A method for manufacturing a bonded semiconductor wafer includes growing an etching stop layer on a starting substrate, producing an epitaxial wafer by growing an epitaxial layer having a compound semiconductor functional layer on the etching stop layer, forming an isolation groove to form a device in the compound semiconductor functional layer by a dry etching method, performing roughening etching on a surface of the epitaxial layer, being the opposite side of the starting substrate, making surface roughness thereon to have 0.1 μm or more in an arithmetic average roughness Ra, bonding a visible light-transmissive substrate to the surface opposite to the starting substrate of the epitaxial wafer via visible light-transmissive thermosetting bonding material, and removing the starting substrate. This method for manufacturing the bonded semiconductor wafer in which a micro-LED can be made with a suppressed generation of luminance decrease when a micro-LED device is produced on the substrate.
The present invention is a nitride semiconductor substrate for high frequency, which includes an SOI substrate in which a single crystal silicon thin film is formed on a single crystal silicon substrate via a silicon oxide layer, and a nitride semiconductor layer including a GaN layer formed on the SOI substrate; in which the single crystal silicon thin film contains nitrogen at a concentration of 2.0×1014 atoms/cm3 or more and has a resistivity of 100 Ωcm or more, the single crystal silicon substrate has a resistivity of 50 mΩcm or less, and the silicon oxide layer has a thickness of 10 to 400 nm. This can provide the nitride semiconductor substrate in which the nitride semiconductor layer is grown on the SOI substrate for manufacturing devices for high frequency, and the nitride semiconductor substrate with suppressed plastic deformation.
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
The present invention provides a method for producing a heteroepitaxial wafer heteroepitaxially growing a 3C-SiC single crystal film on a single crystal silicon substrate, the method including: with using a reduced-pressure CVD apparatus, a first step of removing a native oxide film on a surface of the single crystal silicon substrate by hydrogen baking; a second step of nucleation of SiC on the single crystal silicon substrate on a condition of pressure of 13332 Pa or lower and a temperature of 300° C. or higher and 950° C. or lower and a third step of forming the 3C-SiC single crystal film by growing a SiC single crystal on condition of pressure of 13332 Pa or lower and a temperature of 800° C. or higher and lower than 1200° C., while supplying a source gas containing carbon and silicon into the reduced-pressure CVD apparatus. This provides the method for producing the heteroepitaxial wafer that can efficiently grow high-quality 3C-SiC single crystal film heteroepitaxially on the single crystal silicon substrate.
A method for manufacturing a nitride semiconductor wafer in which a nitride semiconductor film is formed on a silicon single-crystal substrate includes: a step of forming the nitride semiconductor film on the silicon single-crystal substrate; and a step of irradiating the silicon single-crystal substrate with electron beam so that the silicon single-crystal substrate has a higher resistivity than a resistivity before the irradiation, wherein a substrate doped with nitrogen at a concentration of 5×1014 atoms/cm3 or more and 5×1016 atoms/cm3 or less is used as the silicon single-crystal substrate. A method for manufacturing a nitride semiconductor wafer having a nitride semiconductor film grown on a silicon single-crystal substrate, wherein the method makes it possible that a silicon single-crystal substrate having been irradiated with electron beam and thereby has an increased resistivity is prevented from recovering and having a lower resistivity during the epitaxial growth or other thermal treatment steps.
An epitaxial wafer production method, including forming a gettering epitaxial film containing silicon and carbon on a silicon substrate under reduced pressure using a reduced pressure CVD apparatus, and forming a silicon epitaxial film on the gettering epitaxial film. This provides a low-cost, low-contamination carbon-containing epitaxial wafer, and a method for producing such an epitaxial wafer.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 29/36 - Corps semi-conducteurs caractérisés par la concentration ou la distribution des impuretés
7.
NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR MANUFACTURING SAME
A nitride semiconductor substrate including a growth substrate, and a nitride semiconductor thin film formed on the growth substrate, in which the nitride semiconductor thin film includes an AlN layer formed on the growth substrate and a nitride semiconductor layer formed on the AlN layer, and an average concentration of Y (Yttrium) in the AlN layer is 1E15 atoms/cm3 or higher and 5E19 atoms/cm3 or lower. Thereby, a nitride semiconductor substrate is capable of improving the surface morphology of an AlN layer, thereby suppressing the generation of pits on the surface of a nitride semiconductor epitaxial wafer, and a method manufactures the nitride semiconductor substrate.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 29/205 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV comprenant plusieurs composés dans différentes régions semi-conductrices
8.
BONDED WAFER AND METHOD FOR PRODUCING BONDED WAFER
A bonded wafer, wherein an epitaxial wafer having a heterojunction structure, in which a material with a different thermal expansion coefficient is epitaxially laminated on a growth substrate, and a support substrate are bonded via a bonding material, wherein the bonding material has an average thickness of 0.01 μm or more and 0.6 μm or less. As a result, provided is a bonded wafer and a method for producing the same that improves the film thickness distribution of the bonding material caused by the warpage of the semiconductor epitaxial substrate and the warpage that changes with thermal changes when the warped semiconductor epitaxial substrate and the support substrate are bonded together using the bonding material.
