014
Statut En instance
Date de dépôt 2024-07-05
Date de la première publication 2025-04-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kauffmann, Luiz Henrique Outi
  • Emídio, Aline Riquetti Campos

Abrégé

A system, method, and computer-program product includes obtaining a decisioning dataset comprising a plurality of favorable decisioning records and at least one unfavorable decisioning record; detecting, via a machine learning algorithm, a favorable decisioning record of the plurality of favorable decisioning records that has a vector value closest to a vector value of the unfavorable decisioning record; executing a counterfactual assessment between the favorable decisioning record and the unfavorable decisioning record; generating an explainability artifact based on one or more bias intensity metrics to explain a bias in a machine learning-based decisioning model; and in response to generating the explainability artifact, displaying the explainability artifact in a user interface.

Classes IPC  ?

  • G06N 3/0895 - Apprentissage faiblement supervisé, p. ex. apprentissage semi-supervisé ou auto-supervisé
  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux

32.

Systems, methods, and graphical user interfaces for secure execution of analytical tasks using natural language

      
Numéro d'application 18966201
Numéro de brevet 12271688
Statut Délivré - en vigueur
Date de dépôt 2024-12-03
Date de la première publication 2025-04-08
Date d'octroi 2025-04-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Moreno, Julia
  • Prabhudesai, Kedar Shriram
  • Liang, Fang
  • Valsaraj, Varunraj
  • Cay, Pelin
  • Vogelsang, Brett Alexander

Abrégé

A computer-implemented method includes receiving a natural language input including a natural language request for executing an analytical task and processing the natural language input by a language model, where the processing may include translating the natural language input to an analytical function call for calling an analytical function of a set of distinct analytical functions of an analytics computing server. Additionally, the computer-implemented method includes calling the analytical function at the analytics computing server using the analytical function call, receiving a technical output in response to calling the analytical function, and outputting a response to the natural language input that includes the technical analytical output.

Classes IPC  ?

  • G06F 17/00 - Équipement ou méthodes de traitement de données ou de calcul numérique, spécialement adaptés à des fonctions spécifiques
  • G06F 40/183 - Tabulation, c.-à-d. positionnement unidimensionnel
  • G06F 40/58 - Utilisation de traduction automatisée, p. ex. pour recherches multilingues, pour fournir aux dispositifs clients une traduction effectuée par le serveur ou pour la traduction en temps réel
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur

33.

Systems and methods for parallel exploration of a hyperparameter search space

      
Numéro d'application 19000713
Numéro de brevet 12271795
Statut Délivré - en vigueur
Date de dépôt 2024-12-24
Date de la première publication 2025-04-08
Date d'octroi 2025-04-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Long, Xindian
  • Cai, Liping
  • Du, Xingqi
  • Krueger, Steven Eric
  • Griffin, Joshua David
  • Xu, Yan
  • Pope, Scott Russell
  • Lewis, Lawrence Edmund

Abrégé

A system, method, and computer-program product includes selecting, by a controller node, a plurality of hyperparameter search points from a hyperparameter search space; instructing, by the controller node, one or more worker nodes to concurrently train a plurality of machine learning models for a target number of epochs using the plurality of hyperparameter search points; receiving, from the one or more worker nodes, a plurality of performance metrics that measure a performance of the plurality of machine learning models during the target number of epochs; and removing, by the controller node, one or more underperforming hyperparameter search points from the plurality of hyperparameter search points according to a pre-defined performance metric ranking criterion associated with the plurality of performance metrics.

Classes IPC  ?

34.

Analysis operations on data in a native tabular data structure using a proxy data table

      
Numéro d'application 18912220
Numéro de brevet 12259868
Statut Délivré - en vigueur
Date de dépôt 2024-10-10
Date de la première publication 2025-03-25
Date d'octroi 2025-03-25
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Carter, Mary Elizabeth
  • Banadaki, Arash Dehghan
  • Acierno, Avery Winston
  • Koch, Patrick Nathan

Abrégé

In one example, a system can receive, from application code including an analysis operation performed on a set of data, an indication to access the set of data included in a tabular data structure using an application programming interface (API), in which the tabular data structure is associated with a memory allocation and a type. The system can determine that the type of the tabular data structure is the native type, the native type characterizing data structures that are accessed using a first programming language and a second programming language. The system can identify a proxy data table that shares the memory allocation, the proxy data table accessed using the API based on the second programming language. The system can issue one or more read commands to the proxy data table to cause the set of data to be read from the tabular data structure.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 9/54 - Communication interprogramme
  • G06F 16/21 - Conception, administration ou maintenance des bases de données

35.

Data access for a native tabular data structure using a proxy data table

      
Numéro d'application 18911810
Numéro de brevet 12259867
Statut Délivré - en vigueur
Date de dépôt 2024-10-10
Date de la première publication 2025-03-25
Date d'octroi 2025-03-25
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Carter, Mary Elizabeth
  • Banadaki, Arash Dehghan
  • Acierno, Avery Winston
  • Koch, Patrick Nathan

Abrégé

In one example, a system can receive information about a tabular data structure in a memory including a set of data and a first memory allocation. The system can determine a type of the tabular data structure, the type selected from among two types including a native type and a non-native type. The system can, in response to the type being the native type, identify a first proxy data table usable as a proxy for the tabular data structure that shares the first memory allocation. The system can receive a first indication to access the set of data from application code. The system can issue one or more first read commands to the first proxy data table to cause the set of data to be read from the tabular data structure.

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06F 9/54 - Communication interprogramme
  • G06F 16/21 - Conception, administration ou maintenance des bases de données

36.

Systems and methods for dynamic specification limit calibration using an interactive graphical user interface and related simulation

      
Numéro d'application 18886761
Numéro de brevet 12332640
Statut Délivré - en vigueur
Date de dépôt 2024-09-16
Date de la première publication 2025-03-20
Date d'octroi 2025-06-17
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Fish, Gerald Lee
  • Wiggins, Jason Keith
  • Brady, Brady Adams

Abrégé

A system, method, and computer-program product includes obtaining, via a graphical user interface: an input of a measured unit distribution derived from measurements, by a measuring device, of a plurality of instances of a physical unit; an input of characteristics of the measuring device used in the measurements of the plurality of instances of the physical unit; and an input of a type of distribution for fitting a set of measurement values of the physical unit to a target distribution; computing, via a unit distribution estimation algorithm, an estimated true unit distribution of the plurality of instances of the physical unit based on (a) the input of the measured unit distribution, (b) the input of the characteristics of the measuring device, and (c) the input of the type of distribution; and using quantitative characteristics of the estimated true unit distribution to mitigate binning classification error of the physical units.

Classes IPC  ?

  • G05B 23/02 - Test ou contrôle électrique
  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

37.

SYSTEMS AND METHODS FOR DYNAMIC ALLOCATION OF COMPUTE RESOURCES VIA A MACHINE LEARNING-INFORMED FEEDBACK SEQUENCE

      
Numéro d'application US2024023158
Numéro de publication 2025/048897
Statut Délivré - en vigueur
Date de dépôt 2024-04-04
Date de publication 2025-03-06
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wellum, Richard, Keith
  • Gelpi, John, Hardin
  • Daehnrich, Alexander

Abrégé

A system, method, and computer-program product includes obtaining an analytical request that specifies an analytical task to be performed using computing resources of an adaptive analytics compute service, determining, by the adaptive analytics compute service, an initial set of compute resources for executing the analytical request based on identifying a type of the analytical request, deploying, by the adaptive analytics compute service, a compute environment for executing the analytical request based on the initial set of compute resources, observing utilization data of the initial set of compute resources during a period of executing the analytical request within the compute environment, and commencing a machine learning-informed feedback sequence for autonomously adapting the compute environment, wherein one iteration of the machine learning-informed feedback sequence includes: generating a proposed set of compute resources, and encoding, based on the proposed set of compute resources, a set of instructions for automatically adapting the compute environment.

Classes IPC  ?

  • H04L 47/76 - Contrôle d'admissionAllocation des ressources en utilisant l'allocation dynamique des ressources, p. ex. renégociation en cours d'appel sur requête de l'utilisateur ou sur requête du réseau en réponse à des changements dans les conditions du réseau
  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • H04L 47/78 - Architectures d'allocation des ressources
  • G06N 20/00 - Apprentissage automatique
  • H04L 47/70 - Contrôle d'admissionAllocation des ressources

38.

Dynamic simulation analytics

      
Numéro d'application 18733296
Numéro de brevet 12242940
Statut Délivré - en vigueur
Date de dépôt 2024-06-04
Date de la première publication 2025-03-04
Date d'octroi 2025-03-04
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Brocklebank, John Clare
  • Cutrell, Ann L.
  • Tanwir, Savera
  • Bradford, William Cyrus

Abrégé

A computing device obtains a computer model that predicts a predicted output for a studied system. The device obtains an initial predicted state for an applied system according to initial inputs to the computer model. The device receives a request for derived inputs that will generate, for the applied system, a user-requested change in the initial predicted state. The device generates decision deltas for the computer model. The device determines allowable function inputs to a computer function. The allowable function inputs are derived based on the decision deltas, the user-requested change, and the computer model. The device computes, using one or more of the allowable function inputs, at least one minimum or maximum value for the computer function. The device outputs output information based on the derived inputs that, according to the computer model, will affect the user-requested change in the initial predicted state.

Classes IPC  ?

39.

