According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
A titanium alloy comprises, in weight percent based on total alloy weight: 3.5 to 4.5 aluminum; 1.0 to less than 3 tin; 1.0 to 3.0 zirconium; 2.0 to 5.5 molybdenum; 2.0 to 4.25 chromium; 0.01 to 0.03 silicon; titanium; and impurities; and wherein an aluminum equivalent value of the titanium alloy is 6.0 to 6.9.
A titanium alloy comprises, in weight percent based on total alloy weight: 3.5 to 4.5 aluminum; 1.0 to less than 3 tin; 1.0 to 3.0 zirconium; 2.0 to 5.5 molybdenum; 2.0 to 4.25 chromium; 0.01 to 0.03 silicon; titanium; and impurities; and wherein an aluminum equivalent value of the titanium alloy is 6.0 to 6.9.
Nickel-base alloys are provided. One embodiment of a nickel-base alloy comprises, in weight percent based on total weight of the nickel-base alloy: 8% to 24% molybdenum; 0 to 12% tungsten; 3.5% to 10% chromium; 2% to 10% vanadium; 0 to 10% iron; and nickel.
According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
Disclosed is a nickel-base alloy comprising, in weight percentages based on total alloy weight: 11 to 18 chromium; 16 to 28 cobalt; 1.5 to 7.0 molybdenum; 0 to 6.5 tungsten; 0 to 1.0 niobium; 1.0 to 2.5 aluminum; 2.0 to 6.0 titanium; 0 to 2.0 tantalum; 0 to 4.0 iron; 0 to 0.5 hafnium; 0.01 to 0.2 carbon; 0.001 to 0.02 boron; 0.001 to 0.1 zirconium; nickel; and impurities. Also disclosed is a nickel-base alloy comprising, in weight percentages based on total alloy weight: 11 to 18 chromium; 24 to 28 cobalt; 1.5 to 7.0 molybdenum; 2.0 to 6.0 tungsten; 0 to 1.0 niobium; 1.0 to 2,5 aluminum; 2,0 to 6.0 titanium; 0 to 2.0 tantalum; 0 to 4.0 iron; 0 to 0.5 hafnium; 0.01 to 0.2 carbon; 0.001 to 0.02 boron; 0.001 to 0.1 zirconium; nickel; and impurities.
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
B22F 10/28 - Fusion sur lit de poudre, p. ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
B33Y 80/00 - Produits obtenus par fabrication additive
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the α phase and increase the volume fraction of the α phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
Disclosed is a nickel-base alloy comprising, in weight percentages based on total alloy weight: 11 to 18 chromium; 16 to 28 cobalt; 1.5 to 7.0 molybdenum; 0 to 6.5 tungsten; 0 to 1.0 niobium; 1.0 to 2.5 aluminum; 2.0 to 6.0 titanium; 0 to 2.0 tantalum; 0 to 4.0 iron; 0 to 0.5 hafnium; 0.01 to 0.2 carbon; 0.001 to 0.02 boron; 0.001 to 0.1 zirconium; nickel; and impurities. Also disclosed is a nickel-base alloy comprising, in weight percentages based on total alloy weight: 11 to 18 chromium; 24 to 28 cobalt; 1.5 to 7.0 molybdenum; 2.0 to 6.0 tungsten; 0 to 1.0 niobium; 1.0 to 2.5 aluminum; 2.0 to 6.0 titanium; 0 to 2.0 tantalum; 0 to 4.0 iron; 0 to 0.5 hafnium; 0.01 to 0.2 carbon; 0.001 to 0.02 boron; 0.001 to 0.1 zirconium; nickel; and impurities.
A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.
A nickel-base alloy comprises, in weight percentages based on the total weight of the nickel-base alloy: 1.6% to 3.0% aluminum; 0.3% to 1.5% titanium; 1.5% to 4% tantalum; and nickel.
A nickel-base alloy comprises, in weight percentages based on the total weight of the nickel-base alloy: 1.6% to 3.0% aluminum; 0.3% to 1.5% titanium; 1.5% to 4% tantalum; and nickel.
A nickel-base alloy comprises, in weight percentages based on the total weight of the nickel-base alloy: 1.6% to 3.0% aluminum; 0.3% to 1.5% titanium; 1.5% to 4% tantalum; and nickel.
According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
Nickel-based alloys having improved localized corrosion resistance, improved stress-corrosion cracking (SCC) resistance and impact strength are disclosed. The improvements come from the provision of compositions that are resistant to deleterious phase formation and from the addition of alloying elements that improve corrosion resistance, impact strength, and SCC resistance. The nickel-based alloys of the present invention have controlled amounts of Ni, Cr, Fe, Mo, Co, Cu, Mn, C, N, Si, Ti, Nb, Al, and B. When subjected to post-cladding heat treatments or welding, the nickel-based alloys retain their corrosion resistance and possess desirable impact strengths.
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the α phase and increase the volume fraction of the α phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
Nickel-based alloys having improved localized corrosion resistance, improved stress-corrosion cracking (SCC) resistance and impact strength are disclosed. The improvements come from the provision of compositions that are resistant to deleterious phase formation and from the addition of alloying elements that improve corrosion resistance, impact strength, and SCC resistance. The nickel-based alloys of the present invention have controlled amounts of Ni, Cr, Fe, Mo, Co, Cu, Mn, C, N, Si, Ti, Nb, Al, and B. When subjected to post-cladding heat treatments or welding, the nickel-based alloys retain their corrosion resistance and possess desirable impact strengths.
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
Nickel-based alloys having improved localized corrosion resistance, improved stress-corrosion cracking (SCC) resistance and impact strength are disclosed. The improvements come from the provision of compositions that are resistant to deleterious phase formation and from the addition of alloying elements that improve corrosion resistance, impact strength, and SCC resistance. The nickel-based alloys of the present invention have controlled amounts of Ni, Cr, Fe, Mo, Co, Cu, Mn, C, N, Si, Ti, Nb, Al, and B. When subjected to post-cladding heat treatments or welding, the nickel-based alloys retain their corrosion resistance and possess desirable impact strengths.
