To provide a magnet for a single crystal production apparatus in which the degree of freedom in the design of the magnetic field distribution is enhanced even when the arrangement of coils composing the magnet of a single crystal production apparatus is restricted. A magnet for a single crystal production apparatus that pulls up a single crystal while applying a horizontal magnetic field to a material melt for the single crystal received in a crucible, the magnet applying the horizontal magnetic field in the single crystal production apparatus, the magnet including four or more coils 2, the ratio of the height to the width of at least one of the four or more coils 2 exceeding 1, and a control unit that enables the four or more coils 2 to generate magnetic fields independently of each other.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
C30B 15/00 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski
The present invention detects, with high sensitivity, a defect in an edge region of a wafer. A defect detection device (50) comprises: a data input interface (51) that acquires parameters used for detecting a defect; an image input interface (52) that acquires a captured image of a wafer; and a control unit (53) that analyzes the captured image on the basis of the parameters and detects a defect in the wafer. The parameters include a protrusion-shaped defect detection threshold and a defect determination level. The control unit (53) extracts, as an ROI image from the captured image, a rectangular region including an edge ring image that shows the edge of the wafer, generates a binarized image on the basis of the protrusion-shaped defect detection threshold by subjecting the ROI image to binarization in which high luminance values are treated as a first value and low luminance values are treated as a second value, acquires, as inner circumference coordinates, the image coordinates of the inner circumference of a region that is displayed using the first value in the binarized image, calculates, as a coordinate differential value, the change level of unevenness in the circumferential direction of the inner circumference coordinates, and detects a defect by comparing the coordinate differential value to the defect determination level.
In the method for cleaning a silicon wafer according to the present invention, the position to which an oxidizing agent solution is supplied in a surface layer modification step and the position to which an etching liquid is supplied in an etching step in a plan view are each separated from the rotation center in the radial direction, and the position to which the oxidizing agent solution is supplied and the position to which the etching liquid is supplied in a plan view are opposed to each other across the rotation center. The method for producing a silicon wafer according to the present invention includes performing the above-described cleaning method. The silicon wafer of the present invention has a diameter of 300 mm, and the difference between the maximum haze value and the minimum haze value in the wafer plane is 0.02 ppm or less.
Provided is an appearance inspection device for inspecting the appearance of a hollow cylindrical or solid cylindrical object, the appearance inspection device comprising: a rotation mechanism for rotating the object under inspection in the circumferential direction of the object under inspection; a sensor for irradiating the surface of the object under inspection rotating in the circumferential direction with laser light and receiving reflected light resulting from the laser light reflected on the surface of the object under inspection; an image processing unit for generating a height image of the surface on the basis of the light reception state of the reflected light; and a determination unit for determining the texture of the surface on the basis of the height image.
G01N 21/952 - Inspection de la surface extérieure de corps cylindriques ou de fils
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
Proposed is a semiconductor wafer cleaning method by which adhesive particles on the surface of a semiconductor wafer can be reduced. A semiconductor wafer cleaning method according to the present invention comprises: a first cleaning step for cleaning a semiconductor wafer while rotating the semiconductor wafer; a first drying step for drying the semiconductor wafer after the first cleaning step; a second cleaning step for cleaning the semiconductor wafer after the first drying step; and a second drying step for drying the semiconductor wafer after the second cleaning step. The second cleaning step includes, in the following order, a pure water supply step for supplying pure water to the surface of the semiconductor wafer that has been subjected to the first drying step, a second initial ozone cleaning step for supplying an ozone liquid to the surface of the semiconductor wafer and cleaning the surface, and a step for alternately cleaning the surface of the semiconductor wafer through second hydrofluoric acid cleaning of cleaning with a hydrofluoric acid aqueous solution and second ozone cleaning of cleaning with an ozone liquid following the second hydrofluoric acid cleaning.
A method of manufacturing monocrystalline silicon includes: setting a first resistance value that is a resistance value of a first power supply portion and a second resistance value that is a resistance value of a second power supply portion; heating a silicon melt in a quartz crucible in a magnetic-field-free state; applying a horizontal magnetic field to the silicon melt in the quartz crucible; and pulling up the monocrystalline silicon from the silicon melt. The setting of the resistance values includes: measuring the first resistance value and the second resistance value; adjusting, when a resistance ratio therebetween is less than a determination value, at least one of the first resistance value or the second resistance value; measuring again the resistance values and comparing the resistance ratio with the determination value; and ending the setting when the resistance ratio is greater than or equal to the determination value.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
C30B 33/00 - Post-traitement des monocristaux ou des matériaux polycristallins homogènes de structure déterminée
7.
SILICON SINGLE CRYSTAL MANUFACTURING METHOD, AND SILICON SINGLE CRYSTAL MANUFACTURING APPARATUS
This silicon single crystal manufacturing method comprises, using a silicon single crystal manufacturing apparatus comprising a cylindrical heater surrounding a crucible, and first to fourth support electrodes supporting the heater, the heater comprising first to fourth heat generation parts, the first support electrode connecting the first and second heat generation parts to the positive electrode of a power supply, the second support electrode connecting the second and third heat generation parts to the negative electrode of the power supply, the third support electrode connecting the third and fourth heat generation parts to the positive electrode, the fourth support electrode connecting the fourth and first heat generation parts to the negative electrode, and at least one support electrode out of the first to fourth support electrodes being composed of a thin support electrode at least a part of which having a thickness smaller than that of the remaining support electrodes: heating the crucible, while being rotated, in a state in which the heat generation distribution of the heater is non-uniform to generate a silicon melt; and starting application of a horizontal magnetic field to the silicon melt to grow a silicon single crystal.
A method of measuring the contact angle of a silicon wafer according to the present disclosure can detect differences in the severe hydrophilicity level of the silicon wafer surface, such differences not being detectable by contact angle measurement using pure water. The method of measuring a contact angle of a silicon wafer includes dripping a droplet on a surface of a silicon wafer, and measuring a contact angle of the surface of the silicon wafer from an image of the droplet. The droplet includes an aqueous solution having a surface tension greater than a surface tension of pure water.
This silicon single crystal production method involving pulling up a silicon single crystal while applying a horizontal magnetic field to a silicon melt uses a silicon single crystal production apparatus that includes a crucible and a cylindrical heater surrounding the crucible, wherein the heater includes semicylindrical first and second heat generation units which have the same heat generation characteristics, the apparatus being disposed such that when the amounts of heat generated by the first and second heat generation units differ from each other, the amounts of heat applied to first and second portions of the crucible differ from each other, the first and second portions of the crucible being positioned on either side of a vertical imaginary plane including the central axis of the crucible and the central magnetic field line of the horizontal magnetic field. The silicon single crystal production method involves: a first heating production step which is carried out with the first and second heat generation units generating identical amounts of heat; and a second heating production step carried out with the first and second heat generation units generating different amounts of heat to each other.
[Problem] To provide: an epitaxial silicon wafer having a small in-plane variation in resistivity and a small amount of warpage; and a manufacturing method therefor. [Solution] This epitaxial silicon wafer 1 having a diameter of 300 mm and a thickness of 761-795 μm comprises: a boron-doped bulk silicon substrate 2 having a resistivity of 8-20 mΩ∙cm; an epitaxial silicon film 3 formed on a front surface 2a of the bulk silicon substrate 2; and a rear-surface oxide film 4 formed on a rear surface 2b of the bulk silicon substrate 2. The epitaxial silicon film 3 has a thickness of 1.7-2.7 μm, is boron-doped, has a resistivity of 8-12 Ω∙cm, and has an in-plane distribution of resistivity of at most 3%. The rear-surface oxide film 4 has a thickness of 50-150 nm.
A semiconductor wafer including a single crystal doped with a dopant, wherein a resistivity of the wafer is 0.7 mΩ-cm or less, and wherein a striation height of the wafer is 6 mm or more. The resistivity of the wafer may be 0.8 mΩ-cm or less, and the striation height may be 13 mm or more. The resistivity of the wafer may be 0.7 mΩ-cm or less, and the striation may be 22 mm or more. Example features relate to a method of making a semiconductor wafer that includes adding a dopant to a silicon melt, rotationally pulling a crystal from the silicon melt, and applying a magnetic field of 3000 G or more such that the semiconductor wafer has a resistivity that is equal to or less than 0.8 mΩ-cm and a striation height that is equal to or more than 13 mm.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
C30B 15/30 - Mécanismes pour faire tourner ou pour déplacer soit le bain fondu, soit le cristal
H01L 29/167 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée caractérisés en outre par le matériau de dopage
12.
METHOD FOR DETERMINING SEMICONDUCTOR WAFER-CLEANING CONDITION, AND METHOD FOR CLEANING SEMICONDUCTOR WAFER
Provided is a method for determining a semiconductor wafer-cleaning condition that allows the thickness of a thermal oxide film to be well controlled. This method for determining a semiconductor wafer-cleaning condition comprises: a step for determining a cleaning correlation between the thicknesses and surface morphologies of chemical oxide films formed on the respective surfaces of a plurality of semiconductor wafers after cleaning processes and cleaning conditions; a step for determining a heat treatment correlation between increases in thickness of thermal oxide films formed on the respective surfaces of the plurality of semiconductor wafers after heat treatment processes under one or more different heat treatment conditions and the thicknesses and surface morphologies of the chemical oxide films; a step for determining a heat treatment condition for a heat treatment process and determining a target thickness of a thermal oxide film to be formed on the surface of a semiconductor wafer in a heat treatment process under the determined heat treatment condition; and a step for determining a cleaning condition under which the thickness of a thermal oxide film to be formed on the surface of a semiconductor wafer in a heat treatment process under the determined heat treatment condition becomes the target thickness.