Systems and methods for implementing and using a cross-process queue within a single computer

      
Numéro d'application 18737592
Numéro de brevet 12271635
Statut Délivré - en vigueur
Date de dépôt 2024-06-07
Date de la première publication 2025-02-27
Date d'octroi 2025-04-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Lewis, Lawrence Edmund
  • Nazari, Mohammadreza
  • Dizche, Amirhassan Fallah

Abrégé

A system, method, and computer-program product includes implementing a cross-process queue within a single computer that is configured to transfer a data block between an operating system process executing a write operation and an operating system process executing a read operation, initializing in-memory cell indices within the cross-process queue that include a write operation index tracking index values of one or more cells within the cross-process queue that are available to write and a read operation index tracking index values of one or more cells within the cross-process queue that are available to read, and implementing a cell synchronization data structure tracking states of a plurality of cells of the index of cells of the cross-process queue.

Classes IPC  ?

  • G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement

40.

Systems and methods for implementing and using a cross-process queue within a single computer

      
Numéro d'application 18737721
Numéro de brevet 12265740
Statut Délivré - en vigueur
Date de dépôt 2024-06-07
Date de la première publication 2025-02-27
Date d'octroi 2025-04-01
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Lewis, Lawrence Edmund
  • Nazari, Mohammadreza
  • Dizche, Amirhassan Fallah

Abrégé

A system, method, and computer-program product includes implementing a cross-process queue within a single computer that is configured to transfer a data block between an operating system process executing a write operation and an operating system process executing a read operation, initializing in-memory cell indices within the cross-process queue that include a write operation index tracking index values of one or more cells within the cross-process queue that are available to write and a read operation index tracking index values of one or more cells within the cross-process queue that are available to read, and implementing a cell synchronization data structure tracking states of a plurality of cells of the index of cells of the cross-process queue.

Classes IPC  ?

  • G06F 3/06 - Entrée numérique à partir de, ou sortie numérique vers des supports d'enregistrement

41.

MULTI-THREAD DISTRIBUTED TRAINING OF A RECOMMENDER MODEL

      
Numéro d'application 18583837
Statut En instance
Date de dépôt 2024-02-21
Date de la première publication 2025-02-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Liao, Xuejun
  • Koch, Patrick Nathan

Abrégé

A system, method, and computer-program product includes receiving an input comprising a plurality of pre-defined factor matrices and an implicit feedback dataset partitioned into a plurality of implicit feedback data subsets; distributing the input across a controller node and a plurality of worker nodes implemented in a distributed computing environment; and training a model using the controller node and the plurality of worker nodes, wherein training the model includes: initializing, by the controller node, a controller-specific user parameters matrix and a controller-specific item parameters matrix, broadcasting, by the controller node, the controller-specific user parameters matrix and the controller-specific item parameters matrix to each worker node of the plurality of worker nodes, and concurrently executing an aggregation model training algorithm at the controller node and a plurality of localized model training algorithms across the plurality of worker nodes until a training termination condition is satisfied.

Classes IPC  ?

42.

SYSTEMS AND METHODS FOR IMPLEMENTING AND USING A CROSS-PROCESS QUEUE WITHIN A SINGLE COMPUTER

      
Numéro d'application 18737740
Statut En instance
Date de dépôt 2024-06-07
Date de la première publication 2025-02-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Lewis, Lawrence Edmund
  • Nazari, Mohammadreza
  • Dizche, Amirhassan Fallah

Abrégé

A system, method, and computer-program product includes implementing a cross-process queue within a single computer that is configured to transfer a data block between an operating system process executing a write operation and an operating system process executing a read operation, initializing in-memory cell indices within the cross-process queue that include a write operation index tracking index values of one or more cells within the cross-process queue that are available to write and a read operation index tracking index values of one or more cells within the cross-process queue that are available to read, and implementing a cell synchronization data structure tracking states of a plurality of cells of the index of cells of the cross-process queue.

Classes IPC  ?

  • G06F 9/54 - Communication interprogramme
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

43.

Synthetic generation of data with many to many relationships

      
Numéro d'application 18941263
Numéro de brevet 12373469
Statut Délivré - en vigueur
Date de dépôt 2024-11-08
Date de la première publication 2025-02-27
Date d'octroi 2025-07-29
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Xu, Kai
  • Ganev, Georgi Valentinov
  • Joubert, Emile Isak
  • Davison, Rees Stephen
  • Van Acker, Olivier Rene Maurice
  • Robinson, Luke Anthony William
  • Mahiou, Sofiane

Abrégé

Embodiments described herein relate to the efficient generation of synthetic datasets that represent many-to-many relationships. In particular, certain embodiments implement a particular factorization for many-to-many generative models, which leads to a scalable generation framework by combining random graph theory and representation learning. Further embodiments we extend the framework to establish the notion of differential privacy within the synthetically generated data. The embodiments described herein are therefore able to generate synthetic datasets efficiently while preserving information within and across many-to-many datasets with improved accuracy.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

44.

AUTOMATED NEAR-DUPLICATE DETECTION FOR TEXT DOCUMENTS

      
Numéro d'application US2024040901
Numéro de publication 2025/042570
Statut Délivré - en vigueur
Date de dépôt 2024-08-05
Date de publication 2025-02-27
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for automated detection of near-duplicate documents. In one example, a system can cluster documents into a set of clusters based on character frequencies associated with the documents. For a given cluster, the system can generate first similarity scores associated with every pair of documents in the cluster. The system can then select a filtered group of documents associated with first similarity scores that meet or exceed a first predefined similarity threshold. Next, the system can convert the filtered group of documents into matrix representations. The system can generate second similarity scores for every pair of matrix representations. The system can then identify documents, from among the filtered group of documents, associated with second similarity scores that meet or exceed a second predefined similarity threshold. The identified documents can be duplicate or near-duplicate text documents.

Classes IPC  ?

45.

LEARNING A DIRECTED ACYCLIC GRAPH USING A MACHINE LEARNING MODEL LOSS

      
Numéro d'application 18905480
Statut En instance
Date de dépôt 2024-10-03
Date de la première publication 2025-02-13
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a directed acyclic graph (DAG). (A) A target variable is defined from variables based on a topological order vector and a first index. (B) Input variables are defined from the variables based on the topological order vector and a second index. (C) A machine learning model is trained with observation vectors using the target variable and the input variables. (D) The machine learning model is executed to compute a loss value. (E) The second index is incremented. (F) (B) through (E) are repeated a first plurality of times. (G) The first index is incremented. (H) (A) through (G) are repeated a second plurality of times. A parent set is determined for each variable based on a comparison between the loss value computed each repetition of (D). The parent set is output for each variable to describe the DAG that defines a hierarchical relationship between the variables.

Classes IPC  ?

  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

46.

TOPOLOGICAL ORDER DETERMINATION USING MACHINE LEARNING

      
Numéro d'application 18538066
Statut En instance
Date de dépôt 2023-12-13
Date de la première publication 2025-02-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a best topological order vector for a plurality of variables. (A) A topological order vector is defined. (B) A target variable and zero or more input variables are defined based on the topological order vector. (C) A machine learning model is trained with observation vectors using values of the target variable and the zero or more input variables. (D) The machine learning model is executed with second observation vectors using the values of the target variable and the zero or more input variables to compute a loss value. (E) (A) through (D) are repeated a plurality of times. Each topological order vector defined in (A) is unique in comparison to other topological order vectors defined in (A). The best topological order vector is determined based on a comparison between the loss values computed for each topological order vector in (D).

Classes IPC  ?

  • G06F 16/22 - IndexationStructures de données à cet effetStructures de stockage
  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/08 - Méthodes d'apprentissage

47.

LEARNING A DIRECTED ACYCLIC GRAPH USING A TRAINED MACHINE LEARNING MODEL

      
Numéro d'application 18751509
Statut En instance
Date de dépôt 2024-06-24
Date de la première publication 2025-02-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a directed acyclic graph for a plurality of variables. (A) A target variable and zero or more input variables are defined based on a predefined topological order vector and a first index. (B) A machine learning model is trained with observation vectors using the target variable and the input variables. (C) The machine learning model is executed using the observation vectors with the target variable and the input variables to compute a residual vector. (D) The first index is incremented. (E) (A) through (D) are repeated a first plurality of times. A parent set is determined for each variable by comparing the residual vector computed each repetition of (C) to other residual vectors computed on other repetitions of (C). The parent set is output for each variable to describe a directed acyclic graph that defines a hierarchical relationship between the variables.

Classes IPC  ?

  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes
  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06N 20/00 - Apprentissage automatique

48.

LEARNING A DIRECTED ACYCLIC GRAPH USING A MACHINE LEARNING MODEL LOSS

      
Numéro d'application 18751584
Statut En instance
Date de dépôt 2024-06-24
Date de la première publication 2025-02-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a directed acyclic graph (DAG). (A) A target variable is defined from variables based on a topological order vector and a first index. (B) Input variables are defined from the variables based on the topological order vector and a second index. (C) A machine learning model is trained with observation vectors using the target variable and the input variables. (D) The machine learning model is executed to compute a loss value. (E) The second index is incremented. (F) (B) through (E) are repeated a first plurality of times. (G) The first index is incremented. (H) (A) through (G) are repeated a second plurality of times. A parent set is determined for each variable based on a comparison between the loss value computed each repetition of (D). The parent set is output for each variable to describe the DAG that defines a hierarchical relationship between the variables.

Classes IPC  ?

  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

49.