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C21D 9/46 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour tôles
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
Nickel-based alloys having improved localized corrosion resistance, improved stress-corrosion cracking (SCC) resistance and impact strength are disclosed. The improvements come from the provision of compositions that are resistant to deleterious phase formation and from the addition of alloying elements that improve corrosion resistance, impact strength, and SCC resistance. The nickel-based alloys of the present invention have controlled amounts of Ni, Cr, Fe, Mo, Co, Cu, Mn, C, N, Si, Ti, Nb, Al, and B. When subjected to post-cladding heat treatments or welding, the nickel-based alloys retain their corrosion resistance and possess desirable impact strengths.
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
A method of producing a beta-titanium alloy elongated product form having a chemical composition as specified in UNS R58150 or ASTM F2066-13. The method comprises solution treating, aging, straightening, stress-relief aging, and cooling the elongated product form. Articles of manufacture comprising or produced from beta-titanium alloy elongated product forms made according to the method also are disclosed.
A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.
A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
B22F 3/24 - Traitement ultérieur des pièces ou objets
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8x10-4(24 hrs)-1 at a temperature of at least 890°F under a load of 52 ksi.
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 5.5 to 6.5 aluminum; 1.5 to 2.5 tin; 1.3 to 2.3 molybdenum; 0.1 to 10.0 zirconium; 0.01 to 0.30 silicon; 0.1 to 2.0 germanium; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises a zirconium-silicon-germanium intermetallic precipitate, and exhibits a steady-state creep rate less than 8x10-4 (24 hrs)-1 at a temperature of at least 890°F under a load of 52 ksi.
According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
According to one embodiment, an alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of about 6.7 to 10.0; a molybdenum equivalency in the range of 0 to 5.0; at least 2.1 vanadium; 0.3 to 5.0 cobalt; titanium; and incidental impurities.
Processes and methods related to processing and hot working alloy ingots are disclosed. A metallic material layer is deposited onto at least a region of a surface of an alloy ingot before hot working the alloy ingot. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
B21D 31/00 - Autres procédés de travail des tôles, tubes ou profilés métalliques
B23K 9/04 - Soudage pour d'autres buts que l'assemblage de pièces, p. ex. soudage de rechargement
B23K 35/30 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 1550 C
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
B22D 25/02 - Coulée particulière caractérisée par la nature du produit par sa formeCoulée particulière caractérisée par la nature du produit d'œuvres d'art
C22B 9/00 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2,0 to 5,0 aluminum; 3.0 to 8.0 tin; 1,0 to 5,0 zirconium; 0 to a total of 16,0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of fin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the a phase and increase the volume fraction of the a phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2,0 to 5,0 aluminum; 3.0 to 8.0 tin; 1,0 to 5,0 zirconium; 0 to a total of 16,0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of fin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the a phase and increase the volume fraction of the a phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
A non-limiting embodiment of a titanium alloy comprises, in weight percentages based on total alloy weight: 2.0 to 5.0 aluminum; 3.0 to 8.0 tin; 1.0 to 5.0 zirconium; 0 to a total of 16.0 of one or more elements selected from the group consisting of oxygen, vanadium, molybdenum, niobium, chromium, iron, copper, nitrogen, and carbon; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of tin and zirconium in conjunction with certain other alloying additions such as aluminum, oxygen, vanadium, molybdenum, niobium, and iron, to stabilize the α phase and increase the volume fraction of the α phase without the risk of forming embrittling phases, which was observed to increase room temperature tensile strength while maintaining ductility.
A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3.3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0.08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 6.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.
A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3,3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0,08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 8.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.
A non-limiting embodiment of a titanium alloy comprises, in percent by weight based on total alloy weight: 5.1 to 6.5 aluminum; 1.9 to 3.2 tin; 1.8 to 3.1 zirconium; 3,3 to 5.5 molybdenum; 3.3 to 5.2 chromium; 0,08 to 0.15 oxygen; 0.03 to 0.20 silicon; 0 to 0.30 iron; titanium; and impurities. A non-limiting embodiment of the titanium alloy comprises an intentional addition of silicon in conjunction with certain other alloying additions to achieve an aluminum equivalent value of at least 8.9 and a molybdenum equivalent value of 7.4 to 12.8, which was observed to improve tensile strength at high temperatures.
A method of producing a beta-titanium alloy elongated product form having a chemical composition as specified in UNS R58150 or ASTM F2066-13. The method comprises solution treating, aging, straightening, stress-relief aging, and cooling the elongated product form. Articles of manufacture comprising or produced from beta- titanium alloy elongated product forms made according to the method also are disclosed.
A dual hardness steel article comprises a first air hardenable steel alloy having a first hardness metallurgically bonded to a second air hardenable steel alloy having a second hardness. A method of manufacturing a dual hard steel article comprises providing a first air hardenable steel alloy part comprising a first mating surface and having a first part hardness, and providing a second air hardenable steel alloy part comprising a second mating surface and having a second part hardness. The first air hardenable steel alloy part is metallurgically secured to the second air hardenable steel alloy part to form a metallurgically secured assembly, and the metallurgically secured assembly is hot rolled to provide a metallurgical bond between the first mating surface and the second mating surface.
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
C21D 7/04 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à froid de la surface
C21D 9/42 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour plaques de blindage
C21D 9/50 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour joints de soudure
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
F41H 5/04 - Structure des plaques composées de plus d'une couche
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
B21B 1/00 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes
B21B 1/02 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer de grosses pièces, p. ex. des lingots, brames, billettes dont la section droite est sans importance
B21B 1/04 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer de grosses pièces, p. ex. des lingots, brames, billettes dont la section droite est sans importance selon un processus continu
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
B21B 1/24 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies selon un processus continu
B21B 1/26 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies selon un processus continu par laminage à chaud
B21B 1/46 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer du métal immédiatement après la coulée continue
B21B 3/02 - Laminage des alliages ferreux particuliers
B21B 3/00 - Laminage des matériaux faits d'alliages particuliers dans la mesure où la nature de l'alliage exige ou permet l'emploi de méthodes ou de séquences particulières
B32B 15/18 - Produits stratifiés composés essentiellement de métal comportant du fer ou de l'acier
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
B23K 35/02 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme
B23K 20/227 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage tenant compte des propriétés des matériaux à souder avec une couche ferreuse
B23K 20/04 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage au moyen d'un laminoir
B23K 20/02 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage au moyen d'une presse
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
A method of producing an article selected from a titanium article and a titanium alloy article comprises melting feed materials with a source of hydrogen to form a molten heat of titanium or a titanium alloy, and casting at least a portion of the molten heat to form a hydrogenated titanium or titanium alloy ingot. The hydrogenated ingot is deformed at an elevated temperature to form a worked article comprising a cross-sectional area smaller than a cross-sectional area of the hydrogenated ingot. The worked article is dehydrogenated to reduce a hydrogen content of the worked article. In certain non-limiting embodiments of the method, the dehydrogenated article comprises an average α-phase particle size of less than 10 microns in the longest dimension.
