Methods that provide an integrated, scalable process for isolating both immunoglobulin G and albumin from plasma at high purity and high yield are described. These methods utilize a combination of salt precipitation and ion exchange chromatography to separately recover immunoglobulin G and albumin at high yield and high purity from flow-through fractions of chromatography steps. This provides a streamlined, scalable process that avoids binding and elution steps and that utilizes relatively small amounts of chromatography media.
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of: salt fractionation, chromatography, ultrafiltration, diafiltration, solvent-detergent treatment, and sterile filtration. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
A61K 38/48 - Hydrolases (3) agissant sur des liaisons peptidiques (3.4)
A61K 38/57 - Inhibiteurs de protéases provenant d'animauxInhibiteurs de protéases provenant d'humains
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
Systems and methods are described in which proteins are isolated from complex solutions in high yield and at high purity. Such systems and methods are carried out at ambient temperature and can be carried out at industrial scale with minimal energy requirements and minimal carbon footprint, using successive chromatographic separations that retain the protein or proteins of interest in flow-through fractions. At least one of the chromatography media used is selected to be capable of interacting with both contaminants and the protein of interest, however capacity of this media is selected such that the protein of interest is displaced and remains in the flow-through. Methods for isolation of IgG, albumin, and both IgG and albumin are provided.
Systems are provided for isolation of a protein, such as immunoglobulin G (IgG), from plasma, where the protein is initially fractioned by salt precipitation, followed by successive ion exchange steps in which the protein appears in unbound, flow-through fractions of the ion exchange steps. Some embodiments employ successive anion exchange steps. Other embodiments employ an anion exchange step followed by application of flow-through of the anion exchange step to a cation exchange step, with the protein collected in flow-through fractions from the cation exchange step. IgG is collected at high yield (typically about 75% or greater) and high purity. Avoidance of binding and elution from chromatography media simplifies processing and scale up without sacrificing IgG quality or yield.
Systems and methods are described in which proteins are isolated from complex solution using successive chromatographic separations that retain the protein of interest in the flow-through. At least one of the chromatography media used is selected to be capable of interacting with both contaminants and the protein of interest, however capacity of this media is selected such that the protein on interest is displaced and remains in the flow-through.
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
C07K 1/16 - ExtractionSéparationPurification par chromatographie
Systems and methods are described in which proteins are isolated from complex solution using successive chromatographic separations that retain the protein of interest in the flow-through. At least one of the chromatography media used is selected to be capable of interacting with both contaminants and the protein of interest, however capacity of this media is selected such that the protein on interest is displaced and remains in the flow-through.
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
Systems and methods are described in which proteins are isolated from complex solution using successive chromatographic separations that retain the protein of interest in the flow-through. At least one of the chromatography media used is selected to be capable of interacting with both contaminants and the protein of interest, however capacity of this media is selected such that the protein of interest is displaced and remains in the flow-through.
C07K 1/22 - Chromatographie d'affinité ou techniques analogues basées sur des procédés d'absorption sélective
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
C07K 1/16 - ExtractionSéparationPurification par chromatographie
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of fractionation that utilize a combination of salt and organic solvent. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
A61K 38/57 - Inhibiteurs de protéases provenant d'animauxInhibiteurs de protéases provenant d'humains
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
Methods are provided for isolation of immunoglobulin G (IgG) from plasma, where IgG is initially fractioned by salt precipitation, followed by successive ion exchange steps in which IgG appears in unbound, flow-through fractions of the ion exchange steps. Some embodiments employ successive anion exchange steps. Other embodiments employ an anion exchange step followed by application of flow-through of the anion exchange step to a cation exchange step, with IgG collected in flow-through fractions from the cation exchange step. IgG is collected at high yield (typically about 75% or greater) and high purity. Avoidance of binding and elution from chromatography media simplifies processing and scale up without sacrificing IgG quality or yield.
Methods are provided for isolation of immunoglobulin G (IgG) from plasma, where IgG is initially fractioned by salt precipitation, followed by successive ion exchange steps in which IgG appears in unbound, flow-through fractions of the ion exchange steps. Some embodiments employ successive anion exchange steps. Other embodiments employ an anion exchange step followed by application of flow-through of the anion exchange step to a cation exchange step, with IgG collected in flow-through fractions from the cation exchange step. IgG is collected at high yield (typically about 75% or greater) and high purity. Avoidance of binding and elution from chromatography media simplifies processing and scale up without sacrificing IgG quality or yield.
Compositions and methods are provided that simplify isolation of proteins of interest from serum or plasma. Finely divided silica or a similar lipid/lipoprotein binding solid is used in combination with a protein precipitating agent to generate a solution that includes the protein of interest and that can be applied to chromatography media without resulting in significant fouling of the media. The method is particularly suitable for isolation of immunoglobulin G.
Compositions and methods are provided that simplify isolation of proteins of interest from serum or plasma. Finely divided silica or a similar lipid/lipoprotein binding solid is used in combination with a protein precipitating agent to generate a solution that includes the protein of interest and that can be applied to chromatography media without resulting in significant fouling of the media. The method is particularly suitable for isolation of immunoglobulin G.
Compositions and methods are provided that simplify isolation of proteins of interest from serum or plasma. Finely divided silica or a similar lipid/lipoprotein binding solid is used in combination with a protein precipitating agent to generate a solution that includes the protein of interest and that can be applied to chromatography media without resulting in significant fouling of the media. The method is particularly suitable for isolation of immunoglobulin G.
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of: salt fractionation, chromatography, ultrafiltration, diafiltration, solvent-detergent treatment, and sterile filtration. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
A61K 38/48 - Hydrolases (3) agissant sur des liaisons peptidiques (3.4)
A61K 38/57 - Inhibiteurs de protéases provenant d'animauxInhibiteurs de protéases provenant d'humains
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
Methods for isolating proteins from solution by precipitation are provided. A nonvolatile precipitation agent is added to an aqueous protein solution at a low concentration. Water is then removed from the resulting solution until the precipitant and the protein content of the solution increase to a concentration that provides the desired segregation of proteins between supernatant and precipitate. Additional water can be removed from the supernatant to provide additional fractionation. Water can be removed by evaporation (e.g. under reduced pressure) and/or diafiltration.
Compositions of the inventive concept provide a therapeutic protein with less than 2% contamination by the therapeutic protein in denatured form. Such compositions provide enhanced specific activity and improved stability on storage and/or in serum than corresponding therapeutic protein preparations resulting from conventional isolation methods.
Methods for isolating proteins from solution by precipitation and compositions generated thereby are provided. A nonvolatile precipitation agent is added to an aqueous protein solution at a low concentration. Water is then removed from the resulting solution until the precipitant and the protein content of the solution increase to a concentration that provides the desired segregation of proteins between supernatant and precipitate. Additional water can be removed from the supernatant to provide additional fractionation. Water can be removed by evaporation (e.g. under reduced pressure) and/or diafiltration.
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
Compositions of the inventive concept provide a therapeutic protein with less than 2% contamination by the therapeutic protein in denatured form. Such compositions provide enhanced specific activity and improved stability on storage and/or in serum than corresponding therapeutic protein preparations resulting from conventional isolation methods.
Methods for isolating proteins from solution by precipitation are provided. A nonvolatile precipitation agent is added to an aqueous protein solution at a low concentration. Water is then removed from the resulting solution until the precipitant and the protein content of the solution increase to a concentration that provides the desired segregation of proteins between supernatant and precipitate. Additional water can be removed from the supernatant to provide additional fractionation. Water can be removed by evaporation (e.g. under reduced pressure) and/or diafiltration.
Compositions of the inventive concept provide a therapeutic protein with less than 2% contamination by the therapeutic protein in denatured form. Such compositions provide enhanced specific activity and improved stability on storage and/or in serum than corresponding therapeutic protein preparations resulting from conventional isolation methods.
A method for producing a modified cryo-poor precipitate that can be utilized in chromatography without intervening precipitation steps is provided. While thawing frozen plasma at low temperature a precipitating compound (e.g. a salt of an organic acid) is added in small amounts. The resulting modified cryo-poor plasma has a reduced tendency to foul chromatography media, permitting direct application to such media without the need for additional precipitation steps. The resulting modified cryoprecipitate has a higher content of cold-insoluble proteins (such as clotting factors), and can be resolubilized and processed further.
A method of producing protein products including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins from plasma includes steps of: (1) adding a salt to the blood product to produce a first intermediate, wherein the salt comprises between 11-13 wt % of the first intermediate; (2) separating the first intermediate to produce a first supernatant and a first paste; (3) adding a salt to the first intermediate to produce a second intermediate, wherein the salt comprises between 21-23 wt % of the second intermediate; (4) separating the second intermediate to produce a second supernatant and a second paste; (5) separating a third intermediate from the second supernatant by affinity chromatography; and (6) separating the third intermediate by ion exchange chromatography to produce an eluate containing the protein product. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields.
B01D 15/12 - Adsorption sélective, p. ex. chromatographie caractérisée par des caractéristiques de structure ou de fonctionnement relatives à la préparation de l'alimentation
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
Compositions of the inventive concept provide a therapeutic protein with less than 2% contamination by the therapeutic protein in denatured form. Such compositions provide enhanced specific activity and improved stability on storage and/or in serum than corresponding therapeutic protein preparations resulting from conventional isolation methods.
Methods for isolating proteins from solution by precipitation are provided. A nonvolatile precipitation agent is added to an aqueous protein solution at a low concentration. Water is then removed from the resulting solution until the precipitant and the protein content of the solution increase to a concentration that provides the desired segregation of proteins between supernatant and precipitate. Additional water can be removed from the supernatant to provide additional fractionation. Water can be removed by evaporation (e.g. under reduced pressure) and/or diafiltration.
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
25.
Methods for extracting proteins from a blood-based material
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of: salt fractionation, chromatography, ultrafiltration, diafiltration, solvent-detergent treatment, and sterile filtration. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
C07K 1/36 - ExtractionSéparationPurification par une combinaison de plusieurs procédés de types différents
C07K 1/22 - Chromatographie d'affinité ou techniques analogues basées sur des procédés d'absorption sélective
C07K 1/34 - ExtractionSéparationPurification par filtration, ultrafiltration ou osmose inverse
C07K 1/16 - ExtractionSéparationPurification par chromatographie
C07K 1/30 - ExtractionSéparationPurification par précipitation
B01D 15/36 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction ionique, p. ex. échange d'ions, paire d'ions, suppression d'ions ou exclusion d'ions
A61K 38/57 - Inhibiteurs de protéases provenant d'animauxInhibiteurs de protéases provenant d'humains
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
A method of producing protein products including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins from plasma includes steps of: (1) adding a salt to the blood product to produce a first intermediate, wherein the salt comprises between 11-13 wt % of the first intermediate; (2) separating the first intermediate to produce a first supernatant and a first paste; (3) adding a salt to the first intermediate to produce a second intermediate, wherein the salt comprises between 21-23 wt % of the second intermediate; (4) separating the second intermediate to produce a second supernatant and a second paste; (5) separating a third intermediate from the second supernatant by affinity chromatography; and (6) separating the third intermediate by ion exchange chromatography to produce an eluate containing the protein product. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields.
B01D 15/12 - Adsorption sélective, p. ex. chromatographie caractérisée par des caractéristiques de structure ou de fonctionnement relatives à la préparation de l'alimentation
B01D 15/38 - Adsorption sélective, p. ex. chromatographie caractérisée par le mécanisme de séparation impliquant une interaction spécifique non couverte par un ou plusieurs des groupes , p. ex. chromatographie d'affinité, chromatographie d'échange par ligand ou chromatographie chirale
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of: salt fractionation, chromatography, ultrafiltration, diafiltration, solvent-detergent treatment, and sterile filtration. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
Methods of producing multiple protein products from blood-based materials including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins are described herein. The inventive methods include steps of: salt fractionation, chromatography, ultrafiltration, diafiltration, solvent-detergent treatment, and sterile filtration. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields. The sequence of process steps can be selected to obtain multiple products from various in-process materials, such as supernatants, pastes, chromatography flow-though, and chromatography washes.
A method of producing protein products including alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins from plasma includes steps of: (1) adding a salt to the blood product to produce a first intermediate, wherein the salt comprises between 11-13 wt% of the first intermediate; (2) separating the first intermediate to produce a first supernatant and a first paste; (3) adding a salt to the first intermediate to produce a second intermediate, wherein the salt comprises between 21-23 wt% of the second intermediate; (4) separating the second intermediate to produce a second supernatant and a second paste; (5) separating a third intermediate from the second supernatant by affinity chromatography; and (6) separating the third intermediate by ion exchange chromatography to produce an eluate containing the protein product. Advantageously, the inventive methods are simple and produce alpha-1-proteinase inhibitor, gamma globulin, albumin, and other proteins in high yields.
The instant invention provides novel and effective methods of isolating alpha-1-antitrypsin from cryo-poor plasma and formulating it into therapeutic products. This invention achieves higher yields and a superior quality of alpha-1-antitrypsin. Alpha-1-antitrypsin is isolated from cryo-poor plasma, using one or more salts selected from a group comprising sodium citrate, sodium acetate, sodium gluconate, ammonium sulfate, sodium chloride, sodium sulfate and ammonium chloride in two fractionation steps, followed by diafiltration to remove those salts employed.
An efficacious large-scale alcohol-free plasma fractionation production process which produces a high-yielding, non-denatured, double viral-inactivated intravenous human immune gamma globulin (IgG) product. The process employs one or more salts from a group of salts comprising sodium citrate, sodium acetate, sodium gluconate, ammonium sulfate, sodium chloride, sodium sulfate and ammonium chloride in two initial fractionation steps, followed by diaflltration to remove those salts employed. A process which employs alcohol via the process of the disclosed inventive method is also disclosed.
An efficacious large-scale alcohol-free plasma fractionation production process which produces a high-yielding, non-denatured, double viral-inactivated intravenous human immune gamma globulin (IgG) product. The process employs one or more salts from a group of salts comprising sodium citrate, sodium acetate, sodium gluconate, ammonium sulfate, sodium chloride, sodium sulfate and ammonium chloride in two initial fractionation steps, followed by diaflltration to remove those salts employed. A process which employs alcohol via the process of the disclosed inventive method is also disclosed.
An efficacious large-scale alcohol-free plasma fractionation production process which produces a high-yielding, non-denatured, double viral-inactivated intravenous human immune gamma globulin (IgG) product. The process employs sodium citrate in two initial fractionation steps, followed by diafiltration to remove sodium citrate.
An efficacious large-scale alcohol-free plasma fractionation production process which produces a high-yielding, non-denatured, double viral-inactivated intravenous human immune gamma globulin (IgG) product. The process employs one or more salts from a group of salts comprising sodium citrate, sodium acetate, sodium gluconate, ammonium sulfate, sodium chloride, sodium sulfate and ammonium chloride in two initial fractionation steps, followed by diafiltration to remove those salts employed. A process which employs alcohol via the process of the disclosed inventive method is also disclosed.