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
B32B 7/12 - Liaison entre couches utilisant des adhésifs interposés ou des matériaux interposés ayant des propriétés adhésives
B32B 9/04 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes comprenant une telle substance comme seul composant ou composant principal d'une couche adjacente à une autre couche d'une substance spécifique
9.
NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
A nitride semiconductor substrate in which a nitride semiconductor thin film is formed on a substrate for film formation made of single-crystal silicon, in which a silicon nitride film is formed on an peripheral portion of the substrate for film formation, an AlN film is formed on the substrate for film formation and on the silicon nitride film, and the nitride semiconductor thin film is formed on the AlN film. A nitride semiconductor substrate without a reaction mark or a polycrystal growth portion on an edge portion when an AlN layer is epitaxially grown on a silicon substrate, and a GaN or AlGaN layers are epitaxially grown on top of that; and a method for manufacturing the nitride semiconductor substrate.
The present invention relates to a method of manufacturing a compound semiconductor bonded substrate comprising the steps of:
(1) epitaxially growing a compound semiconductor functional layer on a starting substrate;
(2) temporarily bonding a support substrate to the epitaxially grown surface to form a first compound semiconductor bonded substrate;
(3) removing the starting substrate from the first compound semiconductor bonded substrate to form a second compound semiconductor bonded substrate;
(4) finally bonding a surface of the second compound semiconductor bonded substrate from which the starting substrate has been removed to a permanent substrate to form a third compound semiconductor bonded substrate;
(5) removing the support substrate from the third compound semiconductor bonded substrate to form a fourth compound semiconductor bonded substrate, wherein
the temporary bonding is performed via a thermosetting resin, the thermosetting resin being maintained in a softened state without being cured, and
the final bonding is performed via a silicon oxide film or a silicon nitride film.
The present invention relates to a method of manufacturing a compound semiconductor bonded substrate comprising the steps of:
(1) epitaxially growing a compound semiconductor functional layer on a starting substrate;
(2) temporarily bonding a support substrate to the epitaxially grown surface to form a first compound semiconductor bonded substrate;
(3) removing the starting substrate from the first compound semiconductor bonded substrate to form a second compound semiconductor bonded substrate;
(4) finally bonding a surface of the second compound semiconductor bonded substrate from which the starting substrate has been removed to a permanent substrate to form a third compound semiconductor bonded substrate;
(5) removing the support substrate from the third compound semiconductor bonded substrate to form a fourth compound semiconductor bonded substrate, wherein
the temporary bonding is performed via a thermosetting resin, the thermosetting resin being maintained in a softened state without being cured, and
the final bonding is performed via a silicon oxide film or a silicon nitride film.
Thus, provided is a method of manufacturing a compound semiconductor bonded substrate having an improved degree of freedom in designing a device or a device system.
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs présentant au moins une barrière de potentiel ou une barrière de surface, p.ex. une jonction PN, une région d'appauvrissement, ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV de la classification périodique, ou des composés AIIIBV, avec ou sans impuretés, p.ex. des matériaux de dopage
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 23/14 - Supports, p.ex. substrats isolants non amovibles caractérisés par le matériau ou par ses propriétés électriques
11.
METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR SUBSTRATE
A method for manufacturing a nitride semiconductor substrate in which a nitride semiconductor is formed on a substrate for film formation includes: (1) subjecting a substrate for film formation made of single-crystal silicon to heat treatment under a nitrogen atmosphere to form a silicon nitride film on the substrate for film formation, (2) growing an AlN film on the silicon nitride film, and (3) growing a GaN film, an AlGaN film, or both on the AlN film. A method for manufacturing a nitride semiconductor substrate can prevent diffusion of Al to the high-resistance single-crystal silicon substrate when the AlN layer is epitaxially grown on the high-resistance single-crystal silicon substrate, and the GaN or the AlGaN layer is epitaxially grown on top of that.
C30B 29/68 - Cristaux avec une structure multicouche, p.ex. superréseaux
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
12.
NITRIDE SEMICONDUCTOR SUBSTRATE AND MANUFACTURING METHOD THEREFOR
A nitride semiconductor substrate includes: a silicon single-crystal substrate; and a nitride semiconductor thin film formed on the silicon single-crystal substrate, wherein the silicon single-crystal substrate has a carbon concentration of 5E16 atoms/cm3 or more and 2E17 atoms/cm3 or less. This provides a nitride semiconductor substrate resistant against plastic deformation and a manufacturing method therefor.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
A temporarily bonded wafer in which an epitaxial functional layer having two or more electrodes with different polarities on one surface and a support substrate are temporarily bonded, in which the surface having the electrodes of the epitaxial functional layer and the support substrate are temporarily bonded via an uncured thermosetting bonding material. A resulting technique reduces bonding failure and delamination failure after removing the substrate after a bonding process, improves the yield, and easily removes the temporary support substrate.
