Radioisotope power system and propulsion system technologies to increase the energy efficiency, mass efficiency, and duration capability of a vehicle during operation. A radioisotope power system includes a radioisotope power unit that emits a plurality of radiation particles and is configured to directly or indirectly provide power, propulsion, or both power and propulsion of a vehicle. The radioisotope power system can further include a thermoelectric generator coupled to the radioisotope power unit and configured for coupling to at least one thruster. The radioisotope power system can further include an optional radiation shield configured to block a first radiation particle of the plurality of radiation particles. The radioisotope power unit can include one or more radioisotopes. The one or more radioisotopes can include an alpha emitting isotope, a beta emitting isotope, a gamma emitting isotope, or a combination thereof.
Radiation shielding technologies for radioisotope battery-powered vehicles to protect computer systems and humans and increase the energy efficiency, mass efficiency, and duration capability of the vehicle during operation. A radioisotope power system includes a radioisotope power unit that emits a plurality of radiation particles. The radioisotope power system further includes a radiation shield configured to block a first radiation particle of the plurality of radiation particles. The radioisotope power system further includes a decoupling device configured to decouple the radiation shield from a vehicle. The radioisotope power unit can include one or more radioisotopes for power, propulsion, or both power and propulsion of the vehicle. The one or more radioisotopes can include an alpha emitting isotope, a beta emitting isotope, a gamma emitting isotope, or a combination thereof. The one or more radioisotopes can be for heat generation. The vehicle can be a spacecraft or an aircraft.
G21F 5/015 - Récipients blindés portatifs ou transportables pour le stockage de sources radioactives, p. ex. supports de sources pour unités d'irradiationRécipients pour radio-isotopes
3.
FUEL-MODERATOR INVERSION FOR SAFER NUCLEAR REACTORS
A nuclear reactor including a nuclear reactor core. The nuclear reactor core includes a plurality of moderator elements, and an inverted fuel moderator block array of one or more inverted fuel moderator blocks. The one or more inverted fuel moderator blocks include a high-temperature matrix; a plurality of fuel particles embedded inside the high-temperature matrix; and at least one moderator opening for disposition of at least one of the moderator elements therein. The one or more inverted fuel moderator blocks also include at least one coolant passage formed in the high-temperature matrix to flow a coolant. The nuclear reactor can also include a reactivity control system, which can include one or more control drums, one or more control rods, or a combination thereof.
The known fully ceramic microencapsulated fuel (FCM) entrains fission products within a primary encapsulation that is the consolidated within a secondary ultra-high-temperature-ceramic of Silicon Carbide (SiC). In this way the potential for fission product release to the environment is significantly limited. In order to extend the performance of this fuel to higher temperature and more aggressive coolant environments, such as the hot-hydrogen of proposed nuclear rockets, a zirconium carbide matrix version of the FCM fuel has been invented. In addition to the novel nature to this very high temperature fuel, the ability to form these fragile TRISO microencapsulations within fully dense ZrC represent a significant achievement.
A nuclear reactor system includes a nuclear reactor core disposed in a pressure vessel. Nuclear reactor system further includes control drums disposed longitudinally within the pressure vessel and laterally surrounding fuel elements and at least one moderator element of the nuclear reactor core to control reactivity. Each of the control drums includes a reflector material and an absorber material. Nuclear reactor system further includes a control drum controller with a counterweight to impart a reverse torque on the control drum. Control drum controller includes a driven pulley coupled to the counterweight, a tension member coupled to the driven pulley to rotatably control the driven pulley and apply torque to the driven pulley, and an actuator to apply a tension force to the tension member. The actuator counteracts the reverse torque with the applied tension force, and the tension member applies the torque in response to the tension force.