Method and system for predicting relevant network relationships

      
Numéro d'application 18777760
Numéro de brevet 12277511
Statut Délivré - en vigueur
Date de dépôt 2024-07-19
Date de la première publication 2025-01-30
Date d'octroi 2025-04-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Ablitt, Nicholas Akbar
  • Morris, James Byron

Abrégé

The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device applies the trained first model to the one or more links between the plurality of nodes from a first node, iteratively connects each node to the one or more first sets of generated networks for each of the relevant links until the relevant links for connection to the plurality of nodes are not present, and outputs the one or more first sets of generated networks. The computing device also applies the trained first model to the one or more links between the plurality of nodes, removes the non-relevant links, connects each node of the plurality of nodes with the relevant links to generate one or more second sets of networks, and outputs the one or more second sets of generated networks.

Classes IPC  ?

  • G06N 7/01 - Modèles graphiques probabilistes, p. ex. réseaux probabilistes

50.

Method and system for predicting relevant network relationships

      
Numéro d'application 18783592
Numéro de brevet 12282859
Statut Délivré - en vigueur
Date de dépôt 2024-07-25
Date de la première publication 2025-01-30
Date d'octroi 2025-04-22
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Ablitt, Nicholas Akbar
  • Morris, James Byron

Abrégé

The computing device trains a first model on a first data set using a first graph to predict relevant links between a plurality of nodes. The computing device obtains the first data set or a second data set associated with the plurality of nodes. The computing device determines the one or more features for the one or more links between the plurality of nodes, applies the trained first model to the one or more links between the plurality of nodes, outputs the relevant links and non-relevant links of the one or more links between the plurality of nodes, removes the non-relevant links between the plurality of nodes, connects each node of the plurality of nodes with the relevant links to generate one or more first sets of networks, and outputs the one or more first sets of generated networks.

Classes IPC  ?

  • G06N 5/01 - Techniques de recherche dynamiqueHeuristiquesArbres dynamiquesSéparation et évaluation

51.

Restructuring matrix processing on a computing device

      
Numéro d'application 18793225
Numéro de brevet 12204606
Statut Délivré - en vigueur
Date de dépôt 2024-08-02
Date de la première publication 2025-01-21
Date d'octroi 2025-01-21
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Andrianov, Alexander Vladimirovich

Abrégé

In some examples, a system can store a first array, which is a one-dimensional array of values (e.g., matrix values), in memory. The system can also store a second array in the memory, where the second array is a one-dimensional array of pointers that point to positions of a subset of the values in the first array. The subset of values can be a first entry of each row or column of a matrix. The system can then provide the second array as input to a program routine, which can perform a matrix operation. To do so, the program routine can access the first array and the second array in memory, select a set of values for the matrix from the first array by using the pointers, execute the matrix operation using the using the selected set of values, and output the result.

Classes IPC  ?

52.

Systems and methods for outlier detection and feature transformation in machine learning model training

      
Numéro d'application 18824828
Numéro de brevet 12190219
Statut Délivré - en vigueur
Date de dépôt 2024-09-04
Date de la première publication 2025-01-07
Date d'octroi 2025-01-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Nyangon, Joseph O.
  • Akintunde, Ruth Oluwadamilola

Abrégé

A computer-program product, computer-implemented method, and computer-implemented system includes obtaining a raw dataset; executing an outlier filtration process based on obtaining the raw dataset; training a model using a refined outlier-reduced dataset; and predicting, via the trained model, a value of the target entity at a future time.

Classes IPC  ?

53.

Predicting likelihood of request classifications using deep learning

      
Numéro d'application 18672589
Numéro de brevet 12189716
Statut Délivré - en vigueur
Date de dépôt 2024-05-23
Date de la première publication 2025-01-07
Date d'octroi 2025-01-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Liao, Yi
  • Armagan, Artin
  • Oothongsap, Phoemphun
  • Hare, Brian Christopher
  • Arangala, Adheesha Sanjaya
  • Jung, Jin-Whan

Abrégé

A system and method include receiving a first set of variables associated with a real-time request, extracting a predetermined subset of the first set of variables for generating a second set of variables, identifying historical request data, computing a set of parameters based on the first set of variables and the historical request data, generating a plurality of numeric sequences and a plurality of string sequences for the real-time request, converting each of the plurality of string sequences into an encoded string sequence to obtain a plurality of encoded string sequences, inputting the plurality of numeric sequences and the plurality of encoded string sequences into a trained deep machine learning model, and computing a score from the trained deep machine learning model, the score indicative of a likelihood that the real-time request belongs to an unauthorized classification.

Classes IPC  ?

  • G06N 3/086 - Méthodes d'apprentissage en utilisant les algorithmes évolutionnaires, p. ex. les algorithmes génétiques ou la programmation génétique
  • G06F 18/21 - Conception ou mise en place de systèmes ou de techniquesExtraction de caractéristiques dans l'espace des caractéristiquesSéparation aveugle de sources
  • G06F 18/214 - Génération de motifs d'entraînementProcédés de Bootstrapping, p. ex. ”bagging” ou ”boosting”
  • G06F 18/22 - Critères d'appariement, p. ex. mesures de proximité
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

54.

Graphical user interface and pipeline for text analytics

      
Numéro d'application 18737391
Numéro de brevet 12339887
Statut Délivré - en vigueur
Date de dépôt 2024-06-07
Date de la première publication 2024-12-26
Date d'octroi 2025-06-24
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

55.

Graphical user interface and pipeline for text analytics

      
Numéro d'application 18737520
Numéro de brevet 12197481
Statut Délivré - en vigueur
Date de dépôt 2024-06-07
Date de la première publication 2024-12-26
Date d'octroi 2025-01-14
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

56.

Distributed gaussian process classification computing system

      
Numéro d'application 18635410
Numéro de brevet 12175374
Statut Délivré - en vigueur
Date de dépôt 2024-04-15
Date de la première publication 2024-12-24
Date d'octroi 2024-12-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wang, Yingjian
  • Wu, Xinmin

Abrégé

A computing system trains a classification model using distributed training data. A first worker index and a second worker index are received from a controller device and together uniquely identify a segment of a lower triangular matrix. The first and second worker indices have values from one to a predefined block size value. In response to receipt of a first computation request from the controller device, a first kernel matrix block is computed at each computing device based on the first worker index and the second worker index. In response to receipt of a second computation request from the controller device, an objective function value is computed for each observation vector included in an accessed training data subset. The computed objective function value is sent to the controller device. Model parameters for a trained classification model are output.

Classes IPC  ?

  • G06N 3/098 - Apprentissage distribué, p. ex. apprentissage fédéré
  • G06N 5/04 - Modèles d’inférence ou de raisonnement
  • G06N 20/10 - Apprentissage automatique utilisant des méthodes à noyaux, p. ex. séparateurs à vaste marge [SVM]
  • G06N 20/00 - Apprentissage automatique

57.

Architecture for execution of computer programs inside data systems

      
Numéro d'application 18665001
Numéro de brevet 12155727
Statut Délivré - en vigueur
Date de dépôt 2024-05-15
Date de la première publication 2024-11-26
Date d'octroi 2024-11-26
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ghazaleh, David Abu

Abrégé

A computing system is configured to receive, at a service entity, from a data exchange entity, an execution command indicating to store an instance of a data program in a memory portion of the computing system by storing computer instructions based on an external data program of an external computing system. The computing system is configured to receive, at a service entity, from a data exchange entity, an indication of availability of the input data. The input data is available for use by the instance of the data program. The computing system is configured to send from the service entity an indication of availability of the output data. The output data is generated based on execution of the instance of the data program.

Classes IPC  ?

  • G06F 15/173 - Communication entre processeurs utilisant un réseau d'interconnexion, p. ex. matriciel, de réarrangement, pyramidal, en étoile ou ramifié
  • G06F 16/11 - Administration des systèmes de fichiers, p. ex. détails de l’archivage ou d’instantanés
  • G06F 16/178 - Techniques de synchronisation des fichiers dans les systèmes de fichiers
  • H04L 67/12 - Protocoles spécialement adaptés aux environnements propriétaires ou de mise en réseau pour un usage spécial, p. ex. les réseaux médicaux, les réseaux de capteurs, les réseaux dans les véhicules ou les réseaux de mesure à distance

58.

Systems and methods for dynamic allocation of compute resources via a machine learning-informed feedback sequence

      
Numéro d'application 18627375
Numéro de brevet 12147838
Statut Délivré - en vigueur
Date de dépôt 2024-04-04
Date de la première publication 2024-11-19
Date d'octroi 2024-11-19
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wellum, Richard Keith
  • Gelpi, John Hardin
  • Daehnrich, Alexander

Abrégé

A system, method, and computer-program product includes obtaining an analytical request that specifies an analytical task to be performed using computing resources of an adaptive analytics compute service, determining, by the adaptive analytics compute service, an initial set of compute resources for executing the analytical request based on identifying a type of the analytical request, deploying, by the adaptive analytics compute service, a compute environment for executing the analytical request based on the initial set of compute resources, observing utilization data of the initial set of compute resources during a period of executing the analytical request within the compute environment, and commencing a machine learning-informed feedback sequence for autonomously adapting the compute environment, wherein one iteration of the machine learning-informed feedback sequence includes: generating a proposed set of compute resources, and encoding, based on the proposed set of compute resources, a set of instructions for automatically adapting the compute environment.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 11/30 - Surveillance du fonctionnement

59.

Data access layer for translating between a data structure used by a first software program and a proxy table used by a second software program

      
Numéro d'application 18599342
Numéro de brevet 12141138
Statut Délivré - en vigueur
Date de dépôt 2024-03-08
Date de la première publication 2024-11-12
Date d'octroi 2024-11-12
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Koch, Patrick Nathan

Abrégé

In one example, a system can receive information about a data structure including a set of data entries. The system can generate a proxy data table including a set of columns. The system can use a data access layer to generate a mapping from the data entries to the columns. The system can receive an input to cause an operation to be performed on the data structure by performing the operation on the data structure. Generating a result can involve issuing read commands to the data access layer to perform the operation on the data structure such that the data access layer obtains the associated data entries and provides them as responses to the read commands by performing a translation between the data entries and the columns based on the mapping. The system can then output the result of the operation.

Classes IPC  ?

60.

DEEP LEARNING MODEL FOR ENERGY FORECASTING

      
Numéro d'application 18410742
Statut En instance
Date de dépôt 2024-01-11
Date de la première publication 2024-11-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chauhan, Richa
  • Yadav, Harish
  • Shah, Hemil
  • Kamat, Kanchan
  • De Castro, Arnulfo D.
  • Lee, Tae Yoon

Abrégé

In one example, a system can receive an input from a user indicating a target variable to be forecasted over a future time window. The system can then determine independent variables that influence the target variable and generate a set of candidate variables, including combinations of the independent variables. The system can then execute a random forest classifier to identify a subset of candidate variables having a threshold level of influence on the target variable. The system can then construct a machine-learning model configured to receive the identified subset of candidate variables as inputs and generate a forecast of the target variable. After constructing the machine-learning model, the system can train the machine-learning model using historical data and then execute the machine-learning model to generate the forecast.

Classes IPC  ?

  • G06N 3/045 - Combinaisons de réseaux
  • G06N 20/20 - Techniques d’ensemble en apprentissage automatique

61.

Graphical user interface and pipeline for text analytics

      
Numéro d'application 18615319
Numéro de brevet 12135737
Statut Délivré - en vigueur
Date de dépôt 2024-03-25
Date de la première publication 2024-11-05
Date d'octroi 2024-11-05
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Pagolu, Murali Krishna
  • Kozak, Corey Kyle

Abrégé

A graphical user interface (GUI) and pipeline for processing text documents is provided herein. In one example, a system can receive unstructured text documents. The system can determine entity-issue descriptions corresponding to the unstructured text documents. The system can then generate a GUI indicating the entity-issue descriptions. The GUI can also indicate assignments of the unstructured text documents to categories of a predefined schema. The GUI can allow the user to adjust the assignments of the unstructured text documents to the categories. The GUI can also include a table of rows, where each row corresponds to one of the unstructured text documents. Each row can indicate an entity-issue description in the corresponding unstructured text document and the categories assigned to the unstructured text document. Each row can also include a graphical button that is selectable to allow the user to view the unstructured text document corresponding to the row.

Classes IPC  ?

  • G06F 16/34 - NavigationVisualisation à cet effet

62.

Automated near-duplicate detection for text documents

      
Numéro d'application 18394209
Numéro de brevet 12124518
Statut Délivré - en vigueur
Date de dépôt 2023-12-22
Date de la première publication 2024-10-22
Date d'octroi 2024-10-22
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Wang, Fan
  • Jade, Teresa S.
  • Yang, Xu

Abrégé

Techniques described herein provide for automated detection of near-duplicate documents. In one example, a system can cluster documents into a set of clusters based on character frequencies associated with the documents. For a given cluster, the system can generate first similarity scores associated with every pair of documents in the cluster. The system can then select a filtered group of documents associated with first similarity scores that meet or exceed a first predefined similarity threshold. Next, the system can convert the filtered group of documents into matrix representations. The system can generate second similarity scores for every pair of matrix representations. The system can then identify documents, from among the filtered group of documents, associated with second similarity scores that meet or exceed a second predefined similarity threshold. The identified documents can be duplicate or near-duplicate text documents.

Classes IPC  ?

  • G06F 7/02 - Comparaison de valeurs numériques
  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/906 - GroupementClassement
  • G06F 16/93 - Systèmes de gestion de documents
  • G06F 16/35 - PartitionnementClassement

63.

Standard error for deep learning model outcome estimator

      
Numéro d'application 18529014
Numéro de brevet 12165031
Statut Délivré - en vigueur
Date de dépôt 2023-12-05
Date de la première publication 2024-10-17
Date d'octroi 2024-12-10
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kabisa, Sylvie Tchumtchoua
  • Chen, Xilong
  • Walton, Gunce Eryuruk
  • Elsheimer, David Bruce
  • Chang, Ming-Chun

Abrégé

A treatment model trained to compute an estimated treatment variable value for each observation vector of a plurality of observation vectors is executed. Each observation vector includes covariate variable values, a treatment variable value, and an outcome variable value. An outcome model trained to compute an estimated outcome value for each observation vector using the treatment variable value for each observation vector is executed. A standard error value associated with the outcome model is computed using a first variance value computed using the treatment variable value of the plurality of observation vectors, using a second variance value computed using the treatment variable value and the estimated treatment variable value of the plurality of observation vectors, and using a third variance value computed using the estimated outcome value of the plurality of observation vectors. The standard error value is output.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

64.

Bayesian neural network point estimator

      
Numéro d'application 18530798
Numéro de brevet 12210954
Statut Délivré - en vigueur
Date de dépôt 2023-12-06
Date de la première publication 2024-10-17
Date d'octroi 2025-01-28
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kabisa, Sylvie Tchumtchoua
  • Chen, Xilong
  • Walton, Gunce Eryuruk
  • Elsheimer, David Bruce
  • Chang, Ming-Chun

Abrégé

A point estimate value for an individual is computed using a Bayesian neural network model (BNN) by training a first BNN model that computes a weight mean value, a weight standard deviation value, a bias mean value, and a bias standard deviation value for each neuron of a plurality of neurons using observations. A plurality of BNN models is instantiated using the first BNN model. Instantiating each BNN model of the plurality of BNN models includes computing, for each neuron, a weight value using the weight mean value, the weight standard deviation value, and a weight random draw and a bias value using the bias mean value, the bias standard deviation value, and a bias random draw. Each instantiated BNN model is executed with the observations to compute a statistical parameter value for each observation vector of the observations. The point estimate value is computed from the statistical parameter value.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/045 - Combinaisons de réseaux
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/084 - Rétropropagation, p. ex. suivant l’algorithme du gradient

65.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

      
Numéro d'application 18637794
Numéro de brevet 12346821
Statut Délivré - en vigueur
Date de dépôt 2024-04-17
Date de la première publication 2024-10-17
Date d'octroi 2025-07-01
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Gottula, John Wesley

Abrégé

A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.

Classes IPC  ?

  • G06N 20/00 - Apprentissage automatique
  • G06F 18/20 - Analyse
  • G06F 18/2135 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères d'approximation, p. ex. analyse en composantes principales
  • G06N 3/09 - Apprentissage supervisé

66.

Systems and methods for enhanced speaker diarization

      
Numéro d'application 18634155
Numéro de brevet 12165650
Statut Délivré - en vigueur
Date de dépôt 2024-04-12
Date de la première publication 2024-10-17
Date d'octroi 2024-12-10
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes receiving speech audio of a multi-turn conversation, generating, via a speech-to-text process, a transcript of the speech audio, wherein the transcript of the speech audio textually segments speech spoken during the multi-turn conversation into a plurality of utterances, generating a speaker diarization prompt that includes contextual information about a plurality of speakers participating in the multi-turn conversation, inputting, to a large language model, the speaker diarization prompt and the transcript of the speech audio, and obtaining, from the large language model, an output comprising an enhanced transcript of the speech audio, wherein the enhanced transcript of the speech audio textually segments the speech spoken during the multi-turn conversation into a plurality of refined utterances and associates a speaker identification value with each of the plurality of refined utterances.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

67.

Graphical user interface and alerting system for detecting and mitigating problems in an agent network

      
Numéro d'application 18581450
Numéro de brevet 12113660
Statut Délivré - en vigueur
Date de dépôt 2024-02-20
Date de la première publication 2024-10-08
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Hargrove, Jennifer Lee
  • Mir, Ellen Laura
  • Maynard, John L.
  • Haralson, Karen D.
  • Kozak, Corey K.

Abrégé

In some examples a system can receive sets of usage data from agent computer systems associated with agents. The agents can be associated with service providers that provide services to service users. The system can generate a corresponding set of metric values for a common set of metrics for each agent based on a corresponding set of usage data. The common set of metrics can be used for all of the agents to detect anomalies related to the agents. The system can generate a score for each agent based on the corresponding set of metric values, wherein the score indicates a risk level associated with the agent. The system can compare the scores for the agents to a predefined threshold to identify one or more agents that may be problematic. The system can then generate a graphical user interface indicating the one or more identified agents.

Classes IPC  ?

  • H04L 41/06 - Gestion des fautes, des événements, des alarmes ou des notifications
  • H04L 41/046 - Architectures ou dispositions de gestion de réseau comprenant des agents de gestion de réseau ou des agents mobiles à cet effet
  • H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]

68.

Source code evaluator and modified parameter structure for enabling automated validation of parameter values in source code

      
Numéro d'application 18609387
Numéro de brevet 12111750
Statut Délivré - en vigueur
Date de dépôt 2024-03-19
Date de la première publication 2024-10-08
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Xiao, Yongqiao
  • Koch, Patrick Nathan

Abrégé

Parameter values in source code can be automatically validated using the techniques described herein. For example, a system can receive source code that includes a call to an action. The action can have a parameter that is set to a selected value in the source code. The parameter can be defined in definition data. The system can also receive a file that separate from the source code and includes metadata for the parameter. The system can extract the metadata from the file and modify the definition data to include the metadata. The system can then execute a validation process on the selected value for the parameter. The validation process can involve retrieving the metadata from the modified definition data, evaluating the selected value using the metadata to determine whether the selected value is invalid, and if it is invalid, outputting an error notification indicating that the selected value is invalid.