B22D 21/02 - Coulée de métaux non ferreux très oxydables, p. ex. atmosphère inerte
C21D 1/773 - Procédés de traitement en gaz neutre, en atmosphère contrôlée, sous vide ou dans des matières pulvérulentes sous pression réduite ou sous vide
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
C22C 1/02 - Fabrication des alliages non ferreux par fusion
C22C 1/06 - Fabrication des alliages non ferreux avec utilisation d'agents spéciaux d'affinage ou de désoxygénation
A method for reducing impurities in magnesium comprises: combining a zirconium-containing material with a molten low-impurity magnesium including no more than 1.0 weight percent of total impurities in a vessel to provide a mixture; holding the mixture in a molten state for a period of time sufficient to allow at least a portion of the zirconium-containing material to react with at least a portion of the impurities and form intermetallic compounds; and separating at least a portion of the molten magnesium in the mixture from at least a portion of the intermetallic compounds to provide a purified magnesium, wherein the purified magnesium includes an increased level of zirconium compared to the low-impurity magnesium, wherein the purified magnesium includes greater than 1000 ppm zirconium, and wherein the purified magnesium includes a reduced level of impurities other than zirconium compared to the low-impurity magnesium. A purified magnesium including at least 1000 ppm zirconium and methods for producing zirconium metal using magnesium reductant also are disclosed.
C22B 9/10 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc avec des agents d'affinage ou fondantsEmploi de substances pour ces procédés
A method of processing a workpiece to inhibit precipitation of intermetallic compounds includes at least one of thermomechanically processing and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time.
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 11/00 - Commande ou régulation du processus lors de traitements thermiques
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/52 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cobalt
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
Processes for forming an article from an α+β titanium alloy are disclosed. The α+β titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The α+β titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
B21D 22/02 - Estampage utilisant des dispositifs ou outils rigides
B21J 1/06 - Méthodes ou dispositifs de chauffage ou de refroidissement spécialement adaptés aux opérations de forgeage ou de pressage
47.
Thermomechanical processing of alpha-beta titanium alloys
One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
Processes for the production of tantalum alloys and niobium are disclosed. The processes use aluminothermic reactions to reduce tantalum pentoxide to tantalum metal or niobium pentoxide to niobium metal.
B22F 3/23 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet mettant en œuvre une synthèse à haute température à autopropagation ou une étape de frittage par réaction à autopropagation
B22F 3/24 - Traitement ultérieur des pièces ou objets
49.
PROCESSES FOR PRODUCING TANTALUM ALLOYS AND NIOBIUM ALLOYS
Processes for the production of tantalum alloys and niobium are disclosed. The processes use aluminothermic reactions to reduce tantalum pentoxide to tantalum metal or niobium pentoxide to niobium metal.
B22F 3/23 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet mettant en œuvre une synthèse à haute température à autopropagation ou une étape de frittage par réaction à autopropagation
B22F 3/24 - Traitement ultérieur des pièces ou objets
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
B21D 22/02 - Estampage utilisant des dispositifs ou outils rigides
B21J 1/06 - Méthodes ou dispositifs de chauffage ou de refroidissement spécialement adaptés aux opérations de forgeage ou de pressage
A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80°C to 200°C below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30°C per hour to 70°C per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
B22F 3/17 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet par forgeage
B22F 3/24 - Traitement ultérieur des pièces ou objets
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/52 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cobalt
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80°C to 200°C below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30°C per hour to 70°C per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
B22F 3/24 - Traitement ultérieur des pièces ou objets
A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22C 30/00 - Alliages contenant moins de 50% en poids de chaque constituant
B22F 3/24 - Traitement ultérieur des pièces ou objets
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
A method for increasing tensile strength of a cold workable alpha-beta titanium alloy comprises solution heat treating a cold workable alpha-beta titanium alloy in a temperature range of Tβ- 106°C to Tβ - 72.2°C for 15 minutes to 2 hours; cooling the alpha-beta titanium alloy at a cooling rate of at least 3000°C/minute; cold working the alpha-beta titanium alloy to impart an effective strain in the range of 5 percent to 35 percent in the alloy; and aging the alpha-beta titanium alloy in a temperature range of Tβ - 669°C to Tβ - 517°C for 1 to 8 hours. Fastener stock and fasteners including solution treated, quenched, cold worked, and aged alpha-beta titanium alloys are also disclosed.
β-517° C. for 1 to 8 hours. Fastener stock and fasteners including solution treated, quenched, cold worked, and aged alpha-beta titanium alloys are also disclosed.
F16B 19/04 - RivetsErgots ou pièces analogues fixés par rivetage
F16B 39/24 - Blocage des vis, boulons ou écrous dans lequel le verrouillage se fait en même temps que le vissage ou le serrage par rondelles, rondelles à ressort ou plaques élastiques qui bloquent contre l'objet
C22F 1/18 - Métaux réfractaires ou à point de fusion élevé ou leurs alliages
F16B 37/00 - Écrous ou pièces similaires avec entrées de filetage
F16B 43/00 - Rondelles ou dispositifs équivalentsAutres dispositifs de support pour têtes de boulons ou d'écrous
Metastable beta titanium alloys and methods of processing metastable β-titanium alloys are disclosed. For example, certain non-limiting embodiments relate to metastable β-titanium alloys, such as binary β-titanium alloys comprising greater than 10 weight percent molybdenum, having tensile strengths of at least 150 ksi and elongations of at least 12 percent. Other non-limiting embodiments relate to methods of processing metastable β-titanium alloys, and more specifically, methods of processing binary β-titanium alloys comprising greater than 10 weight percent molybdenum, wherein the method comprises hot working and aging the metastable β-titanium alloy at a temperature below the β-transus temperature of the metastable β-titanium alloy for a time sufficient to form α-phase precipitates in the metastable β-titanium alloy. The metastable β-titanium alloys are not solution heat treated after hot working and prior to aging. Articles of manufacture comprising binary β-titanium alloys according to various non-limiting embodiments disclosed herein are also disclosed.