Provided is a semiconductor epitaxial wafer having metal contamination reduced by achieving higher gettering capability, a method of producing the semiconductor epitaxial wafer, and a method of producing a solid-state image sensing device using the semiconductor epitaxial wafer. The method of producing a semiconductor epitaxial wafer 100 includes a first step of irradiating a semiconductor wafer 10 containing at least one of carbon and nitrogen with cluster ions 16 thereby forming a modifying layer 18 formed from a constituent element of the cluster ions 16 contained as a solid solution, in a surface portion of the semiconductor wafer 10; and a second step of forming a first epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer 10.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 29/167 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée caractérisés en outre par le matériau de dopage
H01L 29/36 - Corps semi-conducteurs caractérisés par la concentration ou la distribution des impuretés
14.
METHOD OF CLEANING SEMICONDUCTOR WAFER AND METHOD OF MANUFACTURING SEMICONDUCTOR WAFER
This method of cleaning a semiconductor wafer can reliably reduce the LPD count on the wafer surface. The method includes a first step of measuring a contact angle of a surface of a semiconductor wafer under conditions in which a volume of a droplet dripped on the surface differs, a second step of calculating a ratio of change in a measured value of the contact angle to change in the volume of the droplet based on a relationship between the volume of the droplet and the measured value of the contact angle under the conditions, a third step of determining whether pretreatment is necessary for the semiconductor wafer surface based on the ratio, a fourth step of performing the pretreatment on the semiconductor wafer surface according to the determining in the third step, and a fifth step of subsequently performing single-wafer spin cleaning on the semiconductor wafer surface.
Provided is a method for cleaning a semiconductor wafer with which the generation of tadpole-shaped defects can be inhibited. The method for cleaning a semiconductor wafer includes a spin cleaning step in which a cleaning fluid is supplied to at least the front surface of the semiconductor wafer while the semiconductor wafer is being rotated. The method is characterized in that the spin cleaning step includes one or more sets of a combination of an ozonated-water cleaning step, in which the cleaning fluid is ozonated water, and an immediately subsequent hydrofluoric-acid cleaning step, in which the cleaning fluid is hydrofluoric acid, and is characterized by including, prior to the spin cleaning step, a pretreatment step in which an electroconductive liquid selected from the group consisting of hydrofluoric acid, carbonated water, and carbonated ozonated water is supplied only to the back surface of the semiconductor wafer while the semiconductor wafer is being rotated.
x2yy (where y is an integer from 2 to 5); and a second step of forming a silicon epitaxial layer 16 on the modification layer 14. A total dose amount is from 6.00×1013ions/cm2to 1.00×1015ions/cm22yy ions 12B is greater than 1.00×1014ions/cm2and less than or equal to 3.00×1014ions/cm2; and a ratio [Si/C] of a number of Si atoms to a number of C atoms injected is from 0.3 to 1.6.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
18.
QUARTZ GLASS CRUCIBLE, MANUFACTURING METHOD THEREOF, AND MANUFACTURING METHOD OF SILICON SINGLE CRYSTAL
A quartz glass crucible includes a crucible base body having silica glass and a coating film containing a crystallization accelerator and formed on the inner surface of the crucible base body. The coating film has a peel strength of 0.3 kN/m or more.
Based on the relational data that indicates the relationship between inter-plate distance, which is a distance between the upper plate and the lower plate at two or more positions where distances from the center of the rotating plate are different, and the flatness of the work, the optimal value of the inter-plate distance is calculated.
B24B 37/005 - Moyens de commande pour machines ou dispositifs de rodage
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
B24B 49/10 - Appareillage de mesure ou de calibrage pour la commande du mouvement d'avance de l'outil de meulage ou de la pièce à meuler; Agencements de l'appareillage d'indication ou de mesure, p.ex. pour indiquer le début de l'opération de meulage impliquant des dispositifs électriques
20.
POLISHING HEAD, POLISHING DEVICE, AND METHOD OF MANUFACTURING SEMICONDUCTOR WAFER
A polishing head having a first annular member, a closing member, a membrane, and a second annular member situated under the membrane and having an opening which holds a work to be polished. A space, which is formed by closing the opening of the first annular member with the closing member and the membrane, is partitioned into an inside space and an outside space with an annular partition wall having a top annular connection part connected to the closing member and a bottom annular connection part connected to the membrane, the inside diameter of the bottom annular connection part of the annular partition wall is larger than the inside diameter of the second annular member, and the outer circumferential region of the setting position of the work to be polished is situated vertically under the top annular connection part of the annular partition wall.
The present invention provides a method of producing a semiconductor epitaxial wafer, which can suppress metal contamination by achieving higher gettering capability.
The present invention provides a method of producing a semiconductor epitaxial wafer, which can suppress metal contamination by achieving higher gettering capability.
The method of producing a semiconductor epitaxial wafer includes a first step of irradiating a surface portion 10A of a semiconductor wafer 10 with cluster ions 16 thereby forming a modifying layer 18 formed from carbon and a dopant element contained as a solid solution that are constituent elements of the cluster ions 16, in the surface portion 10A of the semiconductor wafer; and a second step of forming an epitaxial layer 20 on the modifying layer 18 of the semiconductor wafer, the epitaxial layer 20 having a dopant element concentration lower than the peak concentration of the dopant element in the modifying layer 18.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p.ex. recuit, frittage
H01L 29/167 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée caractérisés en outre par le matériau de dopage
22.
DOUBLE-SIDE POLISHING APPARATUS AND DOUBLE-SIDE POLISHING METHOD FOR WORKPIECES
Provided is a double-side polishing apparatus for workpieces capable of terminating double-side polishing at the timing when the entire workpiece and the peripheral portion of the workpiece each have the target shape. A computing section: obtains, from thickness data of each workpiece measured by a workpiece thickness measuring device a shape index of the entire workpiece; and determines, as a timing of terminating double-side polishing, a timing at which the shape index of the entire workpiece is a set value of the shape index determined based on a difference between a target value of the shape index in a current batch and an actual value of the shape index in a preceding batch and a deviation of an actual value of a shape index of a peripheral portion of the workpiece in the preceding batch from a target range of the shape index in the current batch.
B24B 37/013 - Dispositifs ou moyens pour détecter la fin de l'opération de rodage
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
23.
QUARTZ GLASS CRUCIBLE, MANUFACTURING METHOD THEREOF, AND MANUFACTURING METHOD OF SILICON SINGLE CRYSTAL
A quartz glass crucible includes a crucible base body including silica glass and a coating film containing a crystallization accelerator and formed on the inner surface of the crucible base body. The average carbon concentration in the coating film, and the crucible base body within a range of 0 μm or more and 300 μm or less in depth from the inner surface of the crucible base body is 1.0×1012 atoms/cc or more and 3.0×1019 atoms/cc or less.
A semiconductor wafer cleaning apparatus that can suppress the generation of particles on the back surface of the semiconductor wafer. A semiconductor wafer cleaning apparatus comprises a rotary table having an opening in the center; a wafer holder provided on the top surface of the rotary table; a return portion provided on the bottom surface of the rotary table; a nozzle head having a centrally located recess and a horizontal portion disposed on the radially outer side of the recess; a lower chemical supply nozzle; and a wafer back surface rinse nozzle, the return portion is disposed near the opening, and a return portion rinse nozzle is provided in the recess of the nozzle head to supply pure water toward the return portion to rinse the return portion.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p.ex. mandrins, pièces de serrage, pinces
25.
WAFER VISUAL INSPECTION APPARATUS AND WAFER VISUAL INSPECTION METHOD
The visual inspection apparatus comprises a controller that generates a plurality of overall images of a wafer surface including part images taken by dividing the wafer surface into a plurality of areas along the circumferential direction, generates an average image based on the plurality of overall images, and detects abnormalities on the wafer surface based on the average image.
METHOD OF CREATING CORRELATION RELATIONAL FORMULA FOR DETERMINING POLISHING CONDITION, METHOD OF DETERMINING POLISHING CONDITION, AND SEMICONDUCTOR WAFER MANUFACTURING METHOD
A method of creating a correlation relational formula for determining a polishing condition, the method including polishing semiconductor wafers under a plurality of polishing conditions including a plurality of polishing parameters, and acquiring, by actual measurement, in-plane polishing amount distribution information on the semiconductor wafers in polishing under the plurality of polishing conditions; polishing semiconductor wafers under a plurality of polishing conditions including a plurality of polishing parameters, and acquiring, by actual measurement, in-plane temperature distribution information during semiconductor wafer polishing in polishing under the plurality of polishing conditions, or creating in-plane temperature distribution information during semiconductor wafer polishing under polishing conditions including a plurality of polishing parameters by heat transfer analysis, and correlating relational formulas between a semiconductor wafer in-plane temperature distribution parameter and a plurality of polishing parameters.
[Problem] To provide a quartz glass crucible that makes it possible to form a thick crystal layer on the outer surface of the crucible at a moderate crystallization rate to increase the strength during crystal pulling. [Solution] The quartz glass crucible 1 comprises: a crucible base 10 comprising a silica glass; and a coating film 13 formed on the outer surface 10o of the crucible base 10, the coating film containing a crystallization-promoting agent. The thickness of the outer surface crystal layer formed on the outer surface 10o of the crucible base 10 ten hours after the start of heat treatment in an Ar atmosphere at a furnace temperature of 1580°C and a furnace pressure of 20 Torr is 0.21 to 0.5 mm, and the crystallization rate is 21 to 50 μm/hr. The crystallization rate of the outer surface 10o 20 hours and more after the start of the heat treatment is 10 μm/hr or less.