Classes IPC  ?

  • G06F 11/36 - Prévention d'erreurs par analyse, par débogage ou par test de logiciel

69.

Methods and systems for enhanced sensor assessments for predicting secondary endpoints

      
Numéro d'application 18637783
Numéro de brevet 12099932
Statut Délivré - en vigueur
Date de dépôt 2024-04-17
Date de la première publication 2024-09-24
Date d'octroi 2024-09-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Gottula, John Wesley

Abrégé

A method, system, and computer-program product includes identifying a set of heterogeneous sensors, configuring a plurality of model training compositions for each of the set of heterogeneous sensors, computing, for each of the plurality of model training compositions, a first efficacy metric value based on predictive outputs of the at least two machine learning models, identifying, for each sensor of the set of heterogeneous sensors, a champion model training composition of the subject sensor, the champion model training composition having a highest efficacy metric value, and electing, from a plurality of champion model training compositions corresponding to the champion model training compositions identified for each sensor of the set of heterogeneous sensors, an overall champion model training composition corresponding to a champion sensor of the set of heterogeneous sensors based on an assessment of second efficacy metric values of the plurality of champion model training compositions.

Classes IPC  ?

  • G06N 3/09 - Apprentissage supervisé
  • G06F 18/20 - Analyse
  • G06F 18/2135 - Extraction de caractéristiques, p. ex. en transformant l'espace des caractéristiquesSynthétisationsMappages, p. ex. procédés de sous-espace basée sur des critères d'approximation, p. ex. analyse en composantes principales

70.

Topological order determination using machine learning

      
Numéro d'application 18538070
Numéro de brevet 12056207
Statut Délivré - en vigueur
Date de dépôt 2023-12-13
Date de la première publication 2024-08-06
Date d'octroi 2024-08-06
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Chen, Xilong
  • Huang, Tao
  • Chvosta, Jan

Abrégé

A computing device learns a best topological order vector of a plurality of variables. A target variable and zero or more input variables are defined. (A) A machine learning model is trained with observation vectors using the target variable and the zero or more input variables. (B) The machine learning model is executed to compute an equation loss value. (C) The equation loss value is stored with the identifier. (D) The identifier is incremented. (E) (A) through (D) are repeated a plurality of times. (F) A topological order vector is defined. (G) A loss value is computed from a subset of the stored equation loss values based on the topological order vector. (F) through (G) are repeated for each unique permutation of the topological order vector. A best topological order vector is determined based on a comparison between the loss value computed for each topological order vector in (G).

Classes IPC  ?

  • G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques

71.

SYSTEMS AND METHODS FOR CONFIGURING AND USING A MULTI-STAGE OBJECT CLASSIFICATION AND CONDITION PIPELINE

      
Numéro d'application US2023082412
Numéro de publication 2024/123723
Statut Délivré - en vigueur
Date de dépôt 2023-12-05
Date de publication 2024-06-13
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Blanchard, Robert, Winston
  • Vengateshwaran, Neela, Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

72.

SYSTEMS AND METHODS FOR CONFIGURING AND USING A MULTI-STAGE OBJECT CLASSIFICATION AND CONDITION PIPELINE

      
Numéro de document 03242839
Statut En instance
Date de dépôt 2023-12-05
Date de disponibilité au public 2024-06-13
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Blanchard, Robert Winston
  • Vengateshwaran, Neela Niranjani

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo

73.

Cutoff value optimization for bias mitigating machine learning training system with multi-class target

      
Numéro d'application 18444906
Numéro de brevet 12093826
Statut Délivré - en vigueur
Date de dépôt 2024-02-19
Date de la première publication 2024-06-13
Date d'octroi 2024-09-17
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Tharrington, Jr., Ricky Dee
  • Abbey, Ralph Walter
  • Hunt, Xin Jiang

Abrégé

A computing device trains a fair prediction model while defining an optimal event cutoff value. (A) A prediction model is trained with observation vectors. (B) The prediction model is executed to define a predicted target variable value and a probability associated with an accuracy of the predicted target variable value. (C) A conditional moments matrix is computed based on fairness constraints, the predicted target variable value, and the sensitive attribute variable value of each observation vector. The predicted target variable value has a predefined target event value only when the probability is greater than a predefined event cutoff value. (D) (A) through (C) are repeated. (E) An updated value is computed for the predefined event cutoff value. (F) (A) through (E) are repeated. An optimal event cutoff value is defined from the predefined event cutoff values used when repeating (A) through (E). The optimal value and prediction model are output.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance

74.

Systems and methods for configuring and using a multi-stage object classification and condition pipeline

      
Numéro d'application 18528685
Numéro de brevet 12002256
Statut Délivré - en vigueur
Date de dépôt 2023-12-04
Date de la première publication 2024-06-04
Date d'octroi 2024-06-04
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Blanchard, Robert Winston
  • Vengateshwaran, Neela Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within target image data of a scene, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing, via the one or more processors, the target image data of the scene to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models based on a mapping between the plurality of distinct object classes and the plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class of a plurality of distinct object-condition classes, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/94 - Architectures logicielles ou matérielles spécialement adaptées à la compréhension d’images ou de vidéos

75.

Method and system for digital traffic campaign management

      
Numéro d'application 18513882
Numéro de brevet 12051087
Statut Délivré - en vigueur
Date de dépôt 2023-11-20
Date de la première publication 2024-05-23
Date d'octroi 2024-07-30
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Statham, Craig Geoffrey
  • Gay, Sauryha Lynne

Abrégé

The computing device receives data for a plurality of events that includes a timestamp associated with a digital traffic campaign in an event processing system. Based on the timestamp of the data for each event, the computing device executes operations comprising: applying filtering using digital signal processing to the event count for the combined data for each of the one or more intervals, executing a model to compute one or more backward difference approximations for the one or more candidate systems time constants from the evaluated exponential curve, and selecting a system time constant that predicts a first time instant wherein the data for the plurality of events approaches a point on a horizontal asymptote for the evaluated exponential curve. The computing device determines an epoch for the selected system time constant and outputs the determined epoch for the selected system time constant in the graphical user interface.

Classes IPC  ?

  • G06Q 30/0242 - Détermination de l’efficacité des publicités
  • G06Q 30/0201 - Modélisation du marchéAnalyse du marchéCollecte de données du marché

76.

Cubic regularization optimizer

      
Numéro d'application 18511092
Numéro de brevet 11983631
Statut Délivré - en vigueur
Date de dépôt 2023-11-16
Date de la première publication 2024-05-14
Date d'octroi 2024-05-14
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Zhou, Wenwen
  • Griffin, Joshua David
  • Omheni, Riadh
  • Yektamaram, Seyedalireza
  • Xu, Yan

Abrégé

A computer determines a solution to a nonlinear optimization problem. A conjugate gradient (CG) iteration is performed with a first order derivative vector and a second order derivative matrix to update a CG residual vector, an H-conjugate vector, and a residual weight vector. A CG solution vector is updated using a previous CG solution vector, the H-conjugate vector, and the residual weight vector. An eigenvector of the second order derivative matrix having a smallest eigenvalue is computed. A basis matrix is defined that includes a cubic regularization (CR) solution vector, a CR residual vector, the CG solution vector, the CG residual vector, and the eigenvector. A CR iteration is performed to update the CR solution vector. The CR residual vector is updated using the first order derivative vector, the second order derivative matrix, and the updated CR solution vector. The process is repeated until a stop criterion is satisfied.

Classes IPC  ?

77.

Systems, methods, and graphical user interfaces for configuring design of experiments

      
Numéro d'application 18380646
Numéro de brevet 11977820
Statut Délivré - en vigueur
Date de dépôt 2023-10-16
Date de la première publication 2024-05-07
Date d'octroi 2024-05-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Liu, Peng
  • Bailey, Mark Wallace
  • Jones, Bradley Allen
  • King, Caleb Bridges
  • Lekivetz, Ryan Adam
  • Morgan, Joseph Albert
  • Rhyne, Jacob Davis

Abrégé

A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.

Classes IPC  ?

  • G06F 30/12 - CAO géométrique caractérisée par des moyens d’entrée spécialement adaptés à la CAO, p. ex. interfaces utilisateur graphiques [UIG] spécialement adaptées à la CAO
  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans

78.

Combining user feedback with an automated entity-resolution process executed on a computer system

      
Numéro d'application 18299973
Numéro de brevet 12111803
Statut Délivré - en vigueur
Date de dépôt 2023-04-13
Date de la première publication 2024-04-18
Date d'octroi 2024-10-08
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ablitt, Nicholas

Abrégé

One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.

Classes IPC  ?

  • G06F 16/21 - Conception, administration ou maintenance des bases de données
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour

79.

Combining user feedback with an automated entity-resolution process executed on a computer system

      
Numéro d'application 18212832
Numéro de brevet 12086117
Statut Délivré - en vigueur
Date de dépôt 2023-06-22
Date de la première publication 2024-04-18
Date d'octroi 2024-09-10
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s) Ablitt, Nicholas Akbar

Abrégé

One example described herein involves a system that can receive a set of data records and execute an automated entity resolution (AER) process configured to assign the set of data records to a set of entities. For each entity in the set of entities, the system can generate a respective consistency score for the entity, generate a respective confidence score for the entity based on the respective consistency score for the entity, and determine a respective visual indicator based on the respective confidence score for the entity. The respective visual indicator can indicate a risk of record misassignment to a user. The system can then generate a graphical user interface that includes the respective visual indicator for each of the entities.

Classes IPC  ?

  • G06F 16/00 - Recherche d’informationsStructures de bases de données à cet effetStructures de systèmes de fichiers à cet effet
  • G06F 16/215 - Amélioration de la qualité des donnéesNettoyage des données, p. ex. déduplication, suppression des entrées non valides ou correction des erreurs typographiques
  • G06F 16/23 - Mise à jour

80.

Robust heart-rate detection techniques for wearable heart-rate sensors

      
Numéro d'application 18527070
Numéro de brevet 11950933
Statut Délivré - en vigueur
Date de dépôt 2023-12-01
Date de la première publication 2024-04-09
Date d'octroi 2024-04-09
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Sadek, Carol Wagih
  • Liao, Yuwei
  • Chaudhuri, Arin

Abrégé

A heart-rate detection system can receive heartbeat data generated by a wearable heart-rate sensor worn by a wearer. The system can then execute a noise-reduction process for reducing noise in the heartbeat data. The noise-reduction process can involve applying a lowpass filter to the heartbeat data, generating wavelet coefficients by applying a wavelet transform to the filtered heartbeat data, and generating a reduced set of wavelet coefficients by thresholding the wavelet coefficients. An inverse wavelet signal can then be generated by applying an inverse wavelet transform to the reduced set of wavelet coefficients. R-peaks can be identified by performing peak detection on the instantaneous amplitudes of the data points in the inverse wavelet signal. A heart rate curve can then be generated based on the R-peaks and modified by applying a Hampel filter. Heartbeat data can then be generated based on the modified heart rate curve for output.

Classes IPC  ?

  • A61B 5/00 - Mesure servant à établir un diagnostic Identification des individus
  • A61B 5/024 - Mesure du pouls ou des pulsations cardiaques
  • G16H 40/67 - TIC spécialement adaptées à la gestion ou à l’administration de ressources ou d’établissements de santéTIC spécialement adaptées à la gestion ou au fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement d’équipement ou de dispositifs médicaux pour le fonctionnement à distance
  • G16H 50/70 - TIC spécialement adaptées au diagnostic médical, à la simulation médicale ou à l’extraction de données médicalesTIC spécialement adaptées à la détection, au suivi ou à la modélisation d’épidémies ou de pandémies pour extraire des données médicales, p. ex. pour analyser les cas antérieurs d’autres patients

81.

Systems, methods, and graphical user interfaces for configuring design of experiments

      
Numéro d'application 18229050
Numéro de brevet 11928325
Statut Délivré - en vigueur
Date de dépôt 2023-08-01
Date de la première publication 2024-03-12
Date d'octroi 2024-03-12
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Liu, Peng
  • Bailey, Mark Wallace
  • Jones, Bradley Allen
  • King, Caleb Bridges
  • Lekivetz, Ryan Adam
  • Morgan, Joseph Albert
  • Rhyne, Jacob Davis

Abrégé

A system, method, and computer-program product includes displaying a plurality of factor-setting user interface (UI) control elements configured to receive an input of characters for specifying a set of design of experiment factors for creating a design of experiment (DOE), displaying a plurality of factor type UI control elements configured to receive input for specifying a factor type of a plurality of factor types, displaying a plurality of dynamic rows of editable UI control elements configured to receive inputs of experimental values for the set of DOE factors, and displaying a composite factor UI control component configured to receive inputs for generating one or more control signals that add or remove one or more DOE factors of the set of DOE factors.

Classes IPC  ?

  • G06F 3/0482 - Interaction avec des listes d’éléments sélectionnables, p. ex. des menus
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

82.

Flow model computation system with disconnected graphs

      
Numéro d'application 18207432
Numéro de brevet 11914548
Statut Délivré - en vigueur
Date de dépôt 2023-06-08
Date de la première publication 2024-02-27
Date d'octroi 2024-02-27
Propriétaire SAS Institute Inc. (USA)
Inventeur(s) Khatkale, Shyam Kashinath

Abrégé

A computing device determines a node traversal order for computing a computational parameter value for each node of a data model of a system that includes a plurality of disconnected graphs. The data model represents a flow of a computational parameter value through the nodes from a source module to an end module. A flow list defines an order for selecting and iteratively processing each node to compute the computational parameter value in a single iteration through the flow list. Each node from the flow list is selected to compute a driver quantity for each node. Each node is selected from the flow list in a reverse order to compute a driver rate and the computational parameter value for each node. The driver quantity or the computational parameter value is output for each node to predict a performance of the system.

Classes IPC  ?

  • G06F 15/82 - Architectures de calculateurs universels à programmes enregistrés commandés par des données ou à la demande
  • G06F 11/34 - Enregistrement ou évaluation statistique de l'activité du calculateur, p. ex. des interruptions ou des opérations d'entrée–sortie

83.

Anomaly detection using RPCA and ICA

      
Numéro d'application 18223717
Numéro de brevet 11887012
Statut Délivré - en vigueur
Date de dépôt 2023-07-19
Date de la première publication 2024-01-30
Date d'octroi 2024-01-30
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Kolay, Sudipta
  • Xu, Steven Guanxing
  • Shen, Kai
  • Talebi, Zohreh Asgharzadeh

Abrégé

A computing device identifies an anomaly among a plurality of observation vectors. An observation vector is projected using a predefined orthogonal complement matrix. The predefined orthogonal complement matrix is determined from a decomposition of a low-rank matrix. The low-rank matrix is computed using a robust principal component analysis algorithm. The projected observation vector is multiplied by a predefined demixing matrix to define a demixed observation vector. The predefined demixing matrix is computed using an independent component analysis algorithm and the predefined orthogonal complement matrix. A detection statistic value is computed from the defined, demixed observation vector. When the computed detection statistic value is greater than or equal to a predefined anomaly threshold value, an indicator is output that the observation vector is an anomaly.

Classes IPC  ?

  • G06N 5/022 - Ingénierie de la connaissanceAcquisition de la connaissance
  • G06N 20/00 - Apprentissage automatique
  • G06F 17/16 - Calcul de matrice ou de vecteur

84.

Systems, methods, and graphical user interfaces for taxonomy-based classification of unlabeled structured datasets

      
Numéro d'application 18221684
Numéro de brevet 12277144
Statut Délivré - en vigueur
Date de dépôt 2023-07-13
Date de la première publication 2024-01-25
Date d'octroi 2025-04-15
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Rausch, Nancy Anne
  • Akintunde, Ruth Oluwadamilola
  • Kay, Brant Nathan

Abrégé

A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.

Classes IPC  ?

  • G06F 40/284 - Analyse lexicale, p. ex. segmentation en unités ou cooccurrence
  • G06F 16/242 - Formulation des requêtes
  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

85.

Grid status monitoring system

      
Numéro d'application 18214038
Numéro de brevet 11860212
Statut Délivré - en vigueur
Date de dépôt 2023-06-26
Date de la première publication 2024-01-02
Date d'octroi 2024-01-02
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Anderson, Thomas Dale
  • Sharma, Priyadarshini
  • Konya, Mark Joseph
  • Liao, Yuwei

Abrégé

A computer monitors a status of grid devices using sensor measurements. Sensor data is clustered using a predefined grouping distance value to define one or more sensor event clusters. A plurality of monitored devices is clustered using a predefined clustering distance value to define one or more asset clusters. A location is associated with each monitored device of the plurality of monitored devices. A distance is computed between each sensor event cluster and each asset cluster. When the computed distance is less than or equal to a predefined asset/sensor distance value for a sensor event cluster and an asset cluster, an asset identifier of the asset cluster associated with the computed distance is added to an asset event list. For each asset cluster included in the asset event list, an asset location of an asset is shown on a map in a graphical user interface presented in a display.

Classes IPC  ?

  • G01R 31/08 - Localisation de défauts dans les câbles, les lignes de transmission ou les réseaux
  • G06Q 30/01 - Services de relation avec la clientèle
  • H02J 13/00 - Circuits pour pourvoir à l'indication à distance des conditions d'un réseau, p. ex. un enregistrement instantané des conditions d'ouverture ou de fermeture de chaque sectionneur du réseauCircuits pour pourvoir à la commande à distance des moyens de commutation dans un réseau de distribution d'énergie, p. ex. mise en ou hors circuit de consommateurs de courant par l'utilisation de signaux d'impulsion codés transmis par le réseau

86.

Anomaly detection and diagnostics based on multivariate analysis

      
Numéro d'application 18198537
Numéro de brevet 11846979
Statut Délivré - en vigueur
Date de dépôt 2023-05-17
Date de la première publication 2023-12-07
Date d'octroi 2023-12-19
Propriétaire SAS INSTITUTE, INC. (USA)
Inventeur(s)
  • Scott, Kevin L.
  • Kakde, Deovrat Vijay
  • Chaudhuri, Arin
  • Peredriy, Sergiy

Abrégé

Anomalies in a target object can be detected and diagnosed using improved Mahalanobis-Taguchi system (MTS) techniques. For example, an anomaly detection and diagnosis (ADD) system can receive a set of measurements associated with attributes of a target object. A Mahalanobis distance (MD) can be determined using a generalized inverse matrix. An abnormal condition can be detected when the MD is greater than a predetermined threshold value. The ADD system can determine an importance score for each measurement of a corresponding attribute. The attribute whose measurement has the highest importance score can be determined to be responsible for the abnormal condition.

Classes IPC  ?

87.

Systems and methods for configuring and using a multi-stage object classification and condition pipeline

      
Numéro d'application 18237866
Numéro de brevet 11836968
Statut Délivré - en vigueur
Date de dépôt 2023-08-24
Date de la première publication 2023-12-05
Date d'octroi 2023-12-05
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Blanchard, Robert Winston
  • Vengateshwaran, Neela Niranjani

Abrégé

A system, method, and computer-program product includes detecting, via a localization machine learning model, a target object within a scene based on downsampled image data of the scene, identifying a likely position of the target object within original image data of the scene, extracting, from the original image data of the scene, a target sub-image containing the target object, classifying, via an object classification machine learning model, the target object to a probable object class of a plurality of distinct object classes, routing the target image resolution of the target sub-image to a target object-condition machine learning classification model of a plurality of distinct object-condition machine learning classification models, classifying, via the target object-condition machine learning classification model, the target object to a probable object-condition class, and displaying, via a graphical user interface, a representation of the target object in association with the probable object-condition class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06T 3/40 - Changement d'échelle d’images complètes ou de parties d’image, p. ex. agrandissement ou rétrécissement
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06T 7/11 - Découpage basé sur les zones

88.

Method for configuring and using a numeric-to-alphabetic expression machine learning model

      
Numéro d'application 18220632
Numéro de brevet 11990134
Statut Délivré - en vigueur
Date de dépôt 2023-07-11
Date de la première publication 2023-11-30
Date d'octroi 2024-05-21
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes constructing a transcript adaptation training data corpus that includes a plurality of transcript normalization training data samples, wherein each of the plurality of transcript normalization training data samples includes: a predicted audio transcript that includes at least one numerical expression, an adapted audio transcript that includes an alphabetic representation of the at least one numerical expression, and a transcript normalization identifier that, when applied to a model input comprising a target audio transcript, defines a text-to-text transformation objective causing a numeric-to-alphabetic expression machine learning model to predict an alphabetic-equivalent audio transcript that represents each numerical expression included in the target audio transcript in one or more alphabetic tokens; configuring the numeric-to-alphabetic expression machine learning model based on a training of a machine learning text-to-text transformer model using the transcript adaptation training data corpus; and executing the numeric-to-alphabetic expression machine learning model.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

89.

SYNTHETIC GENERATION OF DATA WITH MANY TO MANY RELATIONSHIPS

      
Numéro de document 03254305
Statut En instance
Date de dépôt 2023-05-18
Date de disponibilité au public 2023-11-23
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Xu, Kai
  • Ganev, Georgi Valentinov
  • Joubert, Emile Isak
  • Davison, Rees Stephen
  • Acker, Olivier Rene Maurice Van
  • Robinson, Luke Anthony William
  • Mahiou, Sofiane

Classes IPC  ?

  • G06F 21/62 - Protection de l’accès à des données via une plate-forme, p. ex. par clés ou règles de contrôle de l’accès

90.

Systems and methods for configuring and using an audio transcript correction machine learning model

      
Numéro d'application 18214336
Numéro de brevet 11922947
Statut Délivré - en vigueur
Date de dépôt 2023-06-26
Date de la première publication 2023-11-09
Date d'octroi 2024-03-05
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Li, Xiaolong
  • Cheng, Xiaozhuo
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes constructing a transcript correction training data corpus that includes a plurality of labeled audio transcription training data samples, wherein each of the plurality of labeled audio transcription training data samples includes: an incorrect audio transcription of a target piece of audio data; a correct audio transcription of the target piece of audio data; and a transcript correction identifier that, when applied to a model input that includes a likely incorrect audio transcript, defines a text-to-text transformation objective causing an audio transcript correction machine learning model to predict a corrected audio transcript based on the likely incorrect audio transcript; configuring the audio transcript correction machine learning model based on a training of a machine learning text-to-text transformer model using the transcript correction training data corpus; and executing the audio transcript correction machine learning model within a speech-to-text post-processing sequence of a speech-to-text service.

Classes IPC  ?

  • G10L 15/22 - Procédures utilisées pendant le processus de reconnaissance de la parole, p. ex. dialogue homme-machine
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix

91.

Bias mitigating machine learning training system with multi-class target

      
Numéro d'application 18208455
Numéro de brevet 11922311
Statut Délivré - en vigueur
Date de dépôt 2023-06-12
Date de la première publication 2023-11-09
Date d'octroi 2024-03-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wu, Xinmin
  • Tharrington, Jr., Ricky Dee
  • Abbey, Ralph Walter

Abrégé

A computing device trains a fair prediction model. A prediction model is trained and executed with observation vectors. A weight value is computed for each observation vector based on whether the predicted target variable value of a respective observation vector of the plurality of observation vectors has a predefined target event value. An observation vector is relabeled based on the computed weight value. The prediction model is retrained with each observation vector weighted by a respective computed weight value and with the target variable value of any observation vector that was relabeled. The retrained prediction model is executed. A conditional moments matrix is computed. A constraint violation matrix is computed. Computing the weight value through computing the constraint violation matrix is repeated until a stop criterion indicates retraining of the prediction model is complete. The retrained prediction model is output.

Classes IPC  ?

92.

Systems, methods, and graphical user interfaces for taxonomy-based classification of unlabeled structured datasets

      
Numéro d'application 18221695
Numéro de brevet 11809460
Statut Délivré - en vigueur
Date de dépôt 2023-07-13
Date de la première publication 2023-11-07
Date d'octroi 2023-11-07
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Rausch, Nancy Anne
  • Akintunde, Ruth Oluwadamilola
  • Kay, Brant Nathan

Abrégé

A computer-implemented system includes identifying a target hierarchical taxonomy comprising a plurality of distinct hierarchical taxonomy categories; extracting a plurality of distinct taxonomy tokens from the plurality of distinct hierarchical taxonomy categories; computing a taxonomy vector corpus based on the plurality of distinct taxonomy tokens; computing a plurality of distinct taxonomy clusters based on an input of the taxonomy vector corpus; constructing a hierarchical taxonomy classifier based on the plurality of distinct taxonomy clusters; converting a volume of unlabeled structured datasets to a plurality of distinct corpora of taxonomy-labeled structured datasets based on the hierarchical taxonomy classifier; and outputting at least one corpus of taxonomy-labeled structured datasets of the plurality of distinct corpora of taxonomy-labeled structured datasets based on an input of a data classification query.

Classes IPC  ?

  • G06F 16/28 - Bases de données caractérisées par leurs modèles, p. ex. des modèles relationnels ou objet

93.

Parallel processing techniques for expediting reconciliation for a hierarchy of forecasts on a computer system

      
Numéro d'application 18229333
Numéro de brevet 11809915
Statut Délivré - en vigueur
Date de dépôt 2023-08-02
Date de la première publication 2023-11-07
Date d'octroi 2023-11-07
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Simpson, Matthew Wayne
  • Wang, Caiqin
  • Jakhotiya, Nilesh
  • Trovero, Michele Angelo

Abrégé

A parallel processing technique can be used to expedite reconciliation of a hierarchy of forecasts on a computer system. As one example, the computer system can receive forecasts that have a hierarchical relationship with respect to one another. The computer system can distribute the forecasts among a group of computing nodes by time point, so that all data points corresponding to the same time point in the forecasts are assigned to the same computing node. The computing nodes can receive the datasets corresponding to the time points, organize the data points in each of the datasets by forecast to generate ordered datasets, and assign the ordered datasets to processing threads. The processing threads (across the computing nodes) can then execute a reconciliation process in parallel to one another to generate reconciled values, which can be output by the computing nodes.

Classes IPC  ?

  • G06F 9/46 - Dispositions pour la multiprogrammation
  • G06F 9/52 - Synchronisation de programmesExclusion mutuelle, p. ex. au moyen de sémaphores

94.

Manufacturing defective object detection system

      
Numéro d'application 18295337
Numéro de brevet 11798263
Statut Délivré - en vigueur
Date de dépôt 2023-04-04
Date de la première publication 2023-10-24
Date d'octroi 2023-10-24
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Prabhudesai, Kedar Shriram
  • Walker, Jonathan Lee
  • Heda, Sanjeev Shyam
  • Valsaraj, Varunraj
  • Langlois, Allen Joseph
  • Combaneyre, Frederic
  • Ghadyali, Hamza Mustafa
  • Karmakar, Nabaruna

Abrégé

A computing system detects a defective object. An image is received of a manufacturing line that includes objects in a process of being manufactured. Each pixel included in the image is classified as a background pixel class, a non-defective object class, or a defective object class using a trained neural network model. The pixels included in the image that were classified as the non-defective object class or the defective object class are grouped into polygons. Each polygon is defined by a contiguous group of pixels classified as the non-defective object class or the defective object class. Each polygon is classified in the non-defective object class or in the defective object class based on a number of pixels included in a respective polygon that are classified in the non-defective object class relative to a number of pixels included in the respective polygon that are classified in the defective object class.

Classes IPC  ?

  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p. ex. des objets vidéo
  • G06V 10/24 - Alignement, centrage, détection de l’orientation ou correction de l’image
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06T 7/00 - Analyse d'image
  • G06V 10/26 - Segmentation de formes dans le champ d’imageDécoupage ou fusion d’éléments d’image visant à établir la région de motif, p. ex. techniques de regroupementDétection d’occlusion

95.

Multi-threaded speaker identification

      
Numéro d'application 18207433
Numéro de brevet 11810572
Statut Délivré - en vigueur
Date de dépôt 2023-06-08
Date de la première publication 2023-10-05
Date d'octroi 2023-11-07
Propriétaire SAS INSTITUTE INC. (USA)
Inventeur(s)
  • Cheng, Xiaozhuo
  • Li, Xiaolong
  • Yang, Xu

Abrégé

A system, method, and computer-program product includes distributing a plurality of audio data files of a speech data corpus to a plurality of computing nodes that each implement a plurality of audio processing threads, executing the plurality of audio processing threads associated with each of the plurality of computing nodes to detect a plurality of tentative speakers participating in each of the plurality of audio data files, generating, via a clustering algorithm, a plurality of clusters of embedding signatures based on a plurality of embedding signatures associated with the plurality of tentative speakers in each of the plurality of audio data files, and detecting a plurality of global speakers associated with the speech data corpus based on the plurality of clusters of embedding signatures.

Classes IPC  ?

  • G10L 17/00 - Techniques d'identification ou de vérification du locuteur
  • G10L 15/16 - Classement ou recherche de la parole utilisant des réseaux neuronaux artificiels
  • G10L 15/26 - Systèmes de synthèse de texte à partir de la parole
  • G10L 15/04 - SegmentationDétection des limites de mots
  • G10L 25/78 - Détection de la présence ou de l’absence de signaux de voix
  • G10L 25/30 - Techniques d'analyse de la parole ou de la voix qui ne se limitent pas à un seul des groupes caractérisées par la technique d’analyse utilisant des réseaux neuronaux
  • G10L 15/02 - Extraction de caractéristiques pour la reconnaissance de la paroleSélection d'unités de reconnaissance

96.

Computer system for automatically analyzing a video of a physical activity using a model and providing corresponding feedback

      
Numéro d'application 17969991
Numéro de brevet 11769350
Statut Délivré - en vigueur
Date de dépôt 2022-10-20
Date de la première publication 2023-09-26
Date d'octroi 2023-09-26
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s)
  • Shen, Ji
  • Dean, Jared Langford
  • Chen, Xilong
  • Chvosta, Jan

Abrégé

A computer system can automatically analyze a video of a physical activity and provide corresponding feedback. For example, the system can receive a video file including image frames showing an entity performing a physical activity that involves a sequence of movement phases. The system can generate coordinate sets by performing image analysis on the image frames. The system can provide the coordinate sets as input to a trained model, the trained model being configured to assign scores and movement phases to the image frames based on the coordinate sets. The system can then select a particular movement phase for which to provide feedback, based on the scores and movement phases assigned to the image frames. The system can generate the feedback for the entity about their performance of the particular movement phase, which may improve the entity's future performance of that particular movement phase.

Classes IPC  ?

  • G06V 40/20 - Mouvements ou comportement, p. ex. reconnaissance des gestes
  • G06T 9/00 - Codage d'image
  • G06V 10/84 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les modèles graphiques de probabilités à partir de caractéristiques d’images ou de vidéos, p. ex. les modèles de Markov ou les réseaux bayésiens
  • G06N 3/042 - Réseaux neuronaux fondés sur la connaissanceReprésentations logiques de réseaux neuronaux
  • G06N 3/047 - Réseaux probabilistes ou stochastiques
  • G06N 3/09 - Apprentissage supervisé
  • G06T 7/246 - Analyse du mouvement utilisant des procédés basés sur les caractéristiques, p. ex. le suivi des coins ou des segments
  • G06V 10/44 - Extraction de caractéristiques locales par analyse des parties du motif, p. ex. par détection d’arêtes, de contours, de boucles, d’angles, de barres ou d’intersectionsAnalyse de connectivité, p. ex. de composantes connectées
  • G06N 3/0455 - Réseaux auto-encodeursRéseaux encodeurs-décodeurs

97.

System and methods for configuring, deploying and maintaining computing clusters

      
Numéro d'application 18185603
Numéro de brevet 11875189
Statut Délivré - en vigueur
Date de dépôt 2023-03-17
Date de la première publication 2023-09-21
Date d'octroi 2024-01-16
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Wellum, Richard K.
  • Henry, Joseph Daniel
  • O'Neal, Holden Ernest
  • Waller, John W.

Abrégé

An apparatus includes at least one node device to host a computing cluster, and at least one processor to generate a UI providing guidance through a set of configuration settings for the computing cluster, wherein, for each configuration setting that is received as an input during configuration, the at least one processor is caused to: perform a check of the set of configuration settings to determine whether the received configuration setting creates a conflict among the set of configuration settings; and in response to a determination that the received configuration setting creates a conflict among the set of configuration settings, perform operations including generate an indication of the conflict for presentation by the UI, and receive a change to a configuration setting as an input from the input device.

Classes IPC  ?

  • G06F 9/50 - Allocation de ressources, p. ex. de l'unité centrale de traitement [UCT]
  • G06F 9/451 - Dispositions d’exécution pour interfaces utilisateur
  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption
  • G06F 9/455 - ÉmulationInterprétationSimulation de logiciel, p. ex. virtualisation ou émulation des moteurs d’exécution d’applications ou de systèmes d’exploitation

98.

Automated job flow generation to provide object views in container-supported many task computing

      
Numéro d'application 17733196
Numéro de brevet 11775341
Statut Délivré - en vigueur
Date de dépôt 2022-04-29
Date de la première publication 2023-09-14
Date d'octroi 2023-10-03
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Bequet, Henry Gabriel Victor
  • Stogner, Ronald Earl
  • Yang, Eric Jian
  • Zhang, Chaowang “ricky”

Abrégé

An apparatus includes a processor to receive a request to provide a view of an object associated with a job flow, and in response to determining that the object is associated with a task type requiring access to a particular resource not accessible to a first interpretation routine: store, within a job queue, a job flow generation request message to cause generation of a job flow definition the defines another job flow for generating the requested view; within a task container in which a second interpretation routine that does have access to the particular resource is executed, generate the job flow definition; store, within a task queue, a job flow generation completion message that includes a copy of the job flow definition; use the job flow definition to perform the other job flow to generate the requested view; and transmit the requested view to the requesting device.

Classes IPC  ?

  • G06F 9/48 - Lancement de programmes Commutation de programmes, p. ex. par interruption

99.

Network analysis techniques for grouping connected objects and executing remedial measures

      
Numéro d'application 18169342
Numéro de brevet 11757725
Statut Délivré - en vigueur
Date de dépôt 2023-02-15
Date de la première publication 2023-09-12
Date d'octroi 2023-09-12
Propriétaire SAS Institute, Inc. (USA)
Inventeur(s) Bhambhlani, Himanshu Chandrakant

Abrégé

Groups of connected nodes in a network of nodes can be detected for evaluating and mitigating risks of the network of nodes. For example, a system can process one or more subnetworks of the network of nodes in parallel. For each subnetwork, the system can identify root nodes and their reachable nodes to create rooted groups of connected nodes. The system then can determine outdegrees of the remaining nodes in the network. The system can identify reachable nodes from a remaining node of the highest outdegree to create a nonrooted group of connected nodes. The system can estimate a risk value based on the number of rooted groups and nonrooted groups, the number of nodes in each rooted group and nonrooted group, and the attributes of the nodes in each group. The system can mitigate potential risks by reconfiguring the network of nodes.

Classes IPC  ?

  • H04L 41/12 - Découverte ou gestion des topologies de réseau
  • H04L 41/0604 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant du filtrage, p. ex. la réduction de l’information en utilisant la priorité, les types d’éléments, la position ou le temps
  • H04L 41/22 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p. ex. des réseaux de commutation de paquets comprenant des interfaces utilisateur graphiques spécialement adaptées [GUI]
  • H04L 9/40 - Protocoles réseaux de sécurité
  • H04L 41/0631 - Gestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse des causes profondesGestion des fautes, des événements, des alarmes ou des notifications en utilisant l’analyse de la corrélation entre les notifications, les alarmes ou les événements en fonction de critères de décision, p. ex. la hiérarchie ou l’analyse temporelle ou arborescente
  • H04L 41/0677 - Localisation des défaillances

100.

Computerized engines and graphical user interfaces for customizing and validating forecasting models

      
Numéro d'application 18114852
Numéro de brevet 11748597
Statut Délivré - en vigueur
Date de dépôt 2023-02-27
Date de la première publication 2023-09-05
Date d'octroi 2023-09-05
Propriétaire SAS Institute Inc. (USA)
Inventeur(s)
  • Vasheghani Farahani, Iman
  • Hodgin, Ron Travis
  • Pothireddy, Sujatha
  • Chauhan, Kaushal Lalitkumar
  • Bendale, Bhupendra Suresh
  • Bapat, Harshad Dinesh
  • Misra, Kritika

Abrégé

Some examples can involve a system that can receive a first user selection of time series data and a second user selection of a type of forecasting model to apply to the time series data. The system can then obtain a first set of candidate values and a second set of candidate values for a first parameter and a second parameter, respectively, of the selected type of forecasting model. The candidate values may be determined based on statistical information derived from the time series data. The system can then provide the first set of candidate values and the second set of candidate values to the user, receive user selections of a first parameter value and a second parameter value, and determine whether a conflict exists between the first parameter value and the second parameter value. If so, the system can generate an output indicating that the conflict exists.

Classes IPC  ?

  • G06N 3/04 - Architecture, p. ex. topologie d'interconnexion
  • G06N 3/044 - Réseaux récurrents, p. ex. réseaux de Hopfield
  • G06F 3/04847 - Techniques d’interaction pour la commande des valeurs des paramètres, p. ex. interaction avec des règles ou des cadrans
  1     2     3     ...     9        Prochaine page