A method of melting and refining an alloy comprises vacuum induction melting starting materials to provide a vacuum induction melted alloy. At least a portion of the vacuum induction melted alloy is electroslag remelted to provide an electroslag remelted alloy. At least a portion of the vacuum arc remelted alloy is vacuum arc remelted to provide a singly vacuum arc remelted alloy. At least a portion of the singly vacuum arc remelted alloy is vacuum arc remelted to provide a doubly vacuum arc remelted alloy. In various embodiments, a composition of the vacuum induction melted alloy comprises primarily one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold.
A method of melting and refining an alloy comprises vacuum induction melting starting materials to provide a vacuum induction melted alloy. At least a portion of the vacuum induction melted alloy is electroslag remelted to provide an electroslag remelted alloy. At least a portion of the vacuum arc remelted alloy is vacuum arc remelted to provide a singly vacuum arc remelted alloy. At least a portion of the singly vacuum arc remelted alloy is vacuum arc remelted to provide a doubly vacuum arc remelted alloy. In various embodiments, a composition of the vacuum induction melted alloy comprises primarily one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold.
C22C 19/03 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel
C22C 19/07 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de cobalt
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22B 9/00 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
A method of melting and refining an alloy comprises vacuum induction melting starting materials to provide a vacuum induction melted alloy. At least a portion of the vacuum induction melted alloy is electroslag remelted to provide an electroslag remelted alloy. At least a portion of the vacuum arc remelted alloy is vacuum arc remelted to provide a singly vacuum arc remelted alloy. At least a portion of the singly vacuum arc remelted alloy is vacuum arc remelted to provide a doubly vacuum arc remelted alloy. In various embodiments, a composition of the vacuum induction melted alloy comprises primarily one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold.
C22C 19/03 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22B 9/18 - Refusion sous laitier électroconducteur
62.
METHODS AND APPARATUSES FOR PRODUCING METALLIC POWDER MATERIAL
A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
A method of assembling a centrifugal casting apparatus includes positioning a wedge on a rotatable axis and positioning at least two molds into sealing engagement with the wedge. Each of the at least two molds includes a front face and defines at least two cavities extending from the front face into the mold. A sprue chamber is defined and is structured to receive molten material, and at least a portion of the sprue chamber is defined by at least a portion of the front faces of the at least two molds.
B22D 13/04 - Coulée par centrifugationCoulée utilisant la force centrifuge de pièces peu profondes ou creuses, p. ex. de roues ou couronnes, coulées dans des moules tournant autour de leur axe de symétrie
B22D 13/10 - Accessoires pour machines à couler par centrifugation, p. ex. moules, leur garnissageMoyens pour l'alimentation en métal liquide, pour le nettoyage des moules ou pour l'extraction des pièces
B22D 27/04 - Action sur la température du métal, p. ex. par chauffage ou refroidissement du moule
64.
METHODS AND APPARATUSES FOR PRODUCING METALLIC POWDER MATERIAL
A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
A casting system, apparatus, and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
A hold down mechanism for releasably securing a refractory lining to a furnace. The hold down mechanism can comprise plate segments that form a composite plate. The plate segments can comprise a first plate segment structured to articulate relative to a second plate segment. Furthermore, a gap in the hold down mechanism can be structured to adjust in response to a thermal condition of the composite plate, such as thermal expansion or thermal contraction of at least one plate segment. The composite plate can also comprise an articulation plate pivotally coupled to at least one of the first plate segment and the second plate segment via a pivot and/or a slot and pin engagement. The composite plate can further comprise a third plate segment and a second articulation plate pivotally coupled to at least one of the second plate segment and the third plate segment.
A method of producing an article selected from a titanium article and a titanium alloy article comprises melting feed materials with a source of hydrogen to form a molten heat of titanium or a titanium alloy, and casting at least a portion of the molten heat to form a hydrogenated titanium or titanium alloy ingot. The hydrogenated ingot is deformed at an elevated temperature to form a worked article comprising a cross-sectional area smaller than a cross-sectional area of the hydrogenated ingot. The worked article is dehydrogenated to reduce a hydrogen content of the worked article. In certain non-limiting embodiments of the method, the dehydrogenated article comprises an average a-phase particle size of less than 10 microns in the longest dimension.
C22F 1/02 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid en atmosphère neutre ou contrôlée ou dans le vide
C22F 1/18 - Métaux réfractaires ou à point de fusion élevé ou leurs alliages
68.
METHODS FOR PRODUCING TITANIUM AND TITANIUM ALLOY ARTICLES
A method of producing an article selected from a titanium article and a titanium alloy article comprises melting feed materials with a source of hydrogen to form a molten heat of titanium or a titanium alloy, and casting at least a portion of the molten heat to form a hydrogenated titanium or titanium alloy ingot. The hydrogenated ingot is deformed at an elevated temperature to form a worked article comprising a cross-sectional area smaller than a cross-sectional area of the hydrogenated ingot. The worked article is dehydrogenated to reduce a hydrogen content of the worked article. In certain non-limiting embodiments of the method, the dehydrogenated article comprises an average a-phase particle size of less than 10 microns in the longest dimension.
A method of producing an article selected from a titanium article and a titanium alloy article comprises melting feed materials with a source of hydrogen to form a molten heat of titanium or a titanium alloy, and casting at least a portion of the molten heat to form a hydrogenated titanium or titanium alloy ingot. The hydrogenated ingot is deformed at an elevated temperature to form a worked article comprising a cross-sectional area smaller than a cross-sectional area of the hydrogenated ingot. The worked article is dehydrogenated to reduce a hydrogen content of the worked article. In certain non-limiting embodiments of the method, the dehydrogenated article comprises an average α-phase particle size of less than 10 microns in the longest dimension.