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
H01L 33/36 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les électrodes
The present invention provides a method for producing a silicon single crystal by a CZ method using a cusp magnetic field formed by an upper coil and a lower coil provided in a pulling furnace, the method includes seeding by bringing a seed crystal into contact with a silicon melt, and pulling up of a straight body after enlarging a diameter of the silicon single crystal, in which the seeding is performed with a magnetic field minimum plane position on a central axis of the pulling furnace as a first position below a surface of the silicon melt, before proceeding to the pulling up of the straight body, the magnetic field minimum plane position on the central axis of the pulling furnace is moved to a second position above the first position, the pulling up of the straight body is performed with the magnetic field minimum plane position on the central axis of the pulling furnace as the second position. This provides the method for producing the silicon single crystal that efficiently produces the single crystal having low oxygen concentration and excellent in-plane distribution with an improved success rate of the seeding.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
The present invention is a clean room including a stocker area in which an article management storage is installed, in which the article management storage includes an upper opening part and a lower flow-out port configured to adjust the aperture ratio, a ceiling of the stocker area includes an eyelid and an air outlet port, the upper opening part of the article management storage and the air outlet port are connected to each other so as to be surrounded by the eyelid, and the clean room is configured that air supplied from the air outlet port is directly supplied into the article management storage through the upper opening part and is discharged from the lower flow-out port. This can provide the clean room that can keep the inside of the article management storage clean with almost no additional cost and without reducing the storing volume in the article management storage.
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
F24F 3/167 - Salles blanches, c. à d. enceintes closes dans lesquelles un flux uniforme d’air filtré est distribué
F24F 13/06 - Bouches pour diriger ou distribuer l'air dans des pièces ou enceintes, p.ex. diffuseur d'air de plafond
16.
NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
A nitride semiconductor substrate including: a composite substrate with multiple layers stacked, a silicon oxide layer or a TEOS layer having a central flat surface and a side surface around the flat surface and stacked on the composite substrate; a single crystal silicon layer stacked on the silicon oxide layer or the TEOS layer, and a nitride semiconductor thin film deposited on the single crystal silicon layer, wherein the entire central flat surface of the silicon oxide layer or the TEOS layer is covered with the single crystal silicon layer.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
17.
SUBSTRATE FOR SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
The present invention is a substrate for a semiconductor device, including: a high-resistant silicon single crystal substrate having a resistivity of 100 Ω·cm or more; a first buffer layer composed of an AlN layer and formed on the high-resistant silicon single crystal substrate; and a nitride semiconductor layer provided on the first buffer layer, wherein there is no low-resistivity portion on a top surface of the high-resistant silicon single crystal substrate, the low-resistivity portion having a resistivity relatively lower than the resistivity of an entirety of the high-resistant silicon single crystal substrate. This provides: a substrate for a semiconductor device that can impart good electric characteristics to a device; and a simple method for manufacturing such a substrate.
H01L 29/66 - Types de dispositifs semi-conducteurs
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 29/778 - Transistors à effet de champ avec un canal à gaz de porteurs de charge à deux dimensions, p.ex. transistors à effet de champ à haute mobilité électronique HEMT
18.
NITRIDE SEMICONDUCTOR SUBSTRATE AND MANUFACTURING METHOD THEREFOR
A nitride semiconductor substrate, including a Ga-containing nitride semiconductor thin film formed on a substrate for film-forming in which a single crystal silicon layer is formed on a composite substrate in which a plurality of layers is bonded, wherein the nitride semiconductor substrate has a region where the Ga-containing nitride semiconductor thin film is not formed inward from an edge of the single crystal silicon layer being a growth surface of the nitride semiconductor thin film. This provides: a nitride semiconductor substrate with inhibited generation of a reaction mark; and a manufacturing method therefor.
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/205 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV comprenant plusieurs composés dans différentes régions semi-conductrices
A debris determination method of determining, using an image obtained by an appearance inspection device, debris that occurs around a hard laser mark (HLM) on a backside of a wafer, including: a step of calculating reference luminance from a grayscale image obtained by the appearance inspection device; a step of extracting a printed region including the HLM from the grayscale image; a step of excluding a dot portion of the HLM from the printed region; a step of extracting, with reference to the reference luminance, a debris region from the printed region from which the dot portion of the HLM has been excluded; and a step of determining the presence or absence of debris in the printed region based on the debris region. This provides a debris determination method that can reliably detect debris that cannot be detected by shape measuring devices and determine the presence or absence of debris.
A debris determination method of determining, from an image obtained by an appearance inspection device, debris that occurs around an HLM on a backside of a wafer, including: replacing luminance data of the image with matrix data; extracting an HLM-printed region; obtaining a least-squares plane of luminance; obtaining normalized matrix data by subtracting the least-squares plane from the printed region; obtaining protrusion-side matrix data by substituting 0 for matrix values less than 0; obtaining recess-side matrix data by inverting the sign of the normalized matrix data and substituting 0 for matrix values representing dots and noise; obtaining composite matrix data from the protrusion- and recess-side matrix data; obtaining low-pass matrix data by processing the composite matrix data; and determining debris from the low-pass matrix data with a predetermined threshold and obtaining an area ratio of the debris to determine the presence or absence of debris in the printed region.
The present invention is a method for carrying a wafer, wherein