A method of evaluating a silicon single-crystal ingot, the method including cutting out three or more plural silicon wafers from the ingot to be evaluated; mirror polishing the plural silicon wafers to yield silicon mirror-surface wafers; processing the plural silicon mirror polished wafers into silicon epitaxial wafers through formation of an epitaxial layer on the mirror polished surfaces; acquiring light point defect maps of the epitaxial layer surfaces of the plural silicon epitaxial wafers with a laser surface inspection device; and creating an overlay map. In a case where a light point defect group in which three or more light point defects are linearly distributed is not confirmed in the overlay map, a region, from which the plural silicon wafers have been cut out, in the silicon single-crystal ingot to be evaluated, is estimated not to be a region in which a twin has occurred.
Provided is a semiconductor wafer processing device capable of reducing the adhesion of particles to a semiconductor wafer when performing a process on the semiconductor wafer. This device is characterized by comprising: a drive device 21 having a drive unit 22 which generates a driving force for driving a semiconductor wafer W to be processed and a transmission unit 23 which transmits the driving force generated by the drive unit 22 to the semiconductor wafer W; a processing chamber 10 which accommodates the semiconductor wafer W and performs a process on the semiconductor wafer W; a drive device chamber 20 which communicates with the processing chamber 10 through an opening 31 and accommodates at least the drive unit 22 of the drive device 21; and a ventilation device 41 which ventilates the atmosphere of the drive device chamber 20.
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
F24F 7/06 - Ventilation avec réseau de gaines à circulation d'air forcée, p.ex. par un ventilateur
H01L 21/683 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension
30.
WAFER SEPARATION APPARATUS AND METHOD, AND METHOD FOR MANUFACTURING SILICON WAFER
It would be helpful to provide a wafer separation apparatus and method, and a method for manufacturing a silicon wafer in which poor wafer separation can be easily prevented. A wafer separation apparatus 1 includes an injection port 2 configured to inject a fluid, a rolling element 3, and a holder 4 configured to movably hold the rolling element 3 in a rollable and integral manner, to be reciprocatable and biased to one side in a reciprocating direction, and to be integrally connected to the injection port 2.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
B32B 43/00 - Opérations spécialement adaptées aux produits stratifiés et non prévues ailleurs, p.ex. réparation; Appareils pour ces opérations
31.
SEMICONDUCTOR PRODUCTION APPARATUS, SEMICONDUCTOR PRODUCTION PLANT, AND SEMICONDUCTOR PRODUCTION METHOD
A semiconductor production apparatus equipped with a plurality of processing sections and a larger number of loading/unloading sections comprises a plurality of processing sections (11A , 11B) and a larger number of loading/unloading sections (15X, 15Y, 15Z) in order to shorten production time even when the processing sections to be involved into processing are determined for each production lot, wherein objects (WF) to be processed for which the processing sections to be involved into processing are determined for each production lot are loaded in the production lot units into the loading/unloading sections, and the objects to be processed are transported one by one into the processing sections, processed and then transported to the loading/unloading sections. In this semiconductor production apparatus (1), the production lot of the objects to be processed in each processing section is loaded into each of the loading/unloading sections, the remaining loading/unloading sections are left vacant, processing is started in each processing section, and while the object to be processed is processed in each of the processing sections, a processing section in which the processing will be finished relatively quickly is predicted on the basis of production information of the object to be processed in each of the processing sections, and before the processing in each of the processing sections is finished, the production lot that should be processed in the processing section for which the processing has been predicted to be finished relatively quickly is loaded into the loading/unloading section that is presently vacant.
The polishing head has, with the direction toward the center of the opening of the first annular member assumed as the inside, and with the other direction assumed as the outside, the space, formed by closing the opening of the first annular member by the closing member and the membrane, and partitioned into an inside space and an outside space by an annular partition wall with a top annular connection part connected to the closing member and with a bottom annular connection part connected to the membrane, the inside diameter of the bottom annular connection part of the annular partition wall is larger than the inside diameter of the second annular member, and the radius of the top annular connection part of the annular partition wall is 33% or more and 90% or less with the radius of the setting position of the work to be polished assumed as 100%.
An infrared transmissivity measurement method is for measuring an infrared transmissivity of a quartz glass crucible which includes a transparent layer made of quartz glass that does not contain bubbles, a bubble layer formed outside the transparent layer and made of quartz glass containing bubbles, and a semi-molten layer formed outside the bubble layer and made of raw material silica powder solidified in a semi-molten state. The infrared transmissivity measurement method includes processing an outer surface of the quartz glass crucible formed by the semi-molten layer to lower a surface roughness of the outer surface; and measuring an infrared transmissivity of the quartz glass crucible based on infrared light passing through the outer surface after processing the outer surface.
G01N 21/3563 - Couleur; Propriétés spectrales, c. à d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p.ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de solides; Préparation des échantillons à cet effet
The one-side polishing apparatus for a workpiece according to the present invention is further provided with a surface displacement measuring unit capable of measuring displacement of an exposed upper surface, which is a part of the upper surface of a polishing pad that is not covered with a polishing head. In the method for one-side polishing of a workpiece according to the present invention, in a polishing step, one side of the workpiece is polished while measuring displacement of an exposed upper surface by means of a surface displacement measuring unit capable of measuring the displacement of the exposed upper surface. The method for manufacturing silicon wafers according to the present invention uses the method for one-side polishing of a workpiece.
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
B24B 37/00 - Machines ou dispositifs de rodage; Accessoires
B24B 37/005 - Moyens de commande pour machines ou dispositifs de rodage
B24B 37/12 - Plateaux de rodage pour travailler les surfaces planes
B24B 53/017 - Dispositifs ou moyens pour dresser, nettoyer ou remettre en état les outils de rodage
B24B 55/06 - Equipement d'enlèvement des poussières sur les machines à meuler ou à polir
35.
PULLING-UP APPARATUS CONTROL METHOD, CONTROL PROGRAM, CONTROL APPARATUS, SINGLY CRYSTAL SILICON INGOT PRODUCTION METHOD, AND SINGLY CRYSTAL SILICON INGOT
A method for controlling a pulling-up apparatus 100 for a singly crystal silicon ingot I comprises: a step for acquiring results data that associates a measurement value of an oxygen concentration in a singly crystal silicon ingot I produced in a pulling-up apparatus 100 with an operation amount of the pulling-up apparatus 100 at the time of the production; a step for generating an estimation model that estimates an oxygen concentration in the singly crystal silicon ingot I produced in the pulling-up apparatus 100 on the basis of the results data; a step for adjusting an operation amount to be input into the estimation model in such a manner that an estimation value for the oxygen concentration in the singly crystal silicon ingot I from the estimation model can become a target concentration; and a step for determining the adjusted operation amount as an operation amount to be employed for the production of the singly crystal silicon ingot I in a next batch of the pulling-up apparatus 100.
In order to have uniform dot holes even in cases where a deep laser mark having a depth of about 100 µm is formed, a silicon wafer with a laser mark according to the present invention has an identification mark (5), which is composed of a plurality of dot holes (4), in the surface of a silicon wafer (1) that has a crystal plane orientation of (100), the surface having a surface roughness of 0.15 to 0.60 nm. With respect to an opening (42) of a dot hole (4) in a wafer surface (11), the ratio of the length (L1) in the <100> direction to the length (L2) in the <110> direction is 1 to 1.10; the length (L1) in the <100> direction of the opening (42) is 80 to 110 µm; the depth (D) of a cross-section of the dot hole (4) is 80 to 110 µm; and a bottom surface (43) of the dot hole (4) is a flat surface of the (100) plane.
A method for cleaning a silicon wafer according to the present invention includes supplying an oxidizing agent from a position offset from the center of a silicon wafer in the radial direction in a surface layer modification step. A method for producing a silicon wafer according to the present invention includes performing the aforementioned method for cleaning a silicon wafer. In a silicon wafer according to the present invention, when a prescribed measurement is performed, the difference between the maximum value and the minimum value of the thickness of a natural oxide film in the radial direction of the silicon wafer is 0.1 or less, where the thickness of the measured natural oxide film is normalized using the maximum value.
[Problem] To provide a quartz glass crucible for silicon single-crystal pulling, with which the crystal-layer thickness when the outer surface of the crucible has crystallized is thick, and which can withstand a long-term crystal-pulling process. [Solution] A quartz glass crucible 1 is provided with: a crucible body 10 constituted from silica glass; and a semi-molten layer 13 composed of a fused-on layer of unmolten or semi-molten quartz powder and formed on the outer side of the exterior surface of the crucible body 10. On the surface of the semi-molten layer 13, numerous indentations 14 having a diameter of 0.2-5.0 mm and a depth of 50 μm or more are formed. Some of the indentations 14 are through-holes that penetrate through the semi-molten layer 13 to the exterior surface 10o of the crucible body 10, with the density of the through-holes being between 1 hole/cm2and 50 holes/cm2.
A processing condition setting apparatus includes a controller that selects a parameter set to be applied to the wafer processing apparatus from a plurality of parameter sets. The controller estimates, for each of the parameter sets, the post-processing characteristics of the wafer to be processed, based on the pre-processing characteristics of the wafer to be processed and the processing data, assuming that the wafer to be processed has been processed by applying each of the parameter sets. The controller calculates two or more indicators for each of the post-processing characteristics and obtains constraints on the indicators. The controller selects a parameter set, which is to be applied to the wafer processing apparatus when processing the wafer to be processed, from among the conformed parameter sets in which the indicators satisfy the constraints.
A wafer container cleaner includes a cleaning bath capable of accommodating a housing jig that houses a wafer container including a container body and a cover, liquid-supply nozzles for supplying cleaning liquid or the like into the cleaning bath, and a liquid-discharge nozzle for discharging to-be-discharged fluid out of the cleaning bath. The container body has a depth wall at a side opposite a container opening. In an accommodating state where the container body mounted on the storage fixture with the container opening facing downward is accommodated in the cleaning bath, the liquid-supply nozzles are provided so that respective liquid-supply openings through which the cleaning liquid or the like is discharged face an inner side of the depth wall and the liquid-discharge nozzle is provided so that a discharge opening through which the to-be-discharged fluid is sucked in faces a center of the inner side of the depth wall.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
41.
METHOD FOR MODELING WAFER SHAPE, AND METHOD FOR MANUFACTURING WAFER
Provided is a method for modeling a wafer shape by means of a function. The function calculates a displacement z of a wafer in the thickness direction thereof, and is the sum of a plurality of functions including: a first function g(r) that is a polynomial of one or more orders and has a distance r from the center of the wafer as a variable; a second function Ar×h(Nθ) in which a sine function or a cosine function h(Nθ) having a first angle θ with reference to a predetermined position in the circumferential direction of the wafer as a variable and an integer N as a constant is multiplied by a coefficient A and the distance r; and a third function Br×i(M(θ-φ)) in which a sine function or a cosine function i(M(θ-φ)) having the first angle θ as a variable and a second angle φ with reference to the predetermined position and an integer M as constants is multiplied by a coefficient B and the distance r.
[Problem] To provide a method for producing a quartz glass crucible, whereby it becomes possible to reduce the content of air bubbles in a transparent layer located on the inside of a crucible without performing a special pretreatment or strong heating of a raw material quartz powder. [Solution] The method for producing a quartz glass crucible according to the present invention comprises a step for depositing a quartz powder on an inner surface 14i of a rotating mold 14 and a step for heating a deposited layer 16 of the quartz powder from the inside of the mold 14 to melt the quartz powder, in which the heat conductivity of the quartz powder that has been tap-filled in a container is 0.4 W/(m•K) to 1.0 W/(m•K) inclusive at 1300°C.
A device for measuring the thickness of a workpiece according to the present invention comprises: a housing; a measurement unit that is disposed in the housing and that measures the thickness of the workpiece; and a flow straightener that is disposed in the housing and that straightens an air flow in the housing. The measurement unit is provided with a spectral interference sensor. A workpiece polishing system according to the present invention is configured such that the device for measuring the thickness of the workpiece is installed in each of a workpiece carry-in part and a workpiece carry-out part. A method for measuring the thickness of a workpiece according to the present invention involves measuring the thickness of the workpiece by using a measurement unit provided with a spectral interference sensor. The measurement unit is disposed in a housing. The thickness of the workpiece is measured by the measurement unit while straightening an air flow in the housing by using a flow straightener disposed in the housing.
G01B 11/06 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
A method of manufacturing monocrystalline silicon is provided, the method including pulling monocrystalline silicon out of a silicon melt by a Czochralski process, the silicon melt being stored in a crucible housed in a chamber, the silicon melt being added with a volatile dopant, in which a decompression rate ES for exhaust of a gas out of the chamber before the pulling of the monocrystalline silicon is within a range below at least until a pressure inside the chamber decreases from an atmospheric pressure to 80 kPa, 0 kPa/min
A method for manufacturing a group III nitride semiconductor substrate, that includes: growing a first AlN buffer layer on an Si substrate at a first growth temperature; growing a second AlN buffer layer on the first AlN buffer layer at a second growth temperature higher than the first growth temperature; and growing a group III nitride semiconductor layer on the second AlN buffer layer, wherein an Al raw material and an N raw material are alternately repeatedly fed in the growing the first AlN buffer layer.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
46.
QUARTZ GLASS CRUCIBLE FOR SINGLE-CRYSTAL SILICON PULLING AND METHOD FOR PRODUCING SINGLE-CRYSTAL SILICON USING SAME
[Problem] To provide a quartz glass crucible for single-crystal silicon pulling that is capable of forming a thin, uniform crystal layer on the inner surface by heating during the crystal pulling step. [Solution] The quartz glass crucible 1 comprises: a crucible base 10 comprising a silica glass; and a coating film 13 formed on an inner surface 10i of the crucible base 10, the coating film containing a crystallization-promoting agent. The concentration of Fe contained in a first depth region of at least 0.5 mm or less from the inner surface 10i of the crucible base 10 is higher than the concentration of Al contained in the first depth region.
Provided is a cylindrical grinding device that produces a slicing single crystal by performing cylindrical grinding in which the outer peripheral surface of a grinding single crystal is ground while the grinding single crystal is caused to spin around a spinning axis. The cylindrical grinding device comprises: a posture correction unit that, on the basis of a plane orientation difference between the plane orientation of the grinding single crystal and a target plane orientation of a wafer obtained by slicing the slicing single crystal, performs a spinning process in which the grinding single crystal is caused to spin around the central axis thereof, and a rotation process in which the grinding single crystal is rotated around a rotation axis orthogonal to the central axis, to thereby correct the posture of the grinding single crystal so that the central axis is inclined with respect to the spinning axis; and a grinding unit that performs cylindrical grinding on the outer peripheral surface of the grinding single crystal with the corrected posture while the grinding single crystal is caused to spin around the spinning axis.
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
B24B 5/50 - Machines ou dispositifs pour meuler des surfaces de révolution des pièces, y compris ceux qui meulent également des surfaces planes adjacentes; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière des objets non métalliques à meuler, p.ex. des cordes d'instruments de musique
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
48.
HEATING PART OF SILICON SINGLE CRYSTAL MANUFACTURING DEVICE, CONVECTION PATTERN CONTROL METHOD FOR SILICON MELT, SILICON SINGLE CRYSTAL MANUFACTURING METHOD, SILICON WAFER MANUFACTURING METHOD, SILICON SINGLE CRYSTAL MANUFACTURING DEVICE, AND CONVECTION PATTERN CONTROL SYSTEM FOR SILICON MELT
A heating portion heats a silicon melt in a quartz crucible. The heating portion includes: a heat generation portion integrally molded into a cylinder; and four power supply portions for supplying electric power to the heat generation portion. When the heating portion is divided by a virtual plane into two including a first heating region located on one side of the heat generation portion and a second heating region located on the other side of the heat generation portion with respect to the virtual plane, the virtual plane passing through a center axis of the heat generation portion and being perpendicular to the heat generation portion and parallel to a central magnetic field line of a horizontal magnetic field applied to the silicon melt, a heat generation amount of the first heating region and a heat generation amount of the second heating region are set to different values.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
Provided is a wafer polishing method comprising: a step of determining a first correlation a second correlation; a step of calculating mechanical polishing rate/chemical polishing rate; a step of obtaining a relationship between the ratio of the mechanical polishing rate to the chemical polishing rate and one or more indications of wafer flatness and determining a specific range of the ratio of the mechanical polishing rate to the chemical polishing rate; a step of selecting a first target polishing solution that meets the specific range of the ratio of the mechanical polishing rate to the chemical polishing rate based on the first correlation and the second correlation; and a step of polishing wafers using the first target polishing solution. Also provided is a wafer production method including a step of performing a polishing process by the above wafer polishing method.
Provided is a method capable of efficiently polishing the front and back sides of a carrier plate unused after manufacture, which is used in a double-sided polishing process for semiconductor wafers. The method comprises: sandwiching a carrier plate unused after manufacture and to be polished between an upper surface plate and a lower surface plate in the double-sided polishing apparatus, and supplying a polishing liquid while relatively rotating the carrier plate to be polished, the upper surface plate, and the lower surface plate to polish both sides of the carrier plate to be polished, wherein a polishing pad including, on its surface, an abrasive grain-containing layer in which abrasive grains of 2 μm or more in grain size are embedded is used as a polishing pad in a double-sided polishing apparatus.
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
H01L 21/687 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le maintien ou la préhension en utilisant des moyens mécaniques, p.ex. mandrins, pièces de serrage, pinces
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
51.
SEMICONDUCTOR WAFER EVALUATION METHOD AND SEMICONDUCTOR WAFER PRODUCTION METHOD
Provided is a semiconductor wafer evaluation method that includes implementing multiple rounds of surface treatment in which hydrofluoric acid and ozone water are supplied to the surface of a semiconductor wafer, and carrying out a surface inspection in which the surface of the semiconductor wafer is inspected by a surface defect inspection device before surface treatment is performed, after each round of surface treatment, and after the multiple rounds of surface treatment are all completed. An LPD that is initially detected in surface inspection after an nth round of surface treatment (where n is an integer ranging from 1 to N−1, and N is the total number of rounds of surface treatment) at coordinates where no LPD was detected in the surface inspection carried out before the surface treatment is performed is classified as a processing-caused defect. The expected size of the processing-caused defect present on the surface of the wafer before the surface treatment is implemented at the coordinates where the processing-caused defect is detected is calculated according to regression analysis in which the detected size of the LPD detected in the surface inspection after the multiple rounds of surface treatment are all completed is used as a target variable, and in which the total number of rounds (N−n) of surface treatment implemented after the initial detection is used as an explanatory variable.
This management device 20 comprises a control unit 22 that manages a plurality of wafer processing devices 1. The control unit 22 selects a wafer processing device 1 to be assigned to processing of a prescribed type of wafer from among the plurality of wafer processing devices 1, on the basis of the distance between post-processing characteristics of wafers processed by each wafer processing device 1 and the center value of a standard of the prescribed type of wafer .
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
B24B 1/00 - Procédés de meulage ou de polissage; Utilisation d'équipements auxiliaires en relation avec ces procédés
B24B 37/013 - Dispositifs ou moyens pour détecter la fin de l'opération de rodage
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
G05B 19/418 - Commande totale d'usine, c.à d. commande centralisée de plusieurs machines, p.ex. commande numérique directe ou distribuée (DNC), systèmes d'ateliers flexibles (FMS), systèmes de fabrication intégrés (IMS), productique (CIM)
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
53.
METHOD OF POLISHING SILICON WAFER AND METHOD OF PRODUCING SILICON WAFER
A method of polishing a silicon wafer, including a final polishing step including a pre-stage polishing step and a subsequent finish polishing step. The finish polishing step in the final polishing step includes a finish slurry polishing step using a polishing solution having an abrasive grain density of 1×1013/cm3 or more as the second polishing solution; and a pre-polishing step using a polishing solution having an abrasive grain density of 1×1010/cm3 or less as the second polishing solution, the pre-polishing step being performed prior to the finish slurry polishing step. A method of producing a silicon wafer, including the steps of: forming a notch portion on a periphery of a single crystal silicon ingot grown by the Czochralski process; slicing the ingot to obtain a silicon wafer; and subjecting the resulting silicon wafer to the above method of polishing a silicon wafer.
A production method of monocrystalline silicon includes: growing the monocrystalline silicon having a straight-body diameter in a range from 301 mm to 330 mm that is pulled up through a Czochralski process from a silicon melt including a dopant in a form of arsenic; controlling a resistivity of the monocrystalline silicon at the straight-body start point to fall within a range from 2.50 mΩcm to 2.90 mΩcm; and subsequently sequentially decreasing the resistivity of the monocrystalline silicon to fall within a range from 1.6 mΩcm to 2.0 mΩcm at a part of the monocrystalline silicon.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
A method for dressing a polishing pad is proposed by which the polishing pad can be more evenly dressed even on a rotating platen having a curved surface. The method for dressing a polishing pad 100 comprises pressing the grindstone 12 of a pad dresser 1 having a grindstone 12 attached thereto against the polishing pad 100 adhered to a polishing platen and sliding the grindstone 12 thereon, thereby dressing the polishing pad 100. The dressing method is characterized in that the pad dresser 1 has been configured so that the dressing surface 12b of the grindstone 12 which slides on the polishing pad 100 is changeable in the radius of curvature R1 along the radial-direction of the polishing platen.
B24B 53/017 - Dispositifs ou moyens pour dresser, nettoyer ou remettre en état les outils de rodage
B24B 37/07 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage
B24B 37/12 - Plateaux de rodage pour travailler les surfaces planes
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
56.
METHOD OF ESTIMATING OXYGEN CONCENTRATION IN SILICON SINGLE CRYSTAL, METHOD OF MANUFACTURING SILICON SINGLE CRYSTAL, AND SILICON SINGLE CRYSTAL MANUFACTURING APPARATAUS
To provide a method of estimating an oxygen concentration in a silicon single crystal, a method of manufacturing a silicon single crystal, and a silicon single crystal manufacturing apparatus capable of manufacturing silicon single crystals having constant quality by preventing polarization of the oxygen concentration in the silicon single crystal. A method of estimating an oxygen concentration in a silicon single crystal according to the present invention is provided with measuring a height (gap) of a melt surface of a silicon melt in a quartz crucible when pulling up a silicon single crystal while applying a lateral magnetic field to the silicon melt and estimating an oxygen concentration in the silicon single crystal from a minute variation in the height of the melt surface.
G01N 27/74 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant des variables magnétiques des fluides
A quartz glass crucible has, from an inner surface side toward an outer surface side of the crucible, an inner transparent layer, a bubble layer, an outer transparent layer, and a crystallization accelerator-containing layer. An outer transition layer where a bubble content decreases from the bubble layer toward the outer transparent layer is provided at a boundary between the bubble layer and the outer transparent layer, and a thickness of the outer transition layer is 0.1 mm or more and 8 mm or less.
Provided is a method for determining conditions for polishing one surface of a wafer with a polisher. The polisher comprises at least a platen, a polishing pad disposed on the platen, and a polishing chuck disposed over the polishing pad. The method for determining polishing conditions comprises: setting a target range of in-plane differences in wafer-polishing amount; determining a prediction range of in-plane differences in wafer-polishing pressure which is expected to attain an in-plane difference in wafer-polishing amount within the target range, on the basis of a correlation between the in-plane difference in wafer-polishing amount and the in-plane difference in wafer-polishing pressure; and determining a range of pressing-surface shape values of the polishing chuck which is expected to attain an in-plane difference in wafer-polishing pressure within the prediction range, on the basis of a correlation between the in-plane difference in wafer-polishing pressure and the pressing-surface shape value of the polishing chuck.
B24B 37/005 - Moyens de commande pour machines ou dispositifs de rodage
B24B 37/10 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage simple face
B24B 37/24 - Tampons de rodage pour travailler les surfaces planes caractérisés par la composition ou les propriétés des matériaux du tampon
B24B 37/30 - Supports de pièce pour rodage simple face de surfaces planes
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
[Problem] To provide a silicon wafer that can generate, at high density in a bulk section thereof, thermally stable oxygen precipitate nuclei that are not influenced by a customer's thermal treatment, while minimizing oxygen precipitate on a surface layer section of the silicon wafer. [Solution] A silicon wafer 50: has an oxygen precipitate (BMD) density of 1x107to 1x108cm-3, in a surface layer section 53, from a surface 50a to a depth of 30 μm, the density occurring as a result of a first evaluation heat treatment in which, after a heat treatment at 780°C for 3 hours, a visualization heat treatment is carried out at 950 to 1000°C for 16 hours; and a BMD density of 1x109to 7x109cm-312211 is 0.74 to 1.02.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
There is provided a growing method of monocrystalline silicon including: pulling up monocrystalline silicon from a dopant-added melt in which a dopant is added to a silicon melt and growing the monocrystalline silicon according to Czochralski process, in which the monocrystalline silicon is grown by calculating a critical CV value, which is a product of a dopant concentration C and a pull-up speed V at a point of time when an abnormal growth occurred in the monocrystalline silicon; and controlling at least one of the dopant concentration C or the pull-up speed V to make a CV value, which is a product of the dopant concentration C and the pull-up speed V at the point of time, below the critical CV value.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
A method of growing monocrystalline silicon through a Czochralski process uses a monocrystalline silicon growth device, the device including: a chamber; a crucible; a heater configured to heat a silicon melt contained in the crucible, in which the heater includes: an upper heater configured to heat an upper portion of the crucible; and a lower heater configured to heat a lower portion of the crucible; and a pull-up unit configured to pull up a seed crystal after bringing the seed crystal into contact with the silicon melt. The method includes: adding a volatile dopant to the silicon melt; and subsequently to the step, pulling up the monocrystalline silicon. In the step, the crucible is heated in a manner that no solidified layer is formed on a liquid surface of the silicon melt and heat generation amounts Qd, Qu of the lower heater and the upper heater satisfy Qd>Qu.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
62.
DIFFERENTIAL PRESSURE MEASURING DEVICE AND DIFFERENTIAL PRESSURE MEASUREMENT METHOD
A differential pressure measuring device and a differential pressure measurement method that can measure the difference between the pressure in an on-floor area and the pressure in an under-floor area even when the differential pressure is small. The device includes a differential pressure measuring unit, a first pipe of which one end is connected to a first port, and a second pipe of which one end is connected to a second port; and a cup to which the other end of the second pipe is connected and which forms a space for measuring the pressure in the under-floor area on the grating floor plate. The distance in a device height direction between the other end of the first pipe and the other end of the second pipe is fixed.
Provided a single crystal manufacturing method, a magnetic field generator, and a single crystal manufacturing apparatus, which allow the in-plane distribution of oxygen concentration in a single crystal to be uniform. A single crystal manufacturing method includes pulling-up a single crystal while applying a lateral magnetic field to a melt in a crucible. During a crystal pull-up process, the crucible is raised to meet the decrease in the melt, and a magnetic field distribution is controlled to meet the decrease in the melt in such a manner that the direction of the magnetic field at the melt surface and the direction of the magnetic field at the inner surface of a curved bottom portion of the crucible are constant from the beginning to the end of a body section growing step.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
C30B 15/22 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal
C30B 15/10 - Creusets ou récipients pour soutenir le bain fondu
C30B 15/30 - Mécanismes pour faire tourner ou pour déplacer soit le bain fondu, soit le cristal
H01F 7/20 - Electro-aimants; Actionneurs comportant des électro-aimants sans armature
H01F 7/06 - Electro-aimants; Actionneurs comportant des électro-aimants
A method for assessing a wafer 30 includes: a step for acquiring, as assessment images for assessing pass/fail of the wafer 30, captured images 40 obtained by imaging at least a portion of the wafer 30; a step for excluding a captured image 40 from the assessment images if said captured image 40 corresponds to an erroneous assessment candidate image; and a step for assessing pass/fail of the wafer 30 on the basis of the assessment image.
A producing method of a handle wafer for a bonded wafer produced by bonding an active wafer and the handle wafer through an insulation film includes: preparing a handle wafer body made from a monocrystalline silicon wafer; forming an oxide film on the handle wafer body; depositing a polycrystalline silicon layer on the oxide film; forming a protective oxide film on a surface of the polycrystalline silicon layer; and polishing to remove the protective oxide film and polishing the polycrystalline silicon layer.
Provided is a method of preventing a sudden increase in the number of particles detected on wafer surfaces even when cleaning of a wafer is performed repeatedly using a single-wafer processing wafer cleaning apparatus. The method uses a single-wafer processing wafer cleaning apparatus including a rotatable stage; chemical solution supply nozzles; pure water supply nozzles; a chemical solution supply line for supplying chemical solutions to the chemical solution supply nozzles; a pure water supply line for supplying pure water to the pure water supply nozzles; and a waste liquid line. The method includes a pipe cleaning step of introducing pure water containing micro-nano bubbles into the pure water supply line, and cleaning the pipe of the pure water supply line.
B08B 9/032 - Nettoyage de conduites ou de tubes ou des systèmes de conduites ou de tubes Élimination des bouchons par l'action mécanique d'un fluide en mouvement, p.ex. par effet de chasse d'eau
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
67.
CARRIER MEASUREMENT DEVICE, CARRIER MEASUREMENT METHOD, AND CARRIER MANAGEMENT METHOD
A carrier measuring device includes a rotary table, a table drive motor, an upper thickness sensor, a lower thickness sensor and a slide unit. The rotary table includes a carrier receiver configured to horizontally house a carrier formed with a hole in which a semiconductor wafer is held, the hole being eccentric with respect to the carrier. The table drive motor rotates the rotary table around a center axis thereof as a rotation axis. The upper thickness sensor and the lower thickness sensor are positioned above and below the carrier, respectively, and measure a thickness of the carrier in a non-contact manner. The slide unit slides the rotary table in a horizontal direction. The carrier receiver is formed to be capable of housing the carrier in a manner that a center of the hole coincides with a center of the rotary table.
G01B 5/06 - Dispositions pour la mesure caractérisées par l'utilisation de techniques mécaniques pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
B24B 37/005 - Moyens de commande pour machines ou dispositifs de rodage
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
68.
METHOD FOR GROWING SINGLE-CRYSTAL SILICON, METHOD FOR PRODUCING SILICON WAFER, AND SINGLE-CRYSTAL PULLING DEVICE
Provided is a method for growing single-crystal silicon in which a single-crystal pulling device comprising a chamber, a crucible for containing a silicon melt, a heating part for heating the silicon melt, a heat barrier disposed above the crucible so as to surround single-crystal silicon to be pulled out of the silicon melt, and an inert-gas feed part which feeds an inert gas passing between the single-crystal silicon and the heat barrier is used to pull up the single-crystal silicon while applying a horizontal magnetic field to the silicon melt. The heat barrier is disposed so that the vertical axis passing through the center of the opening of the heat barrier is offset from the vertical rotation axis of the crucible in a direction different from a direction along the application direction at the center of the horizontal magnetic field.
The present invention provides a single crystal pulling apparatus which comprises: a chamber; a crucible that is arranged within the chamber and retains a silicon melt; a pulling unit that comprises a pulling shaft, to one end of which a seed crystal is mounted, and a pulling drive unit, which rotates and vertically moves the pulling shaft, so as to pull a silicon single crystal; a heat shielding body which is arranged above the crucible so as to surround the silicon single crystal; and a magnetic field application unit which applies a horizontal magnetic field to the silicon melt in the crucible. The lower end of the heat shielding body is provided with a plurality of cuts that are arranged so as to be twofold symmetric about the pulling shaft.
To provide a silicon wafer with extremely low resistivity by containing an ultra-high concentration of boron, the silicon wafer having a high gettering ability by enabling formation of oxygen precipitates at a high concentration, and making it possible to suppress the occurrence of epitaxial defects originating from oxygen precipitates when an epitaxial layer is formed. Disclosed is a silicon wafer made of monocrystalline silicon, the silicon wafer containing boron as a dopant and having a resistivity of 1 mΩ·cm or more and 10 mΩ·cm or less, the silicon wafer having an oxygen concentration of 14.5×1017 atoms/cm3 or more and 16×1017 atoms/cm3 or less, and a carbon concentration of 2×1016 atoms/cm3 or more and 5×1017 atoms/cm3 or less, and the silicon wafer being free from COPs and dislocation clusters.
H01L 29/36 - Corps semi-conducteurs caractérisés par la concentration ou la distribution des impuretés
H01L 29/167 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée caractérisés en outre par le matériau de dopage
Please replace the Abstract contained in the application with the following replacement
Please replace the Abstract contained in the application with the following replacement
Provided is a process of measuring a space between a melt surface and a seed crystal provided above a melt, a process of lowering the seed crystal based on the space and bringing the seed crystal into contact with the melt, and a process of growing a single crystal by pulling the seed crystal while maintaining contact with the melt. Images of the seed crystal and the melt surface are captured by a camera installed diagonally above the melt surface, a real-image edge approximation circle is generated by approximating a circle from an edge pattern at a lower end of a straight-trunk portion of a real image of the seed crystal, and a mirror-image edge approximation circle is generated by approximating the circle from an edge pattern at the straight-trunk portion of a mirror image of the seed crystal reflected on the melt surface.---
C30B 15/26 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal en utilisant des détecteurs photographiques ou à rayons X
Provided is a packaging unit (10) for packaging accommodation target articles (80A) in a box-shaped container (200), in two rows with a space therebetween in the width direction and in two tiers in the vertical direction. The packaging unit comprises a lower cushioning material (1) which supports the accommodation target articles (80A) in the two rows in the lower tier; intermediate cushioning materials (3) one of which is placed between each accommodation target article of the lower tier and the upper tier; an upper cushioning material (5) which holds upper parts of the accommodation target articles; and a vibration absorbing unit (20) which is provided at the bottom of the container. The vibration absorbing unit (20) has a first plate (21), a second plate (22), and elastic bodies (23) disposed between the first plate (21) and the second plate (22). The center of each elastic body (23) is further outward from the midway point between the accommodation target articles in the two rows than the center of gravity of an accommodation target article. The distance (D) in the width direction between the center of each elastic body (23) and the center of gravity of an accommodation target article is 2-8% of the maximum outer diameter of that elastic body (23).
B65D 81/113 - Réceptacles, éléments d'emballage ou paquets pour contenus présentant des problèmes particuliers de stockage ou de transport ou adaptés pour servir à d'autres fins que l'emballage après avoir été vidés de leur contenu spécialement adaptés pour protéger leur contenu des dommages mécaniques maintenant le contenu en position éloignée des parois de l'emballage ou des autres pièces du contenu utilisant des blocs de matériau amortisseur de chocs de forme spécialement adaptée au contenu
B65D 85/30 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour objets particulièrement sensibles aux dommages par chocs ou compression
H01L 21/673 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants utilisant des supports spécialement adaptés
Provided is a manufacturing method of a silicon single crystal according to the present invention includes a melting process for generating a silicon melt containing a primary dopant, and a crystal pulling-up process that pulls up a silicon single crystal from the silicon melt. The crystal pulling-up process includes at least one additional doping process for adding a dopant raw material containing a secondary dopant into the silicon melt. A flow rate of Ar gas during a first period in which the secondary dopant is not added is set as a first flow rate, and the flow rate of Ar gas during a second period that includes a period in which the secondary dopant is added is set as a second flow rate that is greater than the first flow rate..---
C30B 15/14 - Chauffage du bain fondu ou du matériau cristallisé
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
74.
CARRIER FOR DOUBLE-SIDED POLISHING, AND SILICON WAFER DOUBLE-SIDED POLISHING METHOD AND DEVICE EMPLOYING SAME
[Problem] To provide a carrier for double-sided polishing, with which an increase in service life can be achieved by improving wear resistance, and a silicon wafer double-sided polishing method and device employing the same. [Solution] A carrier 10 for double-sided polishing according to the present invention is a member for holding a silicon wafer when performing double-sided polishing of the silicon wafer, and comprises a substantially disk-shaped carrier body comprising a resin laminated plate containing a fiber substrate, and a wafer holding hole 12 formed in the carrier body 11. A fiber exposure rate of a main surface of the carrier body 11 is less than 50%.
B24B 37/28 - Supports de pièce pour rodage double face de surfaces planes
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
A wafer polishing method includes acquiring in-plane thickness distribution information regarding a wafer to be polished or a wafer subjected to the same processing treatment, determining a difference in pressure between a pressure Pc to be applied to the central part of the wafer by introducing a gas into the central region and a pressure Pe to be applied to the outer peripheral part of the wafer by introducing a gas into the outer peripheral region, determining any one pressure of Pc and Pe, and determining the other pressure, determining the pressure Pg to be applied, based on a set value Pr of a contact pressure to be applied to the lower surface of the second ring-shaped member due to contact with the polishing pad at the time of polishing, and bringing the lower surface of the wafer into contact with the polishing pad to conduct polishing.
B24B 49/16 - Appareillage de mesure ou de calibrage pour la commande du mouvement d'avance de l'outil de meulage ou de la pièce à meuler; Agencements de l'appareillage d'indication ou de mesure, p.ex. pour indiquer le début de l'opération de meulage tenant compte de la pression de travail
B24B 37/013 - Dispositifs ou moyens pour détecter la fin de l'opération de rodage
B24B 49/02 - Appareillage de mesure ou de calibrage pour la commande du mouvement d'avance de l'outil de meulage ou de la pièce à meuler; Agencements de l'appareillage d'indication ou de mesure, p.ex. pour indiquer le début de l'opération de meulage comparant la cote instantanée de la pièce travaillée à la cote cherchée, la mesure ou le calibrage étant continus ou intermittents
76.
METHOD AND APPARATUS FOR PRODUCING SILICON SINGLE CRYSTAL AND METHOD FOR PRODUCING SILICON WAFER
[Problem] To provide a method and apparatus for producing a silicon single crystal, the method and apparatus being capable of quantitatively evaluating the presence or absence of deformation or eccentricity of a quartz crucible, or the size of the deformation or eccentricity. [Solution] The present invention provides a method for producing a silicon single crystal by pulling a silicon single crystal from a silicon melt 2 in a quartz crucible 11, wherein images including a mirror image 11M of the quartz crucible 11 reflected on a melt surface 2a of the silicon melt 2 are acquired at predetermined time intervals, and deformation or eccentricity of the quartz crucible 11 is evaluated from temporal changes of the position of the mirror image 11M of the quartz crucible 11 reflected in a plurality of images that are acquired during the time period where the quartz crucible 11 rotates at least once.
C30B 15/10 - Creusets ou récipients pour soutenir le bain fondu
C30B 15/26 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal en utilisant des détecteurs photographiques ou à rayons X
77.
FLAT EPITAXIAL WAFER HAVING MINIMAL THICKNESS VARIATION
An epitaxial wafer includes a silicon substrate having a top surface and an epitaxial layer on said top surface, wherein the epitaxial layer has a thickness in a range of 0.3 μm to 1.0 μm, and a thickness variation of 1% or less. A method of preparing such epitaxial wafer includes placing a silicon substrate on a susceptor in an epitaxial reactor; rotating the susceptor at a rotation rate (D); and applying a source gas in the epitaxial reactor to grow an epitaxial layer of a desired thickness (B) at a growth rate (A) on the silicon substrate; wherein the source gas is applied for a growth time (C) that satisfies C=B/A and the rotation rate (D) is selected from a range of 22 to 70 rpm that allows the susceptor to rotate to an exact integer number of turns (E) based on a relationship D=E/C.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/04 - Corps semi-conducteurs caractérisés par leur structure cristalline, p.ex. polycristalline, cubique ou à orientation particulière des plans cristallins
H01L 29/06 - Corps semi-conducteurs caractérisés par les formes, les dimensions relatives, ou les dispositions des régions semi-conductrices
C30B 25/20 - Croissance d'une couche épitaxiale caractérisée par le substrat le substrat étant dans le même matériau que la couche épitaxiale
A method of producing an epitaxial silicon wafer includes irradiating a surface of a silicon wafer with a beam of cluster ions containing SiHx ions (at least one of the integers 1 to 3 is selected as x of the SiHx ions) and C2Hy ions (at least one of the integers 2 to 5 is selected as y of the C2Hy ions) to form a modified layer that is located in a surface layer portion of the silicon wafer and that contains as a solid solution of the constituent elements of the cluster ion beam, and further includes forming a silicon epitaxial layer on the modified layer of the silicon wafer. The dose of the SiHx ions is 1.5×1014 ions/cm2 or more.
A silicon wafer having a layer of oxygen precipitates and method of manufacturing thereof wherein the wafer exhibiting robustness characterized as having a ratio of a first average density from a first treatment that to a second average density from a second treatment is between 0.74 to 1.02, wherein the first treatment includes heating the wafer or a portion of the wafer at about 1150° C. for about 2 minutes and then between about 950 to 1000° C. for about 16 hours, and the second treatment includes heating the wafer or a portion of the wafer at about 780° C. for about 3 hours and then between about 950 to 1000° C. for about 16 hours. The wafer exhibits heretofore unattainable uniformity wherein a ratio of an oxygen precipitate density determined from any one cubic centimeter in the BMD layer of the wafer to another oxygen precipitate density from any other one cubic centimeter in the BMD layer of the wafer is in a range of 0.77 to 1.30.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p.ex. recuit, frittage
H01L 29/32 - Corps semi-conducteurs ayant des surfaces polies ou rugueuses les défectuosités étant à l'intérieur du corps semi-conducteur
80.
N-TYPE SILICON SINGLE CRYSTAL PRODUCTION METHOD, N-TYPE SILICON SINGLE CRYSTAL INGOT, SILICON WAFER, AND EPITAXIAL SILICON WAFER
A method for producing an n-type monocrystalline silicon that includes pulling up a monocrystalline silicon from a silicon melt containing a main dopant in a form of red phosphorus to grow the monocrystalline silicon. The monocrystalline silicon exhibits an electrical resistivity ranging from 1.7 mΩcm to 2.0 mΩcm, and is pulled up using a quartz crucible whose inner diameter ranges from 1.7-fold to 2.0-fold relative to a straight-body diameter of the monocrystalline silicon.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
C30B 15/10 - Creusets ou récipients pour soutenir le bain fondu
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
22 of the Ar gas passing through the gap between the lower end of a heat-shielding object disposed over the silicon melt and the surface of the silicon melt is regulated to 0.75-1.1 m/s.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
Provided is an epitaxial wafer having an excellent gettering capability and a suppressed formation of epitaxial defects. The epitaxial wafer has a specified resistivity, and includes a modifying layer formed on a surface portion of the silicon wafer and composed of a predetermined element including at least carbon, in the form of a solid solution in the silicon wafer; and an epitaxial layer having a resistivity that is higher than the resistivity of the silicon wafer, wherein a concentration profile of the predetermined element in the modifying layer in a depth direction thereof meets a specified full width half maximum and a specified peak concentration.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/36 - Corps semi-conducteurs caractérisés par la concentration ou la distribution des impuretés
83.
METHOD OF CLEANING WORK AND CLEANING SYSTEM FOR WORK
A method and a system for cleaning a work, the sum A of the areas (mm2), the sum B of the areas (mm2) and the determined supply flow rate Q (L/min) or the supply flow rate Q (L/min) and one or both of the determined sum A of the areas (mm2) and the determined sum B of the areas (mm2) satisfy the predetermined relations.
This conveyor conveys a carrier that is formed in a flat plate shape and is provided with a through-hole, and a substrate that is accommodated inside the through-hole, the conveyor comprising: first holding parts that hold the outer peripheral section of the carrier in the thickness direction of the carrier, and second holding parts that hold the substrate inside the through-hole in the thickness direction, wherein at least one of the first holding parts and the second holding parts can lengthen or shorten in the thickness direction such that the carrier held by the first holding parts and the substrate held by the second holding parts separate from each other.
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
85.
TRANSFER DEVICE, POLISHING EQUIPMENT, AND TRANSFER METHOD
This transfer device moves, to a planetary device-type polishing part that has an internal gear and a sun gear that rotate on a support surface of a platen and that polishes the surface of a substrate facing in the thickness direction, a carrier in which are formed a plurality of teeth that are flat, provided on the outer peripheral edge, and are able to mesh with the internal gear and the sun gear, and a through-hole accommodating the substrate, wherein the transfer device comprises a transfer part for transferring the carrier, an image-capturing part for acquiring an image of at least some of the plurality of teeth of the internal gear and at least some of the plurality of teeth of the sun gear, and a control unit for controlling the transfer unit.
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
B24B 37/28 - Supports de pièce pour rodage double face de surfaces planes
B24B 49/12 - Appareillage de mesure ou de calibrage pour la commande du mouvement d'avance de l'outil de meulage ou de la pièce à meuler; Agencements de l'appareillage d'indication ou de mesure, p.ex. pour indiquer le début de l'opération de meulage impliquant des dispositifs optiques
H01L 21/304 - Traitement mécanique, p.ex. meulage, polissage, coupe
H01L 21/463 - Traitement mécanique, p.ex. meulage, traitement par ultrasons
A semiconductor wafer including a single crystal doped with a dopant, wherein a resistivity of the wafer is 0.7 mΩ-cm or less, and wherein a striation height of the wafer is 6 mm or more. The resistivity of the wafer may be 0.8 mΩ-cm or less, and the striation height may be 13 mm or more. The resistivity of the wafer may be 0.7 mΩ-cm or less, and the striation may be 22 mm or more. Example features relate to a method of making a semiconductor wafer that includes adding a dopant to a silicon melt, rotationally pulling a crystal from the silicon melt, and applying a magnetic field of 3000 G or more such that the semiconductor wafer has a resistivity that is equal to or less than 0.8 mΩ-cm and a striation height that is equal to or more than 13 mm.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
C30B 15/30 - Mécanismes pour faire tourner ou pour déplacer soit le bain fondu, soit le cristal
H01L 29/167 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, mis à part les matériaux de dopage ou autres impuretés, seulement des éléments du groupe IV de la classification périodique, sous forme non combinée caractérisés en outre par le matériau de dopage
A handle wafer used for a bonded wafer that is produced by bonding an active wafer and the handle wafer through an insulation film is provided. The handle wafer includes a handle wafer body and a polycrystalline silicon layer deposited on a side close to a bonding surface of the handle wafer body. The polycrystalline silicon layer has a polycrystalline silicon grain size of 0.419 μm or less.
A crystal puller apparatus comprises a pulling assembly to pull a crystal from a silicon melt at a pull speed; a crucible that contains the silicon melt; a heat shield above a surface of the silicon melt; a lifter to change a gap between the heat shield and the surface of the silicon melt; and one or more computing devices to determine an adjustment to the gap using a Pv-Pi margin, at a given length of the crystal, in response to a change in the pull speed. The computer-implemented method by a computing device comprises determining a pull-speed command signal to control a diameter of the crystal; determining a lifter command signal to control a gap between a heat shield and a surface of a silicon melt from which the crystal is grown; and determining an adjustment to the gap, in response to a different pull-speed, using a Pv-Pi margin.
C30B 35/00 - Appareillages non prévus ailleurs, spécialement adaptés à la croissance, à la production ou au post-traitement de monocristaux ou de matériaux polycristallins homogènes de structure déterminée
A single crystal manufacturing apparatus 10 according to the present invention is provided with a single crystal puller pulling up a single crystal 15 from a melt 13, a camera 18 photographing a fusion ring generated at the boundary between the melt 13 and the single crystal 15 and an computer 24 processing a photographed image taken by the camera 18. The computer 24 projects and converts the fusion ring appearing in the photographed image taken by the camera 18 on a reference plane corresponding to the liquid level position of the melt based on an installation angle and a focal length of the camera and calculates a diameter of the single crystal 15 from a shape of the fusion ring on the reference plane.
C30B 15/26 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal en utilisant des détecteurs photographiques ou à rayons X
A method of heat-treating a silicon wafer using a lateral heat treatment furnace that can improve the product yield by restricting reduction in the lifetime value of silicon wafers placed in the vicinity of dummy blocks placed to equalize the temperature of the region where the wafers are placed. In a method of heat-treating a silicon wafer using a lateral heat treatment furnace, a boat is placed in a hollow cylindrical furnace core tube, and on the boat, at least one of a first additional block between a first dummy block and a wafer group and a second additional block between a second dummy block and the wafer group is placed.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/673 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants utilisant des supports spécialement adaptés
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
A polishing apparatus for an outer peripheral portion of a wafer includes: a stage for horizontally holding a disc-shaped wafer; a rotation drive unit for rotating the stage around its center axis as a rotation axis; polishing heads having an inner circumferential surface mounted with polishing pads; and a polishing-head drive mechanism for bringing the polishing pads into contact with the outer peripheral portion of the wafer and sliding the polishing heads in a direction slanted relative to a center axis of the wafer or a vertical direction thereof under application of a predetermined polishing pressure to the outer peripheral portion of the wafer. The inner circumferential surface of each of the polishing heads is mounted with two or more types of the polishing pads having different physical property values in the vertical direction.
B24B 9/06 - Machines ou dispositifs pour meuler les bords ou les biseaux des pièces ou pour enlever des bavures; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière propre aux objets à meuler de matière inorganique non métallique, p.ex. de la pierre, des céramiques, de la porcelaine
92.
Semiconductor epitaxial wafer and method of producing semiconductor epitaxial wafer, and method of producing solid-state imaging device
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/20 - Dépôt de matériaux semi-conducteurs sur un substrat, p.ex. croissance épitaxiale
H01L 21/265 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée produisant une implantation d'ions
H01L 21/30 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/324 - Traitement thermique pour modifier les propriétés des corps semi-conducteurs, p.ex. recuit, frittage
H01L 29/04 - Corps semi-conducteurs caractérisés par leur structure cristalline, p.ex. polycristalline, cubique ou à orientation particulière des plans cristallins
H01L 29/36 - Corps semi-conducteurs caractérisés par la concentration ou la distribution des impuretés
93.
CUSHIONING MATERIAL, PACKING BODY, AND PACKING METHOD
Provided is a cushioning material (100) that, when a plurality of storage containers (80) are being packed in a packing case (200) that has a bottom panel (202), lateral panels (203), and a lid (204), is disposed between the plurality of storage containers (80) and the packing case (200). The storage containers (80) are arranged in two rows, each of which contains a plurality of the storage containers (80), and in two tiers vertically. The cushioning material (100) comprises: lower cushioning materials (1) which support the respective bottom parts of the two rows of storage containers (80) on the lower tier; intermediate cushioning materials (3) which are interposed between the storage containers (80) on the upper tier and the storage containers (80) on the lower tier; and upper cushioning materials (5) which are disposed on the respective tops of the rows of storage containers (80) on the upper tier so as to hold the respective tops of the storage containers (80). The lower cushioning materials (1) are each formed so as to leave no gap with respect to the lateral panels of the packing case (200), while the intermediate cushioning materials (3) and the upper cushioning materials (5) are formed so as to leave respective prescribed gaps with respect to the lateral panels (203) of the packing case (200).
B65D 81/113 - Réceptacles, éléments d'emballage ou paquets pour contenus présentant des problèmes particuliers de stockage ou de transport ou adaptés pour servir à d'autres fins que l'emballage après avoir été vidés de leur contenu spécialement adaptés pour protéger leur contenu des dommages mécaniques maintenant le contenu en position éloignée des parois de l'emballage ou des autres pièces du contenu utilisant des blocs de matériau amortisseur de chocs de forme spécialement adaptée au contenu
B65D 85/30 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour objets particulièrement sensibles aux dommages par chocs ou compression
H01L 21/673 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants utilisant des supports spécialement adaptés
94.
EPITAXIAL WAFER MANUFACTURING METHOD AND EPITAXIAL WAFER MANUFACTURING APPARATUS
Provided is an epitaxial wafer manufacturing method in which, after an epitaxial wafer manufacturing step comprising loading a wafer (W) into a chamber (11) of an epitaxial wafer manufacturing apparatus (1), growing an epitaxial film on the wafer (W) to obtain an epitaxial wafer, and unloading the epitaxial wafer out of the chamber (11) is performed a plurality of times, the interior of the chamber (11) is cleaned, wherein, during the growth of the epitaxial film, the wafer (W) supported on a susceptor (12) is heated by a first heating apparatus (24, 25), with the outer edge of the susceptor (12) being heated by a second heating apparatus (27).
H01L 21/205 - Dépôt de matériaux semi-conducteurs sur un substrat, p.ex. croissance épitaxiale en utilisant la réduction ou la décomposition d'un composé gazeux donnant un condensat solide, c. à d. un dépôt chimique
C23C 16/46 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c. à d. procédés de dépôt chimique en phase vapeur (CVD) caractérisé par le procédé de revêtement caractérisé par le procédé utilisé pour le chauffage du substrat
This method for cutting a silicon ingot is characterized in that a silicon ingot is cut by running a fixed-abrasive wire at a speed which has a maximum speed of at least 1,200 m/minute while supplying a coolant thereto which has a water content greater than 99%.
B24B 55/02 - Dispositifs de sécurité pour machines de meulage ou de polissage; Accessoires adaptés aux machines à meuler ou à polir pour maintenir les outils ou les parties de machines en bon état de marche Équipement pour refroidir les surfaces abrasives, p.ex. dispositifs d'alimentation en agent de refroidissement
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
96.
METHOD OF DOUBLE-SIDE POLISHING WORK, METHOD OF PRODUCING WORK, AND DOUBLE-SIDE POLISHING APPARATUS FOR A WORK
The sum of torques: the torque of the sun gear and the torque of the internal gear, and the ratio of the torques are controlled within predetermined ranges.
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
B24B 37/04 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes
B24B 37/005 - Moyens de commande pour machines ou dispositifs de rodage
97.
METHOD FOR CLEANING SEMICONDUCTOR WAFER AND METHOD FOR PRODUCING SEMICONDUCTOR WAFER
The present invention proposes a method for cleaning a semiconductor wafer, the method being capable of cleaning the surface of a semiconductor wafer more uniformly than ever before. The present invention provides a method for cleaning a semiconductor wafer W, wherein the surface of a semiconductor wafer W is cleaned by supplying a chemical agent thereto, while rotating the semiconductor wafer W; and this method for cleaning a semiconductor wafer W is characterized in that before the supply of the chemical agent ((b) and (c) in Fig. 1), pure water is supplied to the central part of the surface of the semiconductor wafer W, while rotating the semiconductor wafer W ((a) in Fig. 1), and a switch is made from the supply of pure water to the supply of the chemical agent in a state where a film of pure water is formed on the surface.
A method of evaluating a semiconductor wafer by a laser surface inspection device. The method includes performing evaluation of the wafer by detecting a defect kind of one of a deposit and a non-deposited convex defect present on a surface of a coating layer as a light point defect based on a plurality of measurement results including three kinds of low incidence angle measurement results obtained by, on the surface of the coating layer, reception of a radiated light radiated by reflection or scattering of a light incident from a first incident system at the surface by three kinds of light receiving systems, and at least one high incidence angle measurement result obtained by reception of a radiated light radiated by reflection or scattering of a light incident from a second incident system at the surface by at least one of the three kinds of light receiving systems.-
Provided is a magnet for a single crystal production device that can increase the degree of freedom in design of magnetic field distribution even if the positioning of coils that constitute the magnet of a single crystal production device is limited. A magnet 1 for a single crystal production device, the magnet 1 applying a horizontal magnetic field in a single crystal production device that pulls a single crystal while applying the horizontal magnetic field to a melt of single crystal raw materials accommodated in a crucible, characterized by being equipped with: four or more coils 2, the ratio of the height Hi to the width Wi of at least one coil 2 among the four or more coils 2 exceeding 1; and a control unit capable of causing each of the four or more coils 2 to generate a magnetic field in a mutually independent manner.