B22D 21/02 - Coulée de métaux non ferreux très oxydables, p. ex. atmosphère inerte
C21D 1/773 - Procédés de traitement en gaz neutre, en atmosphère contrôlée, sous vide ou dans des matières pulvérulentes sous pression réduite ou sous vide
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
C22C 1/02 - Fabrication des alliages non ferreux par fusion
C22C 1/06 - Fabrication des alliages non ferreux avec utilisation d'agents spéciaux d'affinage ou de désoxygénation
Various enhanced features are provided for centrifugal casting apparatuses, rotatable assemblies, and molds for casting products from molten material. These enhanced features include, among others, tapered gate portions positioned adjacent to the cavities of a mold, extended and shared gating systems, and detachable mold structures for modifying the thermodynamic characteristics and behavior of molds during casting operations.
B22D 13/06 - Coulée par centrifugationCoulée utilisant la force centrifuge de pièces pleines ou creuses dans des moules tournant autour d'un axe disposé en dehors du moule
B22C 9/08 - Parties concernant l'alimentation en métal liquide, p. ex. attaques circulatoires, filtres
B22D 13/10 - Accessoires pour machines à couler par centrifugation, p. ex. moules, leur garnissageMoyens pour l'alimentation en métal liquide, pour le nettoyage des moules ou pour l'extraction des pièces
B22D 27/04 - Action sur la température du métal, p. ex. par chauffage ou refroidissement du moule
An alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of 2.0 to 10.0; a molybdenum equivalency in the range of 0 to 20.0; 0.3 to 5.0 cobalt; and titanium. In certain embodiments, the alpha-beta titanium alloy exhibits a cold working reduction ductility limit of at least 25%, a yield strength of at least 130 KSI (896.3 MPa), and a percent elongation of at least 10%. A method of forming an article comprising the cobalt-containing alpha-beta titanium alloy comprises cold working the cobalt-containing alpha-beta titanium alloy to at least a 25 percent reduction in cross-sectional area. The cobalt- containing alpha-beta titanium alloy does not exhibit substantial cracking during cold working.
An alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of 2.0 to 10.0; a molybdenum equivalency in the range of 0 to 20.0; 0.3 to 5.0 cobalt; and titanium. In certain embodiments, the alpha-beta titanium alloy exhibits a cold working reduction ductility limit of at least 25%, a yield strength of at least 130 KSI (896.3 MPa), and a percent elongation of at least 10%. A method of forming an article comprising the cobalt-containing alpha-beta titanium alloy comprises cold working the cobalt-containing alpha-beta titanium alloy to at least a 25 percent reduction in cross-sectional area. The cobalt-containing alpha-beta titanium alloy does not exhibit substantial cracking during cold working.
Processes for the production of nickel-titanium mill products are disclosed. A nickel-titanium alloy workpiece is cold worked at a temperature less than 500° C. The cold worked nickel-titanium alloy workpiece is hot isostatic pressed (HIP'ed).
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
A system and method for continuous casting. The system includes a melt chamber, a withdrawal chamber, and a secondary chamber therebetween. The melt chamber can maintain a melting pressure and the withdrawal chamber can attain atmospheric pressure. The secondary chamber can include regions that can be adjusted to different pressures. During continuous casting operations, the first region adjacent to the melt chamber can be adjusted to a pressure that is at least slightly greater than the melting pressure; the pressure in subsequent regions can be sequentially decreased and then sequentially increased. The pressure in the final region can be at least slightly greater than atmospheric pressure. The differential pressures can form a dynamic airlock between the melt chamber and the withdrawal chamber, which can prevent infiltration of the melt chamber by non-inert gas in the atmosphere, and thus can prevent contamination of reactive materials in the melt chamber.
B22D 11/113 - Traitement du métal liquide par dépression
B22D 11/117 - Affinage du métal en le traitant par des gaz
B22D 11/16 - Commande ou régulation des opérations ou du fonctionnement
B22D 11/20 - Commande ou régulation des opérations ou du fonctionnement du retrait des barres coulées
B22D 11/126 - Accessoires pour le traitement ultérieur ou le travail sur place des barres coulées pour la coupe
B22D 11/14 - Installations pour la coulée continue, p. ex. pour tirer la barre vers le haut
B22D 11/06 - Coulée continue des métaux, c.-à-d. en longueur indéfinie dans des moules dont les parois se déplacent, p. ex. entre des rouleaux, des plaques, des courroies, des chenilles
B22D 11/128 - Accessoires pour le traitement ultérieur ou le travail sur place des barres coulées pour l'enlèvement
B22D 27/00 - Traitement du métal dans le moule pendant qu'il est liquide ou plastique
B22D 27/15 - Traitement du métal dans le moule pendant qu'il est liquide ou plastique en employant le vide
Processes and methods related to processing and hot working alloy ingots are disclosed. A metallic material layer is deposited onto at least a region of a surface of an alloy ingot before hot working the alloy ingot. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
B21D 31/00 - Autres procédés de travail des tôles, tubes ou profilés métalliques
B23K 9/04 - Soudage pour d'autres buts que l'assemblage de pièces, p. ex. soudage de rechargement
B23K 35/30 - Emploi de matériaux spécifiés pour le soudage ou le brasage dont le principal constituant fond à moins de 1550 C
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
B22D 25/02 - Coulée particulière caractérisée par la nature du produit par sa formeCoulée particulière caractérisée par la nature du produit d'œuvres d'art
C22B 9/00 - Procédés généraux d'affinage ou de refusion des métauxAppareils pour la refusion des métaux sous laitier électroconducteur ou à l'arc
Processes for the production of tantalum alloys and niobium are disclosed. The processes use aluminothermic reactions to reduce tantalum pentoxide to tantalum metal or niobium pentoxide to niobium metal.
C22C 27/02 - Alliages à base de vanadium, niobium ou tantale
C22C 1/02 - Fabrication des alliages non ferreux par fusion
B22F 3/23 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet mettant en œuvre une synthèse à haute température à autopropagation ou une étape de frittage par réaction à autopropagation
B22F 3/24 - Traitement ultérieur des pièces ou objets
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22B 5/04 - Procédés généraux de réduction appliqués aux métaux par voie sèche par l'aluminium, d'autres métaux ou le silicium
C22B 9/22 - Refusion des métaux en chauffant par énergie ondulatoire ou par rayonnement corpusculaire
An atomizing system and method are disclosed. A system can include a tundish configured to hold a molten material and a nozzle in fluid communication with the tundish. The nozzle and/or the tundish can be comprised of a material having a composition that is substantially similar to the composition of the molten material. An internal channel can be defined in at least one of the tundish or the nozzle. Additionally, a pump can be configured to pump a molten heat transfer medium through the internal channel. A method of atomizing the molten material can include affecting heat transfer between the molten material and the tundish and/or the nozzle with a molten heat transfer medium in at least one internal channel in the tundish and/or the nozzle. The tundish and/or the nozzle can comprise a material that is substantially similar to the molten material.