G21C 7/28 - Commande de la réaction nucléaire par déplacement du réflecteur ou de parties de celui-ci
G21C 9/027 - Moyens pour effectuer une réduction très rapide du facteur de réactivité dans des conditions défectueuses, p. ex. fusible pour réacteur par le mouvement rapide d'un solide, p. ex. de boulets
B64G 1/40 - Aménagements ou adaptations des systèmes de propulsion
B64G 1/42 - Aménagements ou adaptations des systèmes fournissant l'énergie
G21D 5/02 - Réacteur et moteur structurellement combinés, p. ex. portatifs
6.
COMBINED AMMONIA-BASED MODERATOR AND PROPELLANT FOR NUCLEAR THERMAL PROPULSION STAGES
Combined moderator-propellant technologies allow a dual-purpose fluid to act as both a nuclear moderator as well as a propellant in a nuclear reactor system, such as a nuclear thermal propulsion (NTP) system. By increasing the mass efficiency of the NTP system and improving the overall performance during operation, the combined moderator-propellant technologies improve valuable payload efficiency in the NTP system. Advantageously, the combined moderator-propellant technologies require little to no dedicated storage space for the majority of NTP system operation. For example, the combined moderator-propellant is ammonia (NH3), which satisfies moderation requirements as well as propulsion requirements for the NTP system.
B64G 1/40 - Aménagements ou adaptations des systèmes de propulsion
G21C 5/12 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur caractérisée par la composition, p. ex. le modérateur contenant des substances additionnelles qui assurent une meilleure résistance du modérateur
G21D 5/02 - Réacteur et moteur structurellement combinés, p. ex. portatifs
7.
CHARGEABLE ATOMIC BATTERY WITH PRE-ACTIVATION ENCAPSULATION MANUFACTURING
A chargeable atomic battery (CAB) and a standardized pre-irradiation encapsulation manufacturing method. A CAB unit is manufactured through a non-radioactive process and then placed in a radiation field (typically a fission reactor) to convert a portion of a non-radioactive precursor material into an activated material (e.g., radioisotope) for charging. After charging, the CAB unit is ready for use and can be combined with additional CAB units into a CAB stack to achieve the desired activity and then integrated into a CAB pack or a product that uses the radioactivity for the desired application such as heating, electricity, and passive x-ray sources. The pre-irradiation encapsulation manufacturing method uses a die press and sintering process to produce the CAB unit with the precursor material fully encapsulated by the encapsulation material. During and after the charging process, the encapsulation material serves as a barrier, preventing release of the activated material release.
G21H 1/00 - Dispositions pour obtenir de l'énergie électrique à partir de sources radioactives, p. ex. d'isotopes radioactifs
G21F 5/015 - Récipients blindés portatifs ou transportables pour le stockage de sources radioactives, p. ex. supports de sources pour unités d'irradiationRécipients pour radio-isotopes
A chargeable atomic battery (CAB), such as a fully ceramic encapsulated radioactive heat source, includes a plurality of CAB units and a CAB housing to hold the plurality of CAB units. Each of the CAB units are formed of a precursor compact including precursor material particles embedded inside an encapsulation material. The precursor material particles include a precursor kernel formed of a precursor material that is initially manufactured in a stable state or an unstable state and convertible into an activated material via irradiation by a particle radiation source. The precursor material particles can include one or more encapsulation coatings surrounding the precursor kernel. The precursor material can include Neptunium-237 and the activated material can include Plutonium-238. A radioisotope thermoelectric generator can include thermoelectrics coupled to the CAB units to convert radioactive emissions of the activated material into electrical power.
A method for producing microencapsulated fuel pebble fuel more rapidly and with a matrix that engenders added safety attributes. The method includes coating fuel particles with ceramic powder; placing the coated fuel particles in a first die; applying a first current and a first pressure to the first die so as to form a fuel pebble by direct current sintering. The method may further include removing the fuel pebble from the first die and placing the fuel pebble within a bed of non-fueled matrix ceramic in a second die; and applying a second current and a second pressure to the second die so as to form a composite fuel pebble.
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
B28B 1/00 - Fabrication d'objets façonnés à partir du matériau
B28B 3/02 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle un poinçon exerce une pression sur le matériau dans une cavité de moulagePoinçons de forme particulière
B28B 13/02 - Alimentation en matériau non façonné des moules ou des appareillages destinés à la fabrication d'objets façonnés
C04B 35/51 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de composés des actinides
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
C04B 35/532 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite obtenus à partir de particules carbonées avec ou sans autres composants non organiques contenant un liant carbonisable
C04B 35/575 - Céramiques fines obtenues par frittage sous pression
A chargeable atomic battery (CAB) includes a plurality of CAB units and a CAB housing to hold the plurality of CAB units. Each of the CAB units are formed of a precursor compact including precursor material particles embedded inside an encapsulation material. The precursor material particles include a precursor kernel formed of a precursor material that is initially manufactured in a stable state and convertible into an activated material that is an activated state via atomic irradiation by a particle radiation source. Upon the precursor material being converted, the precursor material is in a partially depleted state such that an initial portion of the precursor material is depleted and a recharge portion of the precursor material is convertible into the activated state via atomic irradiation by the particle radiation source for recharging the chargeable atomic battery.
G21H 1/00 - Dispositions pour obtenir de l'énergie électrique à partir de sources radioactives, p. ex. d'isotopes radioactifs
G21F 5/015 - Récipients blindés portatifs ou transportables pour le stockage de sources radioactives, p. ex. supports de sources pour unités d'irradiationRécipients pour radio-isotopes
A chargeable atomic battery (CAB), such as a fully ceramic encapsulated radioactive heat source, includes a plurality of CAB units and a CAB housing to hold the plurality of CAB units. Each of the CAB units are formed of a precursor compact including precursor material particles embedded inside an encapsulation material. The precursor material particles include a precursor kernel formed of a precursor material that is initially manufactured in a stable state or an unstable state and convertible into an activated material that is an activated state via irradiation by a particle radiation source. The precursor material particles can include one or more encapsulation coatings surrounding the precursor kernel. The precursor material can include Neptunium-237 and the activated material can include Plutonium-238. A radioisotope thermoelectric generator can include thermoelectrics coupled to the CAB units to convert radioactive emissions of the activated material into electrical power.
A nuclear reactor core includes a plurality of fuel elements and a skewed-pin moderator block array of skewed-pin moderator blocks to form a nuclear reactor core inner portion and a nuclear reactor core outer portion. The nuclear reactor core inner portion includes an inner moderator matrix formed of a plurality of inner holes that include a plurality of inner fuel openings with one or more fuel elements disposed therein. The plurality of inner holes further include a plurality of inner coolant passages to flow a coolant. The nuclear reactor core outer portion includes an outer moderator matrix formed of a plurality of outer holes that include a plurality of outer fuel openings with one or more fuel elements disposed therein. The plurality of outer holes further include a plurality of outer coolant passages to flow the coolant. The inner holes are irregularly spaced with respect to the outer holes.
G21C 5/14 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur caractérisée par la forme
G21C 5/02 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur Détails
G21C 15/08 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles provenant du matériau modérateur
14.
Adjusting wait time between burn cycles or merging burn cycles
Passive reactivity control technologies that enable reactivity control of a nuclear thermal propulsion (NTP) system with little to no active mechanical movement of circumferential control drums. By minimizing or eliminating the need for mechanical movement of the circumferential control drums during an NTP burn, the reactivity control technologies simplify controlling an NTP reactor and increase the overall performance of the NTP system. The reactivity control technologies mitigate and counteract the effects of xenon, the dominant fission product contributing to reactivity transients. Examples of reactivity control technologies include, employing burnable neutron poisons, tuning hydrogen pressure, adjusting wait time between burn cycles or merging burn cycles, and enhancement of temperature feedback mechanisms. The reactivity control technologies are applicable to low-enriched uranium NTP systems, including graphite composite fueled and tungsten ceramic and metal matrix (CERMET), or any moderated NTP system, such as highly-enriched uranium graphite composite NTP systems.
The known fully ceramic microencapsulated fuel (FCM) entrains fission products within a primary encapsulation that is the consolidated within a secondary ultra-high-temperature-ceramic of Silicon Carbide (SiC). In this way the potential for fission product release to the environment is significantly limited. In order to extend the performance of this fuel to higher temperature and more aggressive coolant environments, such as the hot-hydrogen of proposed nuclear rockets, a zirconium carbide matrix version of the FCM fuel has been invented. In addition to the novel nature to this very high temperature fuel, the ability to form these fragile TRISO microencapsulations within fully dense ZrC represent a significant achievement.
A method for producing microencapsulated fuel pebble fuel more rapidly and with a matrix that engenders added safety attributes. The method includes coating fuel particles with ceramic powder; placing the coated fuel particles in a first die; applying a first current and a first pressure to the first die so as to form a fuel pebble by direct current sintering. The method may further include removing the fuel pebble from the first die and placing the fuel pebble within a bed of non-fueled matrix ceramic in a second die; and applying a second current and a second pressure to the second die so as to form a composite fuel pebble.
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
C04B 35/575 - Céramiques fines obtenues par frittage sous pression
C04B 35/532 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite obtenus à partir de particules carbonées avec ou sans autres composants non organiques contenant un liant carbonisable
B28B 3/02 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle un poinçon exerce une pression sur le matériau dans une cavité de moulagePoinçons de forme particulière
C04B 35/51 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de composés des actinides
The known fully ceramic microencapsulated fuel (FCM) entrains fission products within a primary encapsulation that is the consolidated within a secondary ultra-high-temperature-ceramic of Silicon Carbide (SiC). In this way the potential for fission product release to the environment is significantly limited. In order to extend the performance of this fuel to higher temperature and more aggressive coolant environments, such as the hot-hydrogen of proposed nuclear rockets, a zirconium carbide matrix version of the FCM fuel has been invented. In addition to the novel nature to this very high temperature fuel, the ability to form these fragile TRISO microencapsulations within fully dense ZrC represent a significant achievement.
Passive reactivity control technologies that enable reactivity control of a nuclear thermal propulsion (NTP) system with little to no active mechanical movement of circumferential control drums. By minimizing or eliminating the need for mechanical movement of the circumferential control drums during an NTP burn, the reactivity control technologies simplify controlling an NTP reactor and increase the overall performance of the NTP system. The reactivity control technologies mitigate and counteract the effects of xenon, the dominant fission product contributing to reactivity transients. Examples of reactivity control technologies include, employing burnable neutron poisons, tuning hydrogen pressure, adjusting wait time between burn cycles or merging burn cycles, and enhancement of temperature feedback mechanisms. The reactivity control technologies are applicable to low-enriched uranium NTP systems, including graphite composite fueled and tungsten ceramic and metal matrix (CERMET), or any moderated NTP system, such as highly-enriched uranium graphite composite NTP systems.
G21D 5/02 - Réacteur et moteur structurellement combinés, p. ex. portatifs
B64G 1/40 - Aménagements ou adaptations des systèmes de propulsion
G21C 5/02 - Structure du modérateur ou du cœurEmploi de matériaux spécifiés comme modérateur Détails
G21C 15/08 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles provenant du matériau modérateur
G21C 3/38 - Unités de combustible consistant en un élément combustible unique dans un manchon de support
G21C 15/06 - Aménagement ou disposition de passages dans lesquels la chaleur est transférée au réfrigérant, p. ex. pour la circulation du réfrigérant à travers les supports des éléments combustibles provenant du matériau fissile ou surrégénérateur dans les éléments combustibles
G21C 3/64 - Combustible céramique en dispersion, p. ex. cermet
G21C 7/04 - Commande de la réaction nucléaire par utilisation des propriétés autorégulatrices des matériaux du réacteur de poisons combustibles
20.
Nuclear fuel particle having a pressure vessel comprising layers of pyrolytic graphite and silicon carbide
Micro encapsulated fuel particles enhance safety in high-temperature gas cooled reactors by employing multiple barriers to fission product release. Microencapsulated fuel particles also have the potential to do the same in other reactor platforms. The present disclosure provides a method for enhancing the ability of microencapsulated fuel particles to retain radionuclides and thereby further enhance safety in nuclear reactors. Specifically, a nuclear fuel particle including a fuel kernel; a buffer graphitic carbon layer; an inner pyrolytic carbon layer; a multilayer pressure vessel; and an outer pyrolytic carbon layer is disclosed. The multilayer pressure vessel includes alternating layers of silicon carbide and pyrolytic carbon.
G21C 3/20 - Détails de structure à l'intérieur de l'enveloppe avec revêtement sur le combustible ou sur l'intérieur de l'enveloppeDétails de structure à l'intérieur de l'enveloppe avec une intercouche non active entre l'enveloppe et le matériau actif
A method for producing microencapsulated fuel pebble fuel more rapidly and with a matrix that engenders added safety attributes. The method includes coating fuel particles with ceramic powder; placing the coated fuel particles in a first die; applying a first current and a first pressure to the first die so as to form a fuel pebble by direct current sintering. The method may further include removing the fuel pebble from the first die and placing the fuel pebble within a bed of non-fueled matrix ceramic in a second die; and applying a second current and a second pressure to the second die so as to form a composite fuel pebble.
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite
C04B 35/575 - Céramiques fines obtenues par frittage sous pression
C04B 35/532 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p. ex. graphite obtenus à partir de particules carbonées avec ou sans autres composants non organiques contenant un liant carbonisable
B28B 3/02 - Fabrication d'objets façonnés en utilisant des pressesPresses spécialement adaptées à ce travail dans laquelle un poinçon exerce une pression sur le matériau dans une cavité de moulagePoinçons de forme particulière
C04B 35/51 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de composés des actinides
A methodology is disclosed for compaction of a ceramic matrix of certain nuclear fuels incorporating neutron poisons, whereby those poisons aid in reactor control while aiding in fuel fabrication. Neutronic poisons are rare-earth oxides that readily form eutectics suppressing fuel fabrication temperature, of particular importance to the fully ceramic microencapsulated fuel form and fuel forms with volatile species.
Passive reactivity control technologies that enable reactivity control of a nuclear thermal propulsion (NTP) system with little to no active mechanical movement of circumferential control drums. By minimizing or eliminating the need for mechanical movement of the circumferential control drums during an NTP burn, the reactivity control technologies simplify controlling an NTP reactor and increase the overall performance of the NTP system. The reactivity control technologies mitigate and counteract the effects of xenon, the dominant fission product contributing to reactivity transients. Examples of reactivity control technologies include, employing burnable neutron poisons, tuning hydrogen pressure, adjusting wait time between burn cycles or merging burn cycles, and enhancement of temperature feedback mechanisms. The reactivity control technologies are applicable to low-enriched uranium NTP systems, including graphite composite fueled and tungsten ceramic and metal matrix (CERMET), or any moderated NTP system, such as highly-enriched uranium graphite composite NTP systems.
G21C 7/04 - Commande de la réaction nucléaire par utilisation des propriétés autorégulatrices des matériaux du réacteur de poisons combustibles
G21D 5/02 - Réacteur et moteur structurellement combinés, p. ex. portatifs
B64G 1/40 - Aménagements ou adaptations des systèmes de propulsion
F02K 9/00 - Moteurs-fusées, c.-à-d. ensembles fonctionnels portant à la fois le combustible et son oxydantLeur commande
G21C 3/336 - Éléments d'espacement pour barres combustibles dans le faisceau
F02K 9/48 - Alimentation en propergols utilisant des pompes entraînées par une turbine à gaz, elle-même entraînée par les gaz de combustion des propergols
G21C 3/64 - Combustible céramique en dispersion, p. ex. cermet
G21C 13/032 - Raccords entre le tube et la paroi d'une enceinte, p. ex. tenant compte des contraintes thermiques
The invention relates to the use of Dispersion Ceramic Micro-Encapsulated (DCM) nuclear fuel as a meltdown-proof, accident-tolerant fuel to replace uranium dioxide fuel in existing light water reactors (LWRs). The safety qualities of the DCM fuel are obtained by the combination of three strong barriers to fission product release (ceramic coatings around the fuel kernels), highly dense inert ceramic matrix around the coated fuel particles and metallic or ceramic cladding around the fuel pellets.
G21C 3/20 - Détails de structure à l'intérieur de l'enveloppe avec revêtement sur le combustible ou sur l'intérieur de l'enveloppeDétails de structure à l'intérieur de l'enveloppe avec une intercouche non active entre l'enveloppe et le matériau actif
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
G21C 3/17 - Moyens de stockage ou de fixation de gaz dans des éléments combustibles
The invention relates to the use of Dispersion Ceramic Micro-Encapsulated (DCM) nuclear fuel as a meltdown-proof, accident-tolerant fuel to replace uranium dioxide fuel in existing light water reactors (LWRs). The safety qualities of the DCM fuel are obtained by the combination of three strong barriers to fission product release (ceramic coatings around the fuel kernels), highly dense inert ceramic matrix around the coated fuel particles and metallic or ceramic cladding around the fuel pellets.
2-zircaloy system is prohibitively expensive because of the known methods to produce it. Disclosed herein is a new production route and fixturing that produces identical or superior FCM fuel consistent with mass production by providing a plurality of tristructural-isotropic fuel particles; mixing the plurality of tristructural-isotropic fuel particles with ceramic powder to form a mixture; placing the mixture in a die; and applying a current to the die so as to sinter the mixture by direct current sintering into a fuel element.
G21C 3/07 - EnveloppesChemises caractérisées par le matériau, p. ex. alliages
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
G21C 3/20 - Détails de structure à l'intérieur de l'enveloppe avec revêtement sur le combustible ou sur l'intérieur de l'enveloppeDétails de structure à l'intérieur de l'enveloppe avec une intercouche non active entre l'enveloppe et le matériau actif
C04B 35/515 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes
28.
Fully ceramic micro-encapsulated (FCM) fuel for CANDUs and other reactors
A fuel pellet for a nuclear reactor includes a plurality of tristructural-isotropic fuel particles embedded in a structural silicon carbide matrix. A method of manufacturing a fuel pellet includes the steps of coating a plurality of tristructural-isotropic fuel particles with a coating slurry including silicon carbide powder to form a plurality of coated fuel particles; compacting the plurality of fuel particles; and sintering the compacted plurality of fuel particles to form the fuel pellet.
G21C 3/00 - Éléments combustibles pour réacteur ou leurs assemblagesEmploi de substances spécifiées pour utilisation comme éléments combustibles pour réacteurs
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
G21C 21/00 - Appareillage ou procédés spécialement adaptés pour la fabrication des réacteurs ou de pièces de ceux-ci
G21C 21/02 - Fabrication des éléments combustibles ou surrégénérateurs à l'intérieur de gaines non-actives
G21C 3/20 - Détails de structure à l'intérieur de l'enveloppe avec revêtement sur le combustible ou sur l'intérieur de l'enveloppeDétails de structure à l'intérieur de l'enveloppe avec une intercouche non active entre l'enveloppe et le matériau actif
B32B 5/02 - Produits stratifiés caractérisés par l'hétérogénéité ou la structure physique d'une des couches caractérisés par les caractéristiques de structure d'une couche comprenant des fibres ou des filaments
B32B 18/00 - Produits stratifiés composés essentiellement de céramiques, p. ex. de produits réfractaires
C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur compositionCompositions céramiquesTraitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium