Fiber laser devices, systems, and methods for reducing Raman spectrum in emissions from a resonant cavity. A fiber laser oscillator that is to generate an optical beam may include a Raman reflecting output coupler that strongly reflects a Raman component pumped within the resonant cavity, and partially reflects a signal component to sustain the oscillator and emit a signal that has a reduced Raman component. A Raman filtering output coupler may comprise a superstructure fiber grating, and such a grating may be chirped or otherwise designed to have a desired bandwidth.
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
An optical fiber includes a doped core doped with thulium and a doped cladding surrounding the doped core. The doped cladding is doped with a second dopant. The doped cladding has a thickness between about 45 µm – 650 µm. The doped core and the doped cladding establish a numerical aperture within a range of about 0.04 - 0.20.
An optical fiber includes a doped core doped with thulium and a doped cladding surrounding the doped core. The doped cladding is doped with a second dopant. The doped cladding has a thickness between about 45 μm-650 μm. The doped core and the doped cladding establish a numerical aperture within a range of about 0.04-0.20.
An imaging optic includes a first end to receive laser light, an exterior, and a second end; an acoustic transmitter acoustically coupled to a first side of the exterior of the imaging optic; an acoustic absorber acoustically coupled to a second opposite side of the exterior of the imaging optic; a waveguide having a first end to receive an output from the second end of the imaging optic, a first core section, a second section, and a second end, wherein acoustic waves output from the acoustic transmitter are arranged to diffract a first order beam from the laser light in the imaging optic; wherein the first order light is selectively output from the second end of the imaging optic into one of the sections of the waveguide.
Disclosed are optical beam delivery devices and methods to produce, from a single-mode input beam having a fundamental mode and an M2 beam quality of about 1.5 or less, an output beam having an adjustable spatial intensity distribution that is adjustable between near Gaussian and ring-shaped profiles, the near Gaussian profile corresponding to an M2 beam quality of about 1.5 or less. A first length of optical fiber is for adjusting the single-mode input beam to generate an adjustable beam based on controllable perturbation applied to the first length of optical fiber. A second length of optical fiber is for coupling the adjustable beam into one or both a central core confinement region and an annular higher-index confinement region. The second length of optical fiber is configured to provide at its output the output beam having the adjustable spatial intensity distribution.
A 3D printer includes a print bed adapted to receive a layer of print medium, a recoater adapted to distribute the print medium onto the print bed, a laser source adapted to generate a non-interactive laser beam and an interactive laser beam, a controller connected to the laser source to direct the interactive laser beam to the at least one predetermined location, a plurality of fiducial features associated with the recoater, wherein the plurality of fiducial features are presented by the recoater while the recoater distributes the print medium on the print bed to form a layer, and a scanner connected to the controller to detect, via the non-interactive laser beam, the plurality of fiducial features and provide location information for locations of individual ones of the plurality of fiducial features. The controller performs a calibration to adjust where the interactive laser beam is directed to the print medium.
A 3D printer includes a print bed adapted to receive a layer of print medium, a recoater adapted to distribute the print medium onto the print bed, a laser source adapted to generate a non-interactive laser beam and an interactive laser beam, a controller connected to the laser source to direct the interactive laser beam to the at least one predetermined location, a plurality of fiducial features associated with the recoater, wherein the plurality of fiducial features are presented by the recoater while the recoater distributes the print medium on the print bed to form a layer, and a scanner connected to the controller to detect, via the non-interactive laser beam, the plurality of fiducial features and provide location information for locations of individual ones of the plurality of fiducial features. The controller performs a calibration to adjust where the interactive laser beam is directed to the print medium.
B33Y 30/00 - Appareils pour la fabrication additiveLeurs parties constitutives ou accessoires à cet effet
B33Y 50/02 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B29C 64/393 - Acquisition ou traitement de données pour la fabrication additive pour la commande ou la régulation de procédés de fabrication additive
Systems and methods for three-dimensional imaging include a light source to emit a light pulse. The divergence of the light pulse is configurable by the system. For example, the system also includes a receiving lens having a field of view and configured to receive a portion of the light pulse reflected or scattered by a scene. The system configures the light source so that the divergence of the light pulse matches or approximates the field of view of the receiving lens.
H04N 13/254 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques en combinaison avec des sources de rayonnement électromagnétique pour l’éclairage du sujet
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/89 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour la cartographie ou l'imagerie
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
H04N 13/204 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques
H04N 13/207 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques utilisant un seul capteur d’images 2D
Disclosed are optical beam delivery devices and methods to modify an angular intensity distribution of an input beam so that it is converted to an output beam having an adjustable near-field transverse spatial intensity distribution. In some embodiments, adjustment of the angular intensity distribution is achieved by increasing an angular offset in response to controllable perturbation. In some other embodiments, adjustment of the angular intensity distribution is achieved by increasing an angular width (divergence) in response to controllable perturbation.
A fiber connector bulkhead adapter for coupling a fiber connector to bulkhead optics is configured to inhibit back reflections from damaging a laser system. The adapter includes a bore sized to receive a fiber ferrule of a fiber connector, a mounting base having a centrally located shroud, and an aperture between the end of the bore and the shroud.
A fiber connector bulkhead adapter for coupling a fiber connector to bulkhead optics is configured to inhibit back reflections from damaging a laser system. The adapter includes a bore sized to receive a fiber ferrule of a fiber connector, a mounting base having a centrally located shroud, and an aperture between the end of the bore and the shroud.
A fused fiber combiner combines outputs from multiple, separately controllable input fibers. At least one of the input fibers includes a portion to vary a transverse spatial intensity distribution in response to controllable perturbation, a portion to convert position to angle, and a portion to preserve the divergence distribution. An output of the combiner is coupled to a divergence-preserving fiber, which preserves a combined divergence distribution guided by the divergence-preserving fiber. An output GRIN lens maps the combined divergence distribution to an output transverse spatial intensity distribution defining a composite beam shape of an output beam, the output transverse spatial intensity distribution representing a superposition of individual channel output beams.
A fused fiber combiner combines outputs from multiple, separately controllable input fibers. At least one of the input fibers includes a portion to vary a transverse spatial intensity distribution in response to controllable perturbation, a portion to convert position to angle, and a portion to preserve the divergence distribution. An output of the combiner is coupled to a divergence-preserving fiber, which preserves a combined divergence distribution guided by the divergence-preserving fiber. An output GRIN lens maps the combined divergence distribution to an output transverse spatial intensity distribution defining a composite beam shape of an output beam, the output transverse spatial intensity distribution representing a superposition of individual channel output beams.
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
A method of generating adjustable composite beam shapes in response to controllable perturbation includes receiving, via inputs of multiple input fibers, different laser beams, combining the outputs from the multiple input fibers into a divergence-preserving fiber that preserves a combined divergence distribution of the intermediate beams; and converting at an output lens the combined divergence distribution to an output transverse spatial intensity distribution defining a composite beam shape of an output beam. The output transverse spatial intensity distribution includes a superposition of individual channel output beams. At least one of the multiple input fibers has a tunable fiber assembly with a series of first, second, and third portions that adjust an input transverse spatial intensity distribution in response to controllable perturbation, convert the input transverse spatial intensity distribution to an intermediate divergence distribution, and preserve the intermediate divergence distribution that is delivered to the fused fiber combiner.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
15.
VARIABLE DIVERGENCE LASER FOR DYNAMIC FOCUS ADJUSTMENT
A laser processing system has a laser source and a divergence-tuning beam characteristic conditioner configured to, in response to a control input, repetitively change a variable divergence laser beam between a first divergence and a second divergence that is different from the first divergence. The system also includes a process head having a collimating lens and a focusing lens. And the system includes a delivery fiber coupled to the divergence-tuning beam characteristic conditioner for guiding the variable divergence laser beam and launching it to the process head. The collimating lens is configured to receive the variable divergence laser beam and direct it as an intermediate beam to the focusing lens to focus the intermediate beam toward the workpiece at a first depth corresponding to the first divergence and at a second depth corresponding to the second divergence.
A laser processing system has a laser source and a divergence-tuning beam characteristic conditioner configured to, in response to a control input, repetitively change a variable divergence laser beam between a first divergence and a second divergence that is different from the first divergence. The system also includes a process head having a collimating lens and a focusing lens. And the system includes a delivery fiber coupled to the divergence-tuning beam characteristic conditioner for guiding the variable divergence laser beam and launching it to the process head. The collimating lens is configured to receive the variable divergence laser beam and direct it as an intermediate beam to the focusing lens to focus the intermediate beam toward the workpiece at a first depth corresponding to the first divergence and at a second depth corresponding to the second divergence.
B23K 26/06 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
Fiber assemblies include a first lens, a divergence-preserving fiber having a mode-distribution homogenization portion, and a second lens. The fiber assembly is configured to generate a flat-top divergence distribution. All embodiments can include a splice within the divergence-preserving fiber to provide manufacturing, serviceability, and/or performance advantages; one or both the core diameter and cladding diameter can be stepped up or down at this splice. In some embodiments, the structure is all-fiber (no free-space optics). In other embodiments, a fiber-to-fiber coupler or switch is employed.
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
An optical beam delivery system for image relaying has a source fiber configured to provide an input beam, the input beam defined by a beam parameter product (BPP) and an input transverse spatial intensity distribution that is azimuthally symmetric; a first GRIN lens configured to convert the input transverse spatial intensity distribution to an intermediate beam having a divergence distribution, the first GRIN lens having a first effective focal length; and a second GRIN lens, coupled to the first GRIN lens, configured to receive the intermediate beam from the first GRIN lens, map the divergence distribution to an output beam having an output transverse spatial intensity distribution representing an image of the input beam, and maintain the BPP for the output beam, the second GRIN lens having a second effective focal length that is different from the first effective focal length.
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
19.
FIBER LASER SYSTEM MONITOR USING ONE OR MORE PHOTODIODES
A fiber laser system monitor includes a fiber laser adapted to generate fiber laser light, a first light emitter adapted to generate first emitted light, a photodiode adapted to receive the first emitted light and the fiber laser light and to generate a received light signal responsive thereto, and a controller connected to the fiber laser, the first light emitter, and the photodiode. The controller receives the received light signal. The controller is configured to determine an acceptable operation for the fiber laser, the first light emitter, and the photodiode by comparing the received light signal with a predetermined maximum threshold and with a predetermined minimum threshold.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Fiber laser apparatus, namely, industrial fiber lasers that generate high power laser beams in gain fibers; fiber-coupled laser apparatus, namely, laser diode modules that generate laser beams with semiconductor lasers and couple the laser beams into optical fibers for pumping laser gain media, industrial fiber laser systems comprised of laser equipment for non-medical purposes that use laser diode modules to pump gain fibers, industrial fiber laser systems comprised of laser equipment for non-medical purposes that combine fiber laser beams; fiber laser apparatus with variable optical beam characteristics, namely, industrial fiber lasers that generate high power laser beams with adjustable beam characteristics, including cross-sectional beam shape and intensity profile; fiber-coupled laser apparatus with variable optical beam characteristics, namely, laser diode modules that generate laser beams with semiconductor lasers and couple the laser beams into optical fibers for pumping laser gain media and wherein the laser beams in the optical fibers have adjustable beam characteristics, industrial fiber laser systems comprised of laser equipment for non-medical purposes that use laser diode modules to pump gain fibers, industrial fiber laser systems comprised of laser equipment for non-medical purposes that combine fiber laser beams wherein the fiber laser beams have adjustable beam characteristics including cross-sectional beam shape and intensity profile; optical fiber couplers configured to vary beam characteristics of an optical beam propagating in an optical fiber; optical systems comprised of optical fibers and optical beam perturbation systems comprised of laser equipment for non-medical purposes that vary characteristics of a propagating laser beam; optical products for controlling, manipulating, or adjusting optical beam characteristics of fiber laser beams, namely, selectively bendable optical fibers, electroacoustic-optic transducers, electrically controlled devices that vary optical fiber refractive index profile; optical fiber products for varying beam spatial power distribution, namely, optical fibers with specialized refractive index profiles, optical confinement fibers; optical fiber perturbation devices, namely, optical fiber fasteners specially adapted for use with optical fibers, optical fiber benders specially adapted for use with optical fibers, optical fiber perturbation device electric actuators, optical fiber electro-optic transducers, electroacoustic-optic transducers; apparatus for perturbing optical fibers to vary optical beam characteristics, namely, optical fiber fasteners specially adapted for use with optical fibers, optical fiber benders specially adapted for use with optical fibers, optical fiber perturbation device electric actuators, optical fiber electro-optic transducers, electroacoustic-optic transducers; fiber laser apparatus having optical fiber splices, namely, laser equipment for non-medical purposes in the nature of splices for optically transmissive fibers that are associated with varying fiber laser output beam characteristics; laser equipment for non-medical purposes, namely, fiber lasers having optical fibers and optical splices associated with variable output beam characteristics
21.
SYNCHRONIZERS TO REDUCE JITTER AND RELATED APPARATUSES, METHODS, AND SYSTEMS
Synchronizers to reduce jitter and related apparatuses, methods, and systems are disclosed. An apparatus includes a processing circuitry to generate a first pulse train signal and a second pulse train signal responsive to a timing signal. The apparatus also includes a first synchronizer and a second synchronizer. The first synchronizer and the second synchronizer are to generate first and second reduced-jitter pulse train signals by locking trigger edges of the first and second pulse-train signals to edges of the timing signal.
Methods for producing a low-noise, multi-image sensor imaging system by generating a correlated measurement by sampling corresponding pixel values of first and second regions of, respectively, first and second image sensors (504, 508) during an active alignment process of the first and second regions; determining, based on the correlated measurement changing to a minimum or maximum value during the active alignment process, that the first and second regions are pixel aligned; and mounting the first and second image sensors (504, 508) so as to maintain alignment of the first and second regions. First and second image sensors (504, 508) may be mounted to first and second sides of a beamsplitter (502), respectively. Shot noise is noise that occurs when a photon field (512) is quantized on a sensor array. A photon would be detected on one or the other sensor creating a noise that is proportional to the square root of the number of the incoming photons. If the sensors (504, 508) are pixel aligned, shot noise becomes correlated. Alignment based on correlation can eliminate some of this shot noise and improve the measured signal noise. Each imager may include a focal plane array, FPA, of light-sensing pixels at a focal plane of a lens of optical system (500). Because imagers (504, 508) are coarsely aligned, light captured at central pixel N (526) is not entirely correlated with light arriving at central pixel M (524) with some light directed to peripheral pixel P (520).
A method includes producing a fiducial source beam with an optical source, and forming at least one transient optical fiducial on a laser processing target that is in a field of view of a laser scanner situated to scan a laser processing beam across the laser processing target, with an optical fiducial pattern generator that receives the fiducial source beam, to adjust a positioning of the laser processing beam relative to the at least one transient optical fiducial.
An apparatus may steer an optical beam provided by a collimating optical module to a selected one of receiving optical modules. The apparatus may comprise an optical component to receive the optical beam provided by the collimating optical module; and a motorized rotation stage including a base and a rotating section, wherein the rotating section is restricted to rotation, relative to the base, about a single axis; wherein the optical component is mounted to the rotating section, and the apparatus further includes circuitry to control the motorized rotation stage to rotate the platform or stage amongst different rotational positions that correspond to the receiving optical modules, respectively; and wherein the optical component guides (by reflection, refraction, or the like, or combinations thereof) the optical beam to the selected one of the receiving optical modules based on a current rotational position of the rotating section. Other embodiments may be disclosed/claimed.
G02B 6/35 - Moyens de couplage optique comportant des moyens de commutation
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
An optical system for generating a three dimensional, digital representation of a scene includes a nonvisible illumination source, a first camera to receive light from the scene and generate a first digital map therefrom, and a second camera to receive the nonvisible light from the scene, the nonvisible light having been generated by the illumination source, and to generate a second digital map therefrom. The first digital map concerns color and the second digital map concerns depth. The system also includes a processor that receives the first and second digital maps and generates a three dimensional, digital representation of a scene. The three dimensional, digital representation of the scene satisfies the following: (1) an image resolution with an image pixel count greater than or equal to 0.9 M (megapixels), (2) an image latency of 10 ms – 30 sec, and (3) a distance of 10 cm – 200 m.
H04N 23/20 - Caméras ou modules de caméras comprenant des capteurs d'images électroniquesLeur commande pour générer des signaux d'image uniquement à partir d'un rayonnement infrarouge
H04N 23/90 - Agencement de caméras ou de modules de caméras, p. ex. de plusieurs caméras dans des studios de télévision ou des stades de sport
H04N 23/60 - Commande des caméras ou des modules de caméras
27.
GAIN SWITCH SPIKE SUPPRESSION THROUGH TEMPORAL AND/OR AMPLITUDE MANIPULATION OF THE PUMP ENERGY
A laser system may include a gain medium; and pump modules to energize the gain medium or a single pump emitter to energize the gain medium; and circuitry to: configure a pump emitter of the pump modules to activate at a first intensity at a first time, or configure a pump emitter of the single pump module to activate at a reduced intensity at the first time; and the circuitry to: configure one or more next pumps emitters of the pump modules to activate at one or more second intensities, respectively, and at one or more second times, respectively, or configure the single pump emitter to activate at one or more second intensities at the one or more second times, respectively, wherein the one or more second times are delayed by one or more delay amounts, respectively, relative to the first time.
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
H01S 3/131 - Stabilisation de paramètres de sortie de laser, p. ex. fréquence ou amplitude par commande du milieu actif, p. ex. par commande des procédés ou des appareils pour l'excitation
28.
SUPPRESSION OF UNDESIRED WAVELENGTHS IN LASER LIGHT
Some embodiments may include an apparatus usable in a laser system. The apparatus may include at least one optical filter to receive a laser beam or laser light along a first axis, the laser beam or laser light generated by the laser system, wherein the at least one optical filter is configured to reflect one of light having a selected wavelength or a remainder of the laser light along a second axis that is non-parallel with the first axis and pass the other of the light having the selected wavelength or the remainder along a third axis that is parallel to the first axis. Other embodiments may be disclosed and/or claimed.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
An optical combiner includes a fiber bundle with a plurality of input fibers, an output fiber with an inner core surrounded by an outer core, a splice fusing the fiber bundle to the output fiber, at least a first input fiber from the plurality of input fibers being aligned in register with the inner core, and at least a second input fiber from the plurality of input fibers being aligned in register with the outer core. A laser system combines the optical combiner with a plurality of lasers generating laser light.
G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux
30.
OPTICAL ASSEMBLY TO MODIFY NUMERICAL APERTURE OF A LASER BEAM
Some embodiments may include an optical assembly usable to process light output from a laser source. The apparatus may include a housing to receive a distal end of an optical fiber that outputs the laser light; one or more actively cooled or passively cooled beam traps contained within the housing or coupled to the housing; and one or more optical apertures located inside the housing, at least one of the optical apertures to define a numerical aperture (NA) of a first portion of the laser light based on a radial dimension of the at least one optical aperture, the at least one optical aperture arranged to pass the first portion of the light and redirect a second different portion of the laser light to the one or more actively cooled or passively cooled beam traps. Other embodiments may be disclosed and/or claimed.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
Various embodiments provide apparatuses, systems, and methods related to a dual-sided optical package. The package may include a base plate with a first side and a second side opposite the first side. The base plate may have a coolant channel positioned between the first side and the second side. A first set of optics may be coupled with the first side of the base plate, and a second set of optics may be coupled with the second side of the base plate. Other embodiments may be described and/or claimed.
Systems and methods for three-dimensional imaging are disclosed. A three-dimensional imaging system may include a light source to emit a light pulse. The divergence of the light pulse may be configurable by the system. For example, the system may also include a receiving lens having a field of view and configured to receive a portion of the light pulse reflected or scattered by a scene. The system may configure the light source so that the divergence of the light pulse matches or approximates the field of view of the receiving lens.
G01S 5/14 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant les ondes radioélectriques déterminant des distances absolues à partir de plusieurs points espacés d'emplacement connu
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 7/4865 - Mesure du temps de retard, p. ex. mesure du temps de vol ou de l'heure d'arrivée ou détermination de la position exacte d'un pic
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 17/89 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour la cartographie ou l'imagerie
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
H04N 13/204 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques
H04N 13/207 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques utilisant un seul capteur d’images 2D
H04N 13/254 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques en combinaison avec des sources de rayonnement électromagnétique pour l’éclairage du sujet
Some embodiments may include a fiber laser having an input end to receive source light from a light source and an output end including: a feeding optic fiber including a cladding layer and an interior surrounded by the cladding layer, wherein the interior emits a beam at an end of the feeding optic and the cladding layer receives process light at the end of the feeding optic, the process light generated by processing of a workpiece by the beam; and a notch or other discontinuity in an outer surface of a side of the cladding layer, the surface discontinuity to release a portion of the process light, the apparatus further comprising: a collection optic fiber having a first end to capture a sample of the released process light and a second end to provide the captured sample to a sensor. Other embodiments may be disclosed and/or claimed.
The disclosed diode laser packages include a carrier having an optics-mounting surface to which first and second sets of collimating and turning optics are mounted. The carrier includes a heatsink receptacle medially located between the first and second sets. A cooling plenum has a diode-mounting surface and includes heatsink material disposed in the heatsink receptacle. The cooling plenum further has an inlet, an outlet, and a coolant passageway defined between the inlet and the outlet. The coolant passageway is sized to receive the heatsink material disposed in heatsink receptacle. Multiple semiconductor laser diode devices are each mounted atop the diode-mounting surface and positioned for bidirectional emission toward the first and second sets of collimating and turning optics. The multiple semiconductor laser diode devices are thermally coupled to the heatsink material through which coolant is deliverable by the coolant passageway.
Angularly homogenizing gradient index optical fiber having a refractive index profile that is non-quadratic to a degree sufficient to enhance precession of light as it is propagated through the fiber. Deviation from the quadratic may be limited to avoid profoundly changing the radial boundary within the fiber. Beam asymmetry, for example, associated with small aperture sources launched into a fiber off axis, may be made more symmetric as the beam is propagated through the homogenizing gradient index optical fiber. A refractive index profile may be manufactured to avoid a pure quadratic profile, or a fiber having a refractive index profile that is quadratic in only some orientations about the fiber axis may be twisted during draw to induce a refractive index profile path that enhances propagation precession.
Some embodiments may include a power monitor to measure power of laser light propagating in a core of an optical fiber; the power monitor to generate a sensor signal using an optical sensor having a light sensitive section with no line of sight to part of the optical fiber; wherein the sensor signal is derived from light emerging laterally from the part of the optical fiber. Other embodiments may be disclosed and/or claimed.
Some embodiments may include a power monitor to measure power of laser light propagating in a core of an optical fiber; the power monitor to generate a sensor signal using an optical sensor having a light sensitive section with no line of sight to part of the optical fiber; wherein the sensor signal is derived from light emerging laterally from the part of the optical fiber. Other embodiments may be disclosed and/or claimed.
F21V 8/00 - Utilisation de guides de lumière, p. ex. dispositifs à fibres optiques, dans les dispositifs ou systèmes d'éclairage
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
38.
SEMICONDUCTOR LASER DEVICE WITH FIRST ORDER DIFFRACTION GRATING EXTENDING TO FACET
Some embodiments may include a semiconductor laser device comprising: an active layer to generate light; a front facet positioned at a first end of said active layer, with an AR coating or PR coating; a rear facet positioned on a second opposite end of said active layer thereby forming a resonator between said front facet and said rear facet; and a first order diffraction grating positioned within said resonator along only a portion of the length of said active layer, wherein the semiconductor laser device is arranged to emit light from both ends, and the diffraction grating has two non-contiguous segments each extending to one of the facets; or a single end, wherein the rear facet is a rear light reflecting facet with an HR-coating. Other embodiments may be disclosed and/or claimed.
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
H01S 5/32 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures
Various embodiments provide apparatuses, systems, and methods related to a heat sink with one or more removable inserts. Respective inserts may include one or more fins that define one or more channels for flow of cooling fluid. The fins may be formed of a composite material that is different than a material of the heat sink body. Other embodiments may be described and/or claimed.
F28F 9/26 - Dispositions pour raccorder des sections différentes des éléments d'échangeurs de chaleur, p. ex. de radiateur
F28F 21/08 - Structure des appareils échangeurs de chaleur caractérisée par l'emploi de matériaux spécifiés de métal
F28F 21/04 - Structure des appareils échangeurs de chaleur caractérisée par l'emploi de matériaux spécifiés de céramiqueStructure des appareils échangeurs de chaleur caractérisée par l'emploi de matériaux spécifiés de bétonStructure des appareils échangeurs de chaleur caractérisée par l'emploi de matériaux spécifiés de pierre naturelle
F28D 15/02 - Appareils échangeurs de chaleur dans lesquels l'agent intermédiaire de transfert de chaleur en tubes fermés passe dans ou à travers les parois des canalisations dans lesquels l'agent se condense et s'évapore, p. ex. tubes caloporteurs
H01S 5/024 - Dispositions pour la gestion thermique
Various embodiments provide apparatuses, systems, and methods related to a heat sink with one or more removable inserts. Respective inserts may include one or more fins that define one or more channels for flow of cooling fluid. The fins may be formed of a composite material that is different than a material of the heat sink body. Other embodiments may be described and/or claimed.
09 - Appareils et instruments scientifiques et électriques
13 - Armes à feu; explosifs
Produits et services
Optical components, namely, lasers and related devices,
namely, laser diodes, laser diode modules, laser diode
assemblies, fiber-coupled laser diode modules, fiber, and
fiber amplifiers, to generate, maintain, route or amplify
signals for transmission from point to point via optical
fibers or waveguides, not for medical use; high energy
laser; high energy laser beam control; imaging systems;
adaptive optical systems; precision tracking systems;
optical communication systems; laser imaging and laser radar
systems; lasers for materials processing. Directed energy weapon systems; high energy laser weapon
systems.
In an example, a tandem pumped fiber amplifier may include a seed laser, a first section coupled to an output of the seed laser, and a second section coupled to an output of the first section. The first section may operate as an oscillator, and may receive pump light from one or more diode pumps, and may the first section may be arranged to convert the one or more diode pumps into a tandem pump. The second section may operate as a power amplifier, and may include a length of a single or plural active core fiber. The tandem pumped fiber amplifier may be arranged to mitigate spectral broadening related to four-wave mixing.
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
An optical component has a bottom part located in an opening defined by a surface, wherein a distance between a sidewall of the bottom part of the optical component and a sidewall of the opening is non-uniform in which a width of a first section of the opening or a first section of the bottom part of the optical component is narrower than a width of a second lower section of the opening or a width of a second lower section of the bottom part of the optical component; and an adhesive is located in the opening between sidewalls.
Optical fiber structures for generating a single mode, saddle shaped output beam include first and second lengths of fiber. The first length of fiber has a first input end configured to receive a single mode gaussian beam. The second length of fiber has a second input end coupled to an output end of the first length of fiber. The second length of fiber includes a centrally located anti-guiding core and an annular guiding region coaxially encompassing the centrally located anti-guiding core.
A mounting surface defines a branching channel, the branching channel having a main channel and one or more sub-channels branching off the main channel. An optic fiber is affixed to the mounting surface, the optic fiber including a cladding layer and an interior surrounded by the cladding layer, wherein part of the optic fiber is suspended over the main channel. A clad light stripper includes one or more discontinuities in an outer surface of the cladding layer of a suspended section of the optic fiber, the one or more outer surface discontinuities to release a portion of the process light. The one or more subchannels include a first sub-channel having an ingress located to capture released light from an individual one of the one or more discontinuities and trap at least a portion thereof.
A capillary combiner housing for an optical fiber combiner has an inner combiner casing supporting optical fibers. The capillary combiner housing includes a non-metallic body defining a lumen between an input side and an output side, the lumen sized to receive the inner combiner casing, the non-metallic body having a coefficient of thermal expansion substantially matching that of the inner combiner casing. Also included is a first aperture in the input side, the first aperture having a first inside diameter sized to receive multiple input optical fibers, and a second aperture in the output side, the second aperture having a second inside diameter sized to receive an output fiber.
G02B 6/255 - Épissage des guides de lumière, p. ex. par fusion ou par liaison
G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux
Apparatuses, systems and methods are disclosed for reducing interference between an active illumination device and external radiation sources, for example, other active illumination devices operating within the vicinity. A disclosed system includes one or more active illumination devices, each configured to emit an illumination signal and also to receive a returned portion of its respective illumination signal with at least one sensor. At least one of the active illumination devices is capable of detecting interference caused by an external source, for example, an illumination signal emitted from another active illumination device. As a result of detecting the interference, the receiving active illumination device changes the timing of its subsequent illumination signals and sensor operation. By detecting collisions between illumination signals and consequently altering the timing of it operation, the active illumination device may reduce interference in congested environments where multiple active illumination devices are operating within range of each other.
Disclosed are optical beam delivery devices and methods to modify an angular intensity distribution of an input beam so that it is converted to an output beam having an adjustable near-field transverse spatial intensity distribution. In some embodiments, adjustment of the angular intensity distribution is achieved by increasing an angular offset in response to controllable perturbation. In some other embodiments, adjustment of the angular intensity distribution is achieved by increasing an angular width (divergence) in response to controllable perturbation.
Some embodiments may include a method assessing whether a dynamic focus module in a three axis galvanometric scanning system (three-axis GSS) is associated with a focus calibration error. The method may include identifying a reference layer associated with a surface of the work piece and positive and negative offset distances each a difference distance above or below the reference layer, respectively, and selecting a target pattern based on the offset distances, wherein the pattern includes an individual line for each offset distance. The method may include commanding the three-axis GSS to draw the target pattern on the work piece, and then assessing whether the dynamic focus module is associated with the focus calibration error by correlating laser marking artifacts on the work piece to ones of the individual lines of the selected pattern. Other embodiments may be disclosed and/or claimed.
Multi-clad optical fiber cladding light stripper (CLS) comprising an inner cladding with one or more recessed surface regions to remove light propagating within the inner cladding. A CLS may comprise such recessed surface regions along two or more azimuthal angles about the fiber axis, for example to improve stripping efficiency. One or more dimensions, or spatial distribution, of the recessed surface regions may be randomized, for example to improve stripping uniformity across a multiplicity of modes propagating within a cladding. Adjacent recessed surface regions may abut, for example, end-to-end, as segments of a recess that occupies a majority, or even an entirety, of the length of a fiber surrounded by a heat sink. One or more dimensions, or angular position, of individual ones of the abutted recessed surface regions may vary, according to a regular or irregular pattern.
09 - Appareils et instruments scientifiques et électriques
Produits et services
Optical components, namely, lasers and related devices, namely, laser diodes, laser diode modules, laser diode assemblies, fiber-coupled laser diode modules, fiber, and fiber amplifiers, to generate, maintain, route or amplify signals for transmission from point to point via optical fibers or waveguides, not for medical use; high energy laser not for medical purposes; high energy laser beam controllers being electronic controllers for use with controlling high energy laser systems lasers; imaging systems being remote controlled thermal imaging systems, not for medical use; adaptive optical signal transmission systems; precision tracking systems comprising electronic devices for locating and tracking moving and static objects of interest using adaptive optics imaging systems; directed energy weapon systems comprising lasers, laser combiners, beam directors, adaptive optics systems, electronic control systems, precision tracking systems, thermal management systems; high energy laser weapon systems comprising lasers, laser combiners, beam directors, electronic control systems, precision tracking systems, thermal management systems; optical communication systems comprising lasers, laser modulators, beam directors, high-speed light detectors, optical modems, electronic control systems or onboard computer processors, electronic control systems, precision tracking systems, thermal management systems; non-medical laser imaging and laser radar systems comprising lasers, beam directors, light detectors, cameras, onboard computer processors; lasers for materials processing, namely, sensing and signaling devices for measurement and quality control of materials processing by lasers; High energy lasers for defense applications for disruption of moving and static objects purposes; high energy laser beam controller for use with defense application system lasers; imaging systems for use in optical communications
Disclosed is an optical fiber-based divergence-limiting device for limiting divergence from a first maximum divergence of input light to a second maximum divergence of output light, in which the second maximum divergence is less than the first maximum divergence.
Disclosed are optical beam delivery devices and methods to produce, from a singlemode input beam having a fundamental mode and an M2 beam quality of about 1.5 or less, an output beam having an adjustable spatial intensity distribution that is adjustable between near Gaussian and ring-shaped profiles, the near Gaussian profile corresponding to an M2 beam quality of about 1.5 or less. A first length of optical fiber is for adjusting the singlemode input beam to generate an adjustable beam based on controllable perturbation applied to the first length of optical fiber. A second length of optical fiber is for coupling the adjustable beam into one or both a central core confinement region and an annular higherindex confinement region. The second length of optical fiber is configured to provide at its output the output beam having the adjustable spatial intensity distribution.
Some embodiments may include an imaging optic having a first end to receive laser light, an exterior, and a second end; an acoustic transmitter acoustically coupled to a first side of the exterior of the imaging optic; an acoustic absorber acoustically coupled to a second opposite side of the exterior of the imaging optic; a waveguide having a first end to receive an output from the second end of the imaging optic, a first core section, a second section, and a second end, wherein acoustic waves output from the acoustic transmitter are arranged to diffract a first order beam from the laser light in the imaging optic; wherein the first order light is selectively output from the second end of the imaging optic into one of the sections of the waveguide. Other embodiments may be disclosed and/or claimed.
G02F 1/11 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments acousto-optiques, p. ex. en utilisant la diffraction variable par des ondes sonores ou des vibrations mécaniques analogues
Disclosed are embodiments for multi-band pumping of a doped fiber source. The doped fiber source has a first absorption band and a second absorption band that is different from the first absorption band. In some embodiments, a first laser pump generates a first pump power in a first pump band corresponding to the first absorption band that is generated. A second laser pump generates a second pump power in a second pump band corresponding to the second absorption band. The second pump band is different from the first pump band. The first and second pump power is simultaneously applied to the doped fiber source.
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
Disclosed herein are laser scanning systems and methods of their use. In some embodiments, laser scanning systems can be used to ablatively or non-ablatively scan a surface of a material. Some embodiments include methods of scanning a multi-layer structure. Some embodiments include translating a focus-adjust optical system so as to vary laser beam diameter. Some embodiments make use of a 20-bit laser scanning system.
H01L 31/18 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives
G21K 5/04 - Dispositifs d'irradiation avec des moyens de formation du faisceau
H05K 3/02 - Appareils ou procédés pour la fabrication de circuits imprimés dans lesquels le matériau conducteur est appliqué à la surface du support isolant et est ensuite enlevé de zones déterminées de la surface, non destinées à servir de conducteurs de courant ou d'éléments de blindage
G06F 3/044 - Numériseurs, p. ex. pour des écrans ou des pavés tactiles, caractérisés par les moyens de transduction par des moyens capacitifs
G06F 3/041 - Numériseurs, p. ex. pour des écrans ou des pavés tactiles, caractérisés par les moyens de transduction
H05K 1/03 - Emploi de matériaux pour réaliser le substrat
Some embodiments may include a fiber laser including two or more input fibers and an output fiber to deliver a beam to a workpiece, the fiber laser comprising. The fiber laser may include a combiner having ends and a length, wherein the combiner is arranged to release, from its length, a portion of back-reflected light received from the output fiber at an output end of the ends from the combiner, the combiner including: a capillary tube to enclose part of the two or more input fibers at an input end of the ends of the combiner, the capillary tube having ends and a length located between the ends of the capillary tube; and a cladding light stripper (CLS) defined by part of the length of the capillary tube, wherein the CLS provides the release of the portion of the back-reflected light. Other embodiments may be disclosed and/or claimed.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
59.
CORROSION RESISTANT HEATSINK METHOD, SYSTEM, AND APPARATUS
A heat source package, comprising a housing having a metal base portion with one or more channels formed therein, the one or more channels having an inner surface, a coating of an anti-corrosive material adhered to a portion of the inner surface of the one or more channels wherein the anti-corrosive material is selected to have a thermal conductivity within a threshold range such that the coating changes the thermal resistance of a coated portion of the channel less than 25% with respect to an uncoated portion of the metal base portion. In examples, a heat source may be thermally coupled to the inner surface of the channels and the channels may be formed to conduct a liquid coolant from a liquid inlet to a liquid outlet to dissipate heat away from the heat source.
A magnetically-actuated laser beam control assembly may include a magnetically permeable cover arranged to sealingly couple to an optics housing to cover an opening of the optics housing, an interior sub-assembly, and an exterior sub-assembly. The interior sub-assembly may include includes a linkage having a first section and a second section; the first section of the linkage to receive an optical component; and a ferroelectric or ferromagnetic material on the second section of the linkage. The exterior sub-assembly may include an electromagnet energizable to impart a magnetic force to the ferroelectric or ferromagnetic material to move the optical component from one of a resting position and a different position to the other of the resting position and the different position to cause the optical component to selectively optically process a laser beam. Other embodiments may be disclosed and/or claimed.
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
G02B 7/182 - Montures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour prismesMontures, moyens de réglage ou raccords étanches à la lumière pour éléments optiques pour miroirs pour miroirs
61.
CONTINUOUS WAVE OUTPUT IN A LASER SYSTEM ARRANGED FOR PULSED OUTPUT
Some embodiments may include a fiber laser system comprising: a pump combiner; a plurality of fiber laser pump modules arranged for pumping a pulsed output from the fiber laser system; and a pump controller to operate in a first operation mode to pump a pulsed output from the fiber laser system and to operate in a second different operation mode to pump a continuous wave (CW) output from the fiber laser system; the pump controller to, in the first operation mode, simultaneously activate individual fiber laser pump modules of the plurality of fiber laser pump modules; and the pump controller to, in the second operation mode, sequentially activate the individual fiber laser pump modules of the plurality of fiber laser pump modules. Other embodiments may be disclosed and/or claimed.
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
H01S 3/04 - Dispositions pour la gestion thermique
A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
B23K 26/067 - Division du faisceau en faisceaux multiples, p. ex. foyers multiples
B23K 26/38 - Enlèvement de matière par perçage ou découpage
B29C 48/08 - Moulage par extrusion, c.-à-d. en exprimant la matière à mouler dans une matrice ou une filière qui lui donne la forme désiréeAppareils à cet effet caractérisées par la forme à l’extrusion de la matière extrudée plate, p. ex. panneaux flexible, p. ex. pellicules
G02B 6/036 - Fibres optiques avec revêtement le noyau ou le revêtement comprenant des couches multiples
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
B23K 26/062 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples par commande directe du faisceau laser
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B22F 10/31 - Étalonnage des étapes de procédé ou réglages des appareils, p. ex. avant ou en cours de fabrication
B22F 10/36 - Commande ou régulation des opérations des paramètres du faisceau d’énergie
B23K 26/064 - Mise en forme du faisceau laser, p. ex. à l’aide de masques ou de foyers multiples au moyen d'éléments optiques, p. ex. lentilles, miroirs ou prismes
B23K 26/073 - Détermination de la configuration du spot laser
G02B 6/255 - Épissage des guides de lumière, p. ex. par fusion ou par liaison
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
G02B 6/028 - Fibres optiques avec revêtement le noyau ou le revêtement ayant un indice de réfraction progressif
G02F 1/015 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur basés sur des éléments à semi-conducteurs ayant des barrières de potentiel, p. ex. une jonction PN ou PIN
B22F 12/44 - Moyens de rayonnement caractérisés par la configuration des moyens de rayonnement
G02B 6/12 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage du type guide d'ondes optiques du genre à circuit intégré
63.
High brightness fiber coupled diode lasers with circularized beams
Apparatus include a plurality of laser diodes configured to emit respective laser diode beams having perpendicular fast and slow beam divergence axes mutually perpendicular to respective beam axes, and beam shaping optics configured to receive the laser diode beams and to circularize an ensemble image space and NA space of the laser diode beams at an ensemble coupling plane. In selected examples, beam shaping optics include variable fast axis telescopes configured to provide variable fast axis magnification and beam displacement.
Apparatus include a transmissive optical substrate configured to receive a plurality of laser beams propagating along respective parallel beam axes at respective initial beam displacements with respect to an optical axis of the transmissive optical substrate, and configured to produce laser output beams having reduced displacements, wherein the transmissive optical substrate includes first and second surfaces with respective first and second curvatures defined to increase an output beam magnification and to nonlinearly increase an output beam displacement from the optical axis for a linearly increasing input beam displacement from the optical axis.
An apparatus may steer an optical beam provided by a collimating optical module to a selected one of receiving optical modules. The apparatus may comprise an optical component to receive the optical beam provided by the collimating optical module; and a motorized rotation stage including a base and a rotating section, wherein the rotating section is restricted to rotation, relative to the base, about a single axis; wherein the optical component is mounted to the rotating section, and the apparatus further includes circuitry to control the motorized rotation stage to rotate the platform or stage amongst different rotational positions that correspond to the receiving optical modules, respectively; and wherein the optical component guides (by reflection, refraction, or the like, or combinations thereof) the optical beam to the selected one of the receiving optical modules based on a current rotational position of the rotating section. Other embodiments may be disclosed/claimed.
G02B 6/35 - Moyens de couplage optique comportant des moyens de commutation
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
66.
STRAIN-ENGINEERED CLADDING LAYER FOR OPTIMIZED ACTIVE REGION STRAIN AND IMPROVED LASER DIODE PERFORMANCE
Some embodiments may include a laser diode having a strain-engineered cladding layer for optimized active region strain and improved laser diode performance. In one embodiment, the laser diode may include a semiconductor substrate having a material composition with a first lattice constant; and a plurality of epitaxy layers form on the semiconductor substrate, with plurality of epitaxy layers including a waveguide layer and cladding layers, wherein the waveguide layer includes an active region having a material composition associated with a target optical wavelength, wherein a second lattice constant of the material composition of the active region is different than the first lattice constant; wherein a material composition and/or thickness of an individual cladding layer of the cladding layers is/are arranged to impart a target stress field on the active region to optimize active region strain. Other embodiments may be disclosed and/or claimed.
H01S 5/20 - Structure ou forme du corps semi-conducteur pour guider l'onde optique
H01S 5/32 - Structure ou forme de la région activeMatériaux pour la région active comprenant des jonctions PN, p. ex. hétérostructures ou doubles hétérostructures
H01S 5/34 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH]
67.
LASER DIODE SYSTEM WITH LOW NUMERICAL APERTURE CLAD LIGHT STRIPPING
Some embodiments may include a packaged laser diode assembly, comprising: a length of optical fiber having a core and a cladding layer, the length of optical fiber having a first section and a second section, the first section of the length of optical fiber including a tip of an input end of the optical fiber; one or more laser diodes to generate laser light; one or more optical components to direct a beam derived from the laser light into the input end of the length of optical fiber; a clad light stripper on the second section of the length of optical fiber; wherein, in the first section of the length of optical fiber, the cladding layer includes: a light scattering feature at the tip of the input end of the optical fiber and/or a void along a length of the optical fiber.
Some embodiments may include a packaged laser diode assembly, comprising: a length of optical fiber having a core and a polymer buffer in direct contact with the core, the length of optical fiber having a first section and a second section, the first section of the length of optical fiber including a tip of an input end of the optical fiber, wherein the polymer buffer covers only the second section of the first and second sections; one or more laser diodes to generate laser light; means for directing a beam derived from the laser light into the input end of the length of optical fiber; a light stripper attached to the core in the first section of the length of optical fiber. Other embodiments may be disclosed and/or claimed.
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
Systems and methods for temporal amplitude modulation of an optical beam. An exemplary system may include a birefringent fiber positioned between two polarizers, or between a polarized input light source and an output polarizer. Light may enter the birefringent fiber as linearly polarized. Depending on birefringence and orientation of the birefringent fiber, the polarization state changes as the light propagates through the birefringent fiber. This changed polarization state then enters the output polarizer, for which transmission is a function of the polarization state and the relative orientation of the polarization axis. The polarization state emerging from the birefringent fiber may be changed by modulating the fiber birefringence, for example through application of an external stress. Net transmittance of the system may be varied according to a magnitude of an external force (e.g., pressure) to some or all of the birefringent fiber.
H01S 3/106 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation par commande de dispositifs placés dans la cavité
G02F 1/01 - Dispositifs ou dispositions pour la commande de l'intensité, de la couleur, de la phase, de la polarisation ou de la direction de la lumière arrivant d'une source lumineuse indépendante, p. ex. commutation, ouverture de porte ou modulationOptique non linéaire pour la commande de l'intensité, de la phase, de la polarisation ou de la couleur
70.
Method and system for reducing returns from retro-reflections in active illumination system
Systems and methods for reducing or eliminating undesired effects of retro-reflections in imaging are disclosed. A system for reducing the undesired effects of retro-reflections may include an illuminator and an optical receiver. The illuminator is configured to emit an illumination signal for illuminating a scene. The optical receiver is configured to receive returned portions of the illumination signal scattered or reflected from the scene. Return signals from retroreflectors present in the scene may oversaturate or otherwise negatively affect sensors in the optical receiver. To limit return signals from retroreflectors that may be present in the scene, the illuminator and optical receiver are physically separated from each other by an offset distance that limits or prevents retro-reflections from the retroreflectors from being received by the optical receiver.
H04N 13/254 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques en combinaison avec des sources de rayonnement électromagnétique pour l’éclairage du sujet
H04N 13/239 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques utilisant deux capteurs d’images 2D dont la position relative est égale ou en correspondance à l’intervalle oculaire
B60Q 1/04 - Agencement des dispositifs de signalisation optique ou d'éclairage, leur montage, leur support ou les circuits à cet effet les dispositifs étant principalement destinés à éclairer la route en avant du véhicule ou d'autres zones de la route ou des environs les dispositifs étant des phares
71.
SUPPRESSION OF UNDESIRED WAVELENGTHS IN LASER LIGHT
Some embodiments may include an apparatus usable in a laser system. The apparatus may include at least one optical filter to receive a laser beam or laser light along a first axis, the laser beam or laser light generated by the laser system, wherein the at least one optical filter is configured to reflect one of light having a selected wavelength or a remainder of the laser light along a second axis that is non-parallel with the first axis and pass the other of the light having the selected wavelength or the remainder along a third axis that is parallel to the first axis. Other embodiments may be disclosed and/or claimed.
Methods include directing a laser beam to a target along a scan path at a variable scan velocity and adjusting a digital modulation during movement of the laser beam along the scan path and in relation to the variable scan velocity so as to provide a fluence at the target within a predetermined fluence range along the scan path. Some methods include adjusting a width of the laser beam with a zoom beam expander. Apparatus include a laser source situated to emit a laser beam, a 3D scanner situated to receive the laser beam and to direct the laser beam along a scan path in a scanning plane at the target, and a laser source digital modulator coupled to the laser source so as to produce a fluence at the scanning plane along the scan path that is in a predetermined fluence range as the laser beam scan speed changes along the scan path.
B23K 26/082 - Systèmes de balayage, c.-à-d. des dispositifs comportant un mouvement relatif entre le faisceau laser et la tête du laser
G02B 26/08 - Dispositifs ou dispositions optiques pour la commande de la lumière utilisant des éléments optiques mobiles ou déformables pour commander la direction de la lumière
B29C 64/153 - Procédés de fabrication additive n’utilisant que des matériaux solides utilisant des couches de poudre avec jonction sélective, p. ex. par frittage ou fusion laser sélectif
B22F 12/41 - Moyens de rayonnement caractérisés par le type, p. ex. laser ou faisceau d’électrons
B22F 12/90 - Moyens de commande ou de régulation des opérations, p. ex. caméras ou capteurs
In an example, the disclosed technology includes a laser source, comprising a plurality of pump elements configured to generate laser light, a controller coupled to the plurality of pump elements, configured to select individual drive current levels to be provided to respective ones of the plurality of pump elements responsive to a request for a laser power level and at least one power supply coupled to one or more of the plurality of pump elements for driving individual pump elements at selected drive currents.
Disclosed are techniques for generating a laser output beam having a functionally homogenized intensity distribution. According to some embodiments, a population of few modes in a multi-mode confinement core is excited by application of a low-moded source beam to the multi-mode confinement core, such that the population exhibit an unstable intensity distribution. The unstable intensity distribution is functionally homogenized by providing one or both of modulation of phase displacement in the multi-mode confinement core and variation of launch conditions of the low-moded source beam into the multi-mode confinement core.
B22F 12/43 - Moyens de rayonnement caractérisés par le type, p. ex. laser ou faisceau d’électrons pulsésMoyens de rayonnement caractérisés par le type, p. ex. laser ou faisceau d’électrons modulés en fréquence
G02B 27/09 - Mise en forme du faisceau, p. ex. changement de la section transversale, non prévue ailleurs
B23K 26/073 - Détermination de la configuration du spot laser
A laser assembly comprising a multi-clad fiber optically coupled to a light source configured to emit optical radiation at a first wavelength and a protective element disposed between the light source and the multi-clad fiber so as to prevent a portion of backward-propagating optical radiation at a second wavelength from coupling into the light source.
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
H01S 3/0941 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente produite par un laser à semi-conducteur, p. ex. par une diode laser
G02B 6/036 - Fibres optiques avec revêtement le noyau ou le revêtement comprenant des couches multiples
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
76.
OPTICAL ASSEMBLY TO MODIFY NUMERICAL APERTURE OF A LASER BEAM
Some embodiments may include an optical assembly usable to process light output from a laser source. The apparatus may include a housing to receive a distal end of an optical fiber that outputs the laser light; one or more actively cooled or passively cooled beam traps contained within the housing or coupled to the housing; and one or more optical apertures located inside the housing, at least one of the optical apertures to define a numerical aperture (NA) of a first portion of the laser light based on a radial dimension of the at least one optical aperture, the at least one optical aperture arranged to pass the first portion of the light and redirect a second different portion of the laser light to the one or more actively cooled or passively cooled beam traps. Other embodiments may be disclosed and/or claimed.
In an example, a tandem pumped fiber amplifier may include a seed laser, a first section coupled to an output of the seed laser, and a second section coupled to an output of the first section. The first section may operate as an oscillator, and may receive pump light from one or more diode pumps, and may the first section may be arranged to convert the one or more diode pumps into a tandem pump. The second section may operate as a power amplifier, and may include a length of a single or plural active core fiber. The tandem pumped fiber amplifier may be arranged to mitigate spectral broadening related to four-wave mixing.
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
H01S 5/065 - Accrochage de modesSuppression de modesSélection de modes
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
H01S 3/094 - Procédés ou appareils pour l'excitation, p. ex. pompage utilisant le pompage optique par de la lumière cohérente
Some embodiments may include a fiber laser having an input end to receive source light from a light source and an output end including: a feeding optic fiber including a cladding layer and an interior surrounded by the cladding layer, wherein the interior emits a beam at an end of the feeding optic and the cladding layer receives process light at the end of the feeding optic, the process light generated by processing of a workpiece by the beam; and a notch or other discontinuity in an outer surface of a side of the cladding layer, the surface discontinuity to release a portion of the process light, the apparatus further comprising: a collection optic fiber having a first end to capture a sample of the released process light and a second end to provide the captured sample to a sensor. Other embodiments may be disclosed and/or claimed.
Some embodiments may include a semiconductor laser device comprising: an active layer to generate light; a front facet positioned at a first end of said active layer, with an AR coating or PR coating; a rear facet positioned on a second opposite end of said active layer thereby forming a resonator between said front facet and said rear facet; and a first order diffraction grating positioned within said resonator along only a portion of the length of said active layer, wherein the semiconductor laser device is arranged to emit light from both ends, and the diffraction grating has two non-contiguous segments each extending to one of the facets; or a single end, wherein the rear facet is a rear light reflecting facet with an HR-coating. Other embodiments may be disclosed and/or claimed.
H01S 5/12 - Structure ou forme du résonateur optique le résonateur ayant une structure périodique, p. ex. dans des lasers à rétroaction répartie [lasers DFB]
80.
Optical fiducial generation for galvanometric scanner calibration
An apparatus includes an optical source situated to produce a fiducial source beam, and an optical fiducial pattern generator situated to produce with the fiducial source beam at least one transient optical fiducial on a laser processing target that is in a field of view of a laser scanner situated to scan a laser processing beam across the laser processing target, so that a positioning of the laser processing beam on the laser processing target becomes adjustable relative to the at least one transient optical fiducial.
Systems and methods for reducing the deleterious effects of specular reflections (e.g., glint) on active illumination systems are disclosed. An example system includes an illuminator or light source configured to illuminate a scene with electromagnetic radiation having a defined polarization orientation. The system also includes a receiver for receiving portions of the electromagnetic radiation reflected or scatter from the scene. Included in the receiver is a polarizer having a polarization axis crossed with the polarization orientation of the emitted electromagnetic radiation. By crossing the polarizer with the polarization of the emitted electromagnetic radiation, the polarizer may filter out glint or specular reflections in the electromagnetic radiation returned from the scene.
H04N 13/254 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques en combinaison avec des sources de rayonnement électromagnétique pour l’éclairage du sujet
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
G01S 7/499 - Détails des systèmes correspondant aux groupes , , de systèmes selon le groupe utilisant des effets de polarisation
G02B 30/25 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en fournissant des première et seconde images de parallaxe à chacun des yeux gauche et droit d’un observateur du type stéréoscopique utilisant des techniques de polarisation
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
82.
OPTICAL FIBER DEVICES AND METHODS FOR REDUCING STIMULATED RAMAN SCATTERING (SRS) LIGHT INTENSITY IN SIGNAL COMBINED SYSTEMS
Signal combined optical fiber devices, systems, and methods for reducing signal spectrum pumping of Raman spectrum. Power of a Raman component in an output of a signal combined fiber laser system may be reduced by diversifying peak signal wavelengths across a plurality of signal generation and/or amplification modules that are input into a signal combiner. In some examples, fiber laser oscillators that are to have their output signals combined to reach a desired cumulative system output power are tuned to output signal bands of sufficiently different wavelengths that signal from separate ones of the oscillators do not collectively pump a single Raman band. With the combined signal component comprising different peak signal wavelengths, the Raman component of combined output may have multiple peak wavelengths and significantly lower power than in systems where signals of substantially the same signal peak wavelength are combined.
H01S 3/23 - Agencement de plusieurs lasers non prévu dans les groupes , p. ex. agencement en série de deux milieux actifs séparés
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
A laser diode package, comprising a housing having a metal base portion, an integrated heat spreader formed within the base, the integrated heat spreader comprising a first phase-change material (PCM) and configured to dissipate heat via phase-change cooling. A heat source may be disposed on a top surface of the base, the heat source may be thermally coupled to the integrated heat spreader so as to dissipate heat away from the heat source via phase-change cooling.
Spliced multi-clad optical fibers with a cladding light stripper (CLS) encapsulating the splice. The splice may facilitate conversion between two optical fibers having different architectures, such as different core and/or cladding dimensions. The CLS may comprise a first length of fiber on a first side of the splice, and a second length of fiber on a second side of the splice, encapsulating the splice within the lengths of the CLS. The splice may abut one or more of the lengths of the CLS, or may be separated from one or more lengths of the CLS by an intermediate length of a first and/or second fiber joined by the splice.
Apparatus include a first optical fiber including a core situated to propagate a signal beam at a signal wavelength and an unwanted stimulated Raman scattering (SRS) beam at an SRS wavelength associated with the signal wavelength, and a fiber Bragg grating (FBG) situated in a core of a second optical fiber optically coupled to the core of the first optical fiber, the FBG having a selected grating reflectivity associated with the SRS wavelength and being situated to reflect the SRS beam back along the core of the second optical fiber and to reduce a damage associated with propagation of the SRS beam to power sensitive laser system components optically coupled to the second optical fiber. Methods are also disclosed.
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
Optical fiber devices, systems, and methods for separating Raman spectrum from signal spectrum. Once separated, the Raman spectrum may be suppressed (e.g., as a result of a reduction in gain from the signal spectrum, and/or through dissipation of the Raman spectrum energy), while the signal spectrum may be propagated in one or more guided modes of a fiber system. In some embodiments, a fiber system may include a chirped fiber Bragg grating (CFBG) or a long period fiber grating (LPFG), each configured to couple a core propagation mode into a cladding propagation mode with an efficiency that is higher for Raman spectrum than for signal spectrum. A fiber system further may include a cladding light stripper (CLS) configured to preferentially remove cladding modes containing the Raman component.
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
87.
Optical fiber devices and methods for reducing stimulated Raman scattering (SRS) light emissions from a resonant cavity
Fiber laser devices, systems, and methods for reducing Raman spectrum in emissions from a resonant cavity. A fiber laser oscillator that is to generate an optical beam may include a Raman reflecting output coupler that strongly reflects a Raman component pumped within the resonant cavity, and partially reflects a signal component to sustain the oscillator and emit a signal that has a reduced Raman component. A Raman filtering output coupler may comprise a superstructure fiber grating, and such a grating may be chirped or otherwise designed to have a desired bandwidth.
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
A laser diode, comprising a transverse waveguide comprising an active layer between an n-type semiconductor layer and a p-type semiconductor layer wherein the transverse waveguide is bounded by a lower index n-cladding layer on an n-side of the transverse waveguide and a lower index p-cladding layer on a p-side of the transverse waveguide a cavity that is orthogonal to the transverse waveguide, wherein the cavity is bounded in a longitudinal direction at a first end by a high reflector (HR) facet and at a second end by a partial reflector (PR) facet, and a first contact layer electrically coupled to the waveguide and configured to vary an amount of current injected into the waveguide in the longitudinal direction so as to inject more current near the HR facet than at the PR facet.
H01S 5/34 - Structure ou forme de la région activeMatériaux pour la région active comprenant des structures à puits quantiques ou à superréseaux, p. ex. lasers à puits quantique unique [SQW], lasers à plusieurs puits quantiques [MQW] ou lasers à hétérostructure de confinement séparée ayant un indice progressif [GRINSCH]
89.
Optical fiber devices and methods for directing Stimulated Raman Scattering (SRS) light out of a fiber
Optical fiber devices, systems, and methods for coupling Raman spectrum out of an optical fiber selectively over a signal spectrum, which may be propagated in one or more guided modes of a fiber system. A fiber system may include a chirped fiber Bragg grating (CFBG) or a long period fiber grating (LPFG), each to unguide Raman light propagating in a core propagation mode of a fiber completely out of the fiber (through any surrounding cladding layer(s)) selectively over signal spectrum which is to remain in a guided mode of the fiber.
Optical fiber devices, systems, and methods for separating Raman spectrum from signal spectrum Raman spectrum may be suppressed as a result of a reduction in gain and/or through dissipation while the signal spectrum may Raman Components In be propagated in one or more guided modes of a fiber system. A fiber system may Length include a propagation mode coupler to couple a first guided mode into a second guided mode with an efficiency that varies as a function of wavelength of the propagated light. Mode coupling efficiency may be higher for Raman spectrum, and lower for signal spectrum so that Raman spectrum associated with a fundamental mode is preferentially coupled into a higher-order mode. A fiber system may include a mode filter operable to discriminate between first and second guided modes. Within the filter, guiding of the first mode may be superior to that of the second mode with Raman spectrum preferentially rejected.
Apparatuses, systems and methods for modulating returned light for acquisition of 3D data from a scene are described. A 3D imaging system includes a Fabry-Perot cavity having a first partially-reflective surface for receiving incident light and a second partially-reflective surface from which light exits. An electro-optic material is located within the Fabry-Perot cavity between the first and second partially-reflective surfaces. Transparent longitudinal electrodes or transverse electrodes produce an electric field within the electro-optic material. A voltage driver is configured to modulate, as a function of time, the electric field within the electro-optic material so that the incident light passing through the electro-optic material is modulated according to a modulation waveform. A light sensor receives modulated light that exits the second partially-reflective surface of the Fabry-Perot cavity and converts the light into electronic signals. Three-dimensional (3D) information regarding a scene-of-interest may be obtained from the electronic signals.
G01S 17/894 - Imagerie 3D avec mesure simultanée du temps de vol sur une matrice 2D de pixels récepteurs, p. ex. caméras à temps de vol ou lidar flash
G01D 5/353 - Moyens mécaniques pour le transfert de la grandeur de sortie d'un organe sensibleMoyens pour convertir la grandeur de sortie d'un organe sensible en une autre variable, lorsque la forme ou la nature de l'organe sensible n'imposent pas un moyen de conversion déterminéTransducteurs non spécialement adaptés à une variable particulière utilisant des moyens optiques, c.-à-d. utilisant de la lumière infrarouge, visible ou ultraviolette avec atténuation ou obturation complète ou partielle des rayons lumineux les rayons lumineux étant détectés par des cellules photo-électriques en modifiant les caractéristiques de transmission d'une fibre optique
G02B 30/10 - Systèmes ou appareils optiques pour produire des effets tridimensionnels [3D], p. ex. des effets stéréoscopiques en utilisant des méthodes d'imagerie intégrale
An example apparatus includes an optical fiber including a core and cladding, the core being situated to propagate an optical beam along a propagation axis associated with the core, and at least one fiber Bragg grating (FBG) situated in the core of the optical fiber, the fiber Bragg grating including a plurality of periodically spaced grating portions situated with respect to the propagation axis so that light associated with Raman scattering is directed out of the core so as to reduce the generation of optical gain associated with stimulated Raman scattering (SRS).
H01S 3/30 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet utilisant des effets de diffusion, p. ex. l'effet Brillouin ou Raman stimulé
G02B 6/25 - Préparation des extrémités des guides de lumière pour le couplage, p. ex. découpage
C07K 14/705 - RécepteursAntigènes de surface cellulaireDéterminants de surface cellulaire
A61K 38/00 - Préparations médicinales contenant des peptides
Some embodiments may include an optical component having bottom part located in an opening defined by a surface, wherein a distance between a sidewall of the bottom part of the optical component and a sidewall of the opening is non-uniform in which a width of a first section of the opening or a first section of the bottom part of the optical component is narrower than a width of a second lower section of the opening or a width of a second lower section of the bottom part of the optical component; and an adhesive located in the opening between sidewalls Other embodiments may be disclosed and/or claimed.
Disclosed are embodiments of optical fiber structures for generating a single mode, saddle shaped output beam. The embodiments include first and second lengths of fiber. The first length of fiber has a first input end configured to receive a single mode gaussian beam. The second length of fiber has a second input end coupled to an output end of the first length of fiber. The second length of fiber includes a centrally located anti-guiding core and an annular guiding region coaxially encompassing the centrally located anti-guiding core.
H01S 3/10 - Commande de l'intensité, de la fréquence, de la phase, de la polarisation ou de la direction du rayonnement, p. ex. commutation, ouverture de porte, modulation ou démodulation
Some embodiments may include a mounting surface defining a branching channel, the branching channel having a main channel and one or more sub-channels branching off the main channel; an optic fiber affixed to the mounting surface, the optic fiber including a cladding layer and an interior surrounded by the cladding layer, wherein part of the optic fiber is suspended over the main channel; and a clad light stripper including one or more discontinuities in an outer surface of the cladding layer of a suspended section of the optic fiber, the one or more outer surface discontinuities to release a portion of the process light; wherein the one or more sub-channels include a first sub -channel having an ingress located to capture released light from an individual one of the one or more discontinuities and trap at least a portion thereof. Other embodiments may be disclosed and/or claimed.
Disclosed are embodiments of a capillary combiner housing for an optical fiber combiner having an inner combiner casing supporting optical fibers. A capillary combiner housing includes a non-metallic body defining a lumen between an input side and an output side, the lumen sized to receive the inner combiner casing, the non-metallic body having a coefficient of thermal expansion substantially matching that of the inner combiner casing; a first aperture in the input side, the first aperture having a first inside diameter sized to receive multiple input optical fibers; and a second aperture in the output side, the second aperture having a second inside diameter sized to receive an output fiber.
Beam combining optical systems include a fiber beam combiner having multiple inputs to which output fibers of laser diode sources are spliced. Cladding light stripping regions are situated at the splices and include exposed portions of fiber claddings that are at least partially encapsulated with an optical adhesive or a polymer. A beam combiner fiber that is optically downstream of a laser source has an exposed cladding secured to a thermally conductive support with a polymer or other material that is index matched to the exposed cladding. This construction permits attenuation of cladding light propagating toward a beam combiner from a splice.
G02B 6/245 - Enlèvement des enveloppes protectrices des guides de lumière avant le couplage
G02B 6/255 - Épissage des guides de lumière, p. ex. par fusion ou par liaison
G02B 6/28 - Moyens de couplage optique ayant des bus de données, c.-à-d. plusieurs guides d'ondes interconnectés et assurant un système bidirectionnel par nature en mélangeant et divisant les signaux
G02B 6/42 - Couplage de guides de lumière avec des éléments opto-électroniques
H01S 3/00 - Lasers, c.-à-d. dispositifs utilisant l'émission stimulée de rayonnement électromagnétique dans la gamme de l’infrarouge, du visible ou de l’ultraviolet
G02B 6/04 - Guides de lumièreDétails de structure de dispositions comprenant des guides de lumière et d'autres éléments optiques, p. ex. des moyens de couplage formés par des faisceaux de fibres
G02B 6/27 - Moyens de couplage optique avec des moyens de sélection et de réglage de la polarisation
H01S 3/04 - Dispositions pour la gestion thermique
Systems and methods for three-dimensional imaging are disclosed. A three-dimensional imaging system may include a light source to emit a light pulse. The divergence of the light pulse may be configurable by the system. For example, the system may also include a receiving lens having a field of view and configured to receive a portion of the light pulse reflected or scattered by a scene. The system may configure the light source so that the divergence of the light pulse matches or approximates the field of view of the receiving lens.
G01S 5/14 - Localisation par coordination de plusieurs déterminations de direction ou de ligne de positionLocalisation par coordination de plusieurs déterminations de distance utilisant les ondes radioélectriques déterminant des distances absolues à partir de plusieurs points espacés d'emplacement connu
H04N 13/254 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques en combinaison avec des sources de rayonnement électromagnétique pour l’éclairage du sujet
H04N 13/204 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques
H04N 13/207 - Générateurs de signaux d’images utilisant des caméras à images stéréoscopiques utilisant un seul capteur d’images 2D
G01S 7/481 - Caractéristiques de structure, p. ex. agencements d'éléments optiques
G01S 17/10 - Systèmes déterminant les données relatives à la position d'une cible pour mesurer la distance uniquement utilisant la transmission d'ondes à modulation d'impulsion interrompues
Some embodiments may include an optical fiber assembly including an optical fiber having a first end, a second end, and a length, wherein light is released from part of a length of the optical fiber, the optical fiber assembly comprising: a heat sink; a housing having a first side and a second side, wherein the first side of the housing is thermally coupled to the heat sink, wherein part of the second side of the housing defines a bottom or sides of a chamber, and wherein said part of the length of the optical fiber assembly is positioned in the chamber; and a cover thermally coupled to the second side of the housing, wherein part of an underside of the cover defines a top of the chamber. Other embodiments may be disclosed and/or claimed.
Some embodiments may include a fiber laser including two or more input fibers and an output fiber to deliver a beam to a workpiece, the fiber laser comprising. The fiber laser may include a combiner having ends and a length, wherein the combiner is arranged to release, from its length, a portion of back-reflected light received from the output fiber at an output end of the ends from the combiner, the combiner including: a capillary tube to enclose part of the two or more input fibers at an input end of the ends of the combiner, the capillary tube having ends and a length located between the ends of the capillary tube; and a cladding light stripper (CLS) defined by part of the length of the capillary tube, wherein the CLS provides the release of the portion of the back-reflected light. Other embodiments may be disclosed and/or claimed.