B22F 9/08 - Fabrication des poudres métalliques ou de leurs suspensionsAppareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau liquide par coulée, p. ex. à travers de petits orifices ou dans l'eau, par atomisation ou pulvérisation
Processes for forming an article from an α+β titanium alloy are disclosed. The α+β titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The α+β titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.
A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
B21J 5/02 - MatriçageÉbarbage par utilisation de matrices particulières
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
B21J 1/02 - Traitement préliminaire des matériaux métalliques sans mise en forme particulière, p. ex. conservation des propriétés physiques de certaines zones, forgeage ou pressage des pièces à l'état brut
B21J 1/04 - Façonnage des pièces brutes par forgeage ou pressage uniquement
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/06 - Alliages ferreux, p. ex. aciers alliés contenant de l'aluminium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/46 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du vanadium
C22C 38/48 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du niobium ou du tantale
C22C 38/50 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du titane ou du zirconium
C22C 38/52 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cobalt
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
F27B 3/10 - Parties constitutives, accessoires ou équipement, p. ex. collecteurs de poussière, spécialement adaptés aux fours à sole
F27B 3/12 - Laboratoires ou carcassesLeurs supports
F27B 3/18 - Aménagement des dispositifs de chargement
F27B 3/19 - Aménagement des dispositifs de déchargement
F27D 3/14 - Chargement ou déchargement d'un matériau liquide ou fondu
B22D 35/04 - Équipement de transport du métal liquide jusqu'aux sillons de lingotage ou aux moules aux moules, p. ex. plaques de base, chenaux de coulée
F27B 3/14 - Aménagement des garnissages réfractaires
A centrifugal casting method for producing a casting of a metallic material comprises positioning a rotatable assembly comprising a plurality of gates and a plurality of cavities positioned about a sprue chamber. The plurality of gates and the plurality of cavities are positioned to receive molten metallic material from the sprue chamber in a general direction of centrifugal force. Each of the plurality of gates is coupled to one of the plurality of cavities, and at least two of the plurality of cavities are stacked. The method further comprises rotating the rotatable assembly. The method further comprises delivering a supply of molten metallic material to the sprue chamber.
B22D 13/00 - Coulée par centrifugationCoulée utilisant la force centrifuge
B22D 13/08 - Coulée par centrifugationCoulée utilisant la force centrifuge où l'alimentation d'un moule fixe se fait par une masse de métal liquide en rotation
B22D 13/10 - Accessoires pour machines à couler par centrifugation, p. ex. moules, leur garnissageMoyens pour l'alimentation en métal liquide, pour le nettoyage des moules ou pour l'extraction des pièces
B22D 27/04 - Action sur la température du métal, p. ex. par chauffage ou refroidissement du moule
Methods of refining the grain size of a titanium alloy workpiece include beta annealing the workpiece, cooling the beta annealed workpiece to a temperature below the beta transus temperature of the titanium alloy, and high strain rate multi-axis forging the workpiece. High strain rate multi-axis forging is employed until a total strain of at least 1 is achieved in the titanium alloy workpiece, or until a total strain of at least 1 and up to 3.5 is achieved in the titanium alloy workpiece. The titanium alloy of the workpiece may comprise at least one of grain pinning alloying additions and beta stabilizing content effective to decrease alpha phase precipitation and growth kinetics.
B21K 29/00 - Systèmes pour chauffer ou refroidir pendant les opérations
B21J 1/02 - Traitement préliminaire des matériaux métalliques sans mise en forme particulière, p. ex. conservation des propriétés physiques de certaines zones, forgeage ou pressage des pièces à l'état brut
B21J 1/06 - Méthodes ou dispositifs de chauffage ou de refroidissement spécialement adaptés aux opérations de forgeage ou de pressage
B21J 5/00 - Méthodes pour forger, marteler ou presserÉquipement ou accessoires particuliers
A dual hardness steel article comprises a first air hardenable steel alloy having a first hardness metallurgically bonded to a second air hardenable steel alloy having a second hardness. A method of manufacturing a dual hard steel article comprises providing a first air hardenable steel alloy part comprising a first mating surface and having a first part hardness, and providing a second air hardenable steel alloy part comprising a second mating surface and having a second part hardness. The first air hardenable steel alloy part is metallurgically secured to the second air hardenable steel alloy part to form a metallurgically secured assembly, and the metallurgically secured assembly is hot rolled to provide a metallurgical bond between the first mating surface and the second mating surface.
C21D 9/42 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour plaques de blindage
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C21D 9/50 - Traitement thermique, p. ex. recuit, durcissement, trempe ou revenu, adapté à des objets particuliersFours à cet effet pour joints de soudure
B23K 20/227 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage tenant compte des propriétés des matériaux à souder avec une couche ferreuse
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/04 - Alliages ferreux, p. ex. aciers alliés contenant du manganèse
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
B32B 15/04 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique
B32B 15/18 - Produits stratifiés composés essentiellement de métal comportant du fer ou de l'acier
B21B 1/46 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer du métal immédiatement après la coulée continue
B21B 3/00 - Laminage des matériaux faits d'alliages particuliers dans la mesure où la nature de l'alliage exige ou permet l'emploi de méthodes ou de séquences particulières
B21B 1/04 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer de grosses pièces, p. ex. des lingots, brames, billettes dont la section droite est sans importance selon un processus continu
B21B 1/24 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies selon un processus continu
B21B 1/22 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies
B21B 1/02 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer de grosses pièces, p. ex. des lingots, brames, billettes dont la section droite est sans importance
B21B 3/02 - Laminage des alliages ferreux particuliers
B21B 1/26 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes pour laminer des bandes ou des feuilles en longueurs indéfinies selon un processus continu par laminage à chaud
B21B 1/00 - Méthodes de laminage ou laminoirs pour la fabrication des produits semi-finis de section pleine ou de profilésSéquence des opérations dans les trains de laminoirsInstallation d'une usine de laminage, p. ex. groupement de cagesSuccession des passes ou des alternances de passes
B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
C21D 7/04 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à froid de la surface
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/08 - Alliages ferreux, p. ex. aciers alliés contenant du nickel
F41H 5/04 - Structure des plaques composées de plus d'une couche
B23K 35/02 - Baguettes, électrodes, matériaux ou environnements utilisés pour le brasage, le soudage ou le découpage caractérisés par des propriétés mécaniques, p. ex. par la forme
Flowforming processes for the production of corrosion resistant alloy tubes are disclosed, the processes comprising: deforming a corrosion resistant alloy plate to form a hollow cylindrical preform having a longitudinal seam region located between two abutting ends of the deformed plate; welding the longitudinal seam region to join together the abutting ends; and flowforming the hollow cylindrical preform to produce a corrosion resistant alloy tube.
F16L 9/17 - Tuyaux rigides obtenus par cintrage longitudinal d'une feuille et raccordement des arêtes
B21D 5/10 - Cintrage des tôles le long de lignes droites, p. ex. pour former un pli simple par un procédé d'étirage dans lequel les pièces à travailler sont mises en forme par passage entre des matrices ou des rouleaux, p. ex. fabrication de profilés pour fabriquer des tubes
B23K 9/025 - Soudage de joints continusSupportsPièces rapportées pour des joints rectilignes
B23K 26/26 - Soudage de joints continus rectilignes
85.
Enhanced techniques for centrifugal casting of molten materials
Various enhanced features are provided for centrifugal casting apparatuses, rotatable assemblies, and molds for casting products from molten material. These enhanced features include, among others, tapered gate portions positioned adjacent to the cavities of a mold, extended and shared gating systems, and detachable mold structures for modifying the thermodynamic characteristics and behavior of molds during casting operations.
B22C 9/08 - Parties concernant l'alimentation en métal liquide, p. ex. attaques circulatoires, filtres
B22D 13/06 - Coulée par centrifugationCoulée utilisant la force centrifuge de pièces pleines ou creuses dans des moules tournant autour d'un axe disposé en dehors du moule
B22D 13/10 - Accessoires pour machines à couler par centrifugation, p. ex. moules, leur garnissageMoyens pour l'alimentation en métal liquide, pour le nettoyage des moules ou pour l'extraction des pièces
B22D 27/04 - Action sur la température du métal, p. ex. par chauffage ou refroidissement du moule
An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(C))≦(Nb+Ti+V+Ta+Zr)≦1.5, Fe, and incidental impurities.
An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0 to 9.0 Mn, up to 2.0 Si, 16.0 to 23.0 Cr, 1.0 to 7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05 to 0.35 N, up to 4.0 W, (7.5(C))≦(Nb+Ti+V+Ta+Zr)≦1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5≦(Mo+W/2)≦5.0 and/or 1.0≦(Ni+Co)≦8.0.
A hold down mechanism for releasably securing a refractory lining to a furnace. The hold down mechanism can comprise plate segments that form a composite plate. The plate segments can comprise a first plate segment structured to articulate relative to a second plate segment. Furthermore, a gap in the hold down mechanism can be structured to adjust in response to a thermal condition of the composite plate, such as thermal expansion or thermal contraction of at least one plate segment. The composite plate can also comprise an articulation plate pivotally coupled to at least one of the first plate segment and the second plate segment via a pivot and/or a slot and pin engagement. The composite plate can further comprise a third plate segment and a second articulation plate pivotally coupled to at least one of the second plate segment and the third plate segment.
A dual-phase ferritic-martensitic stainless steel includes, by weight, about 11.5% to about 12% Cr, about 0.8% to about 1.5% Mn, about 0.75% to about 1.5% Ni, 0% to about 0.5% Si, 0% to about 0.2% Mo, 0% to about 0.0025% B, Fe, and impurities. In various embodiments, the steel has a Brinell hardness (HB) and Charpy V-notch impact energy at -40°C (CVN) such that CVN (ft-lb) + (0.4xHB) is about 160 or greater. Articles of manufacture including the stainless steels also are disclosed.
Processes for the production of tantalum alloys are disclosed. The processes use aluminothermic reactions to reduce tantalum pentoxide to tantalum metal.
B22F 3/23 - Fabrication de pièces ou d'objets à partir de poudres métalliques, caractérisée par le mode de compactage ou de frittageAppareils spécialement adaptés à cet effet mettant en œuvre une synthèse à haute température à autopropagation ou une étape de frittage par réaction à autopropagation
C22C 1/04 - Fabrication des alliages non ferreux par métallurgie des poudres
C22C 1/02 - Fabrication des alliages non ferreux par fusion
C22C 27/02 - Alliages à base de vanadium, niobium ou tantale
A method of decarburizing a molten alloy may generally comprise injecting a first gas comprising at least one of argon, carbon dioxide, and oxygen through a first fluid-conducting portion of a tuyere into the molten alloy below the surface of the molten alloy, and injecting a second gas comprising at least one of argon and carbon dioxide through a second fluid-conducting portion of the tuyere into the molten alloy below the surface of the molten alloy. The tuyere may comprise an inner portion concentrically aligned within an outer portion to define an annulus therebetween. The first gas may be injected through the inner portion, and the second gas may be injected through the annulus.
A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
B22D 35/04 - Équipement de transport du métal liquide jusqu'aux sillons de lingotage ou aux moules aux moules, p. ex. plaques de base, chenaux de coulée
B22D 11/04 - Coulée continue des métaux, c.-à-d. en longueur indéfinie dans des moules sans fond
F27B 3/10 - Parties constitutives, accessoires ou équipement, p. ex. collecteurs de poussière, spécialement adaptés aux fours à sole
F27B 3/12 - Laboratoires ou carcassesLeurs supports
F27B 3/18 - Aménagement des dispositifs de chargement
F27B 3/19 - Aménagement des dispositifs de déchargement
F27D 3/14 - Chargement ou déchargement d'un matériau liquide ou fondu
B22D 11/103 - Répartition du métal liquide, p. ex. en utilisant des goulottes, des flotteurs, des distributeurs
B22D 41/00 - Récipients de maintien d'un bain de fusion, p. ex. poches, paniers de coulée, bassins de coulée ou systèmes analogues
A casting system and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
B22D 35/04 - Équipement de transport du métal liquide jusqu'aux sillons de lingotage ou aux moules aux moules, p. ex. plaques de base, chenaux de coulée
B22D 11/04 - Coulée continue des métaux, c.-à-d. en longueur indéfinie dans des moules sans fond
F27B 3/10 - Parties constitutives, accessoires ou équipement, p. ex. collecteurs de poussière, spécialement adaptés aux fours à sole
F27B 3/12 - Laboratoires ou carcassesLeurs supports
F27B 3/18 - Aménagement des dispositifs de chargement
F27B 3/19 - Aménagement des dispositifs de déchargement
F27D 3/14 - Chargement ou déchargement d'un matériau liquide ou fondu
B22D 11/103 - Répartition du métal liquide, p. ex. en utilisant des goulottes, des flotteurs, des distributeurs
B22D 41/00 - Récipients de maintien d'un bain de fusion, p. ex. poches, paniers de coulée, bassins de coulée ou systèmes analogues
94.
Method for making corrosion resistant fluid conducting parts
A method for making a tube is described in which a multi-layer billet is extruded to provide a tube having a wall comprising an inner layer metallurgically bonded to an outer layer.
B23K 15/04 - Soudage ou découpage par faisceau d'électrons pour le soudage de joints annulaires
B23K 13/01 - Soudage par chauffage au moyen d'un courant haute fréquence par chauffage par induction
H05B 6/10 - Appareils de chauffage par induction, autres que des fours, pour des applications spécifiques
F16L 9/18 - Tuyaux à double paroiTuyaux à canaux multiples ou assemblages de tuyaux
B23K 15/00 - Soudage ou découpage par faisceau d'électrons
B24C 1/00 - Méthodes d'utilisation de jet abrasif en vue d'effectuer un travail déterminéUtilisation d'équipements auxiliaires liés à ces méthodes
B23K 31/02 - Procédés relevant de la présente sous-classe, spécialement adaptés à des objets ou des buts particuliers, mais non couverts par un seul des groupes principaux relatifs au brasage ou au soudage
C22F 1/18 - Métaux réfractaires ou à point de fusion élevé ou leurs alliages
B01J 19/02 - Appareils caractérisés par le fait qu'ils sont construits avec des matériaux choisis pour leurs propriétés de résistance aux agents chimiques
B01J 19/24 - Réacteurs fixes sans élément interne mobile
F28F 9/18 - Dispositions pour obturer des éléments dans les boîtes de distribution ou plaques d'extrémité par joints permanents, p. ex. par dudgeonnage par soudage
F28F 11/00 - Dispositions pour étancher les fuites des tubes ou des canalisations
F28F 19/06 - Prévention de la formation de dépôts ou de la corrosion, p. ex. en utilisant des filtres en utilisant des revêtements, p. ex. des revêtements vitreux ou émaillés de métal
B21C 23/08 - Fabrication de fils, de barres, de tubes
B21C 23/22 - Fabrication de produits revêtus de métalFabrication de produits à partir de plusieurs métaux
B23K 20/10 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage utilisant des vibrations, p. ex. soudage ultrasonique
B23K 20/12 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage la chaleur étant produite par frictionSoudage par friction
B23K 20/233 - Soudage non électrique par percussion ou par une autre forme de pression, avec ou sans chauffage, p. ex. revêtement ou placage tenant compte des propriétés des matériaux à souder sans couche ferreuse
B23K 103/18 - Matériaux comportant des matières différentes
A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.
C21D 1/00 - Procédés ou dispositifs généraux pour le traitement thermique, p. ex. recuit, durcissement, trempe ou revenu
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22C 38/40 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.
C21D 8/00 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique
C21D 7/13 - Modification des propriétés physiques du fer ou de l'acier par déformation par travail à chaud
C21D 1/18 - DurcissementTrempe avec ou sans revenu ultérieur
C22F 1/10 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid du nickel ou du cobalt ou de leurs alliages
C22F 1/18 - Métaux réfractaires ou à point de fusion élevé ou leurs alliages
C22F 1/00 - Modification de la structure physique des métaux ou alliages non ferreux par traitement thermique ou par travail à chaud ou à froid
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/40 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel
C22C 19/05 - Alliages à base de nickel ou de cobalt, seuls ou ensemble à base de nickel avec du chrome
C22C 30/02 - Alliages contenant moins de 50% en poids de chaque constituant contenant du cuivre
C21D 6/00 - Traitement thermique des alliages ferreux
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
An apparatus for casting metals by a nucleated casting technique to create a preform, the apparatus including a mold having a base and a side wall where the base can be moved relative to the side wall to withdraw the preform as it is being created. In various circumstances, portions of a droplet spray created by an atomizing nozzle, i.e., overspray, may accumulate on a top surface of the side wall and prevent or inhibit the preform from being moved relative to the side wall. The atomizing nozzle can be oriented such that the droplet spray passes over the top of the side wall to remelt and remove at least a portion of the overspray that has accumulated thereon. The mold can be rotated such that the overspray formed on a region of or on the entire perimeter of the top surface can pass through the droplet spray and can be removed from the side wall.
H05B 3/60 - Dispositions pour le chauffage dans lesquelles le courant de chauffage circule dans un matériau granuleux, en poudre ou fluide, p. ex. pour fours à bains de sel, chauffage électrolytique
B22D 23/00 - Procédés de coulée non prévus dans les groupes
42 - Services scientifiques, technologiques et industriels, recherche et conception
Produits et services
Scientific and technological services and research and design related thereto, namely, scientific research and development, and scientific research, analysis and testing in the field of metals, metal alloys and related processing methods; Research and development of new products for others, namely, design and development of metals, metal alloys, and research and development of related processing methods.
C22C 38/44 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du molybdène ou du tungstène
C22C 38/52 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cobalt
C22C 38/58 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et plus de 1,5% en poids de manganèse
C22C 38/54 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du bore
C21D 8/02 - Modification des propriétés physiques par déformation en combinaison avec, ou suivie par, un traitement thermique pendant la fabrication de produits plats ou de bandes
C22C 38/00 - Alliages ferreux, p. ex. aciers alliés
C22C 38/02 - Alliages ferreux, p. ex. aciers alliés contenant du silicium
C22C 38/42 - Alliages ferreux, p. ex. aciers alliés contenant du chrome et du nickel et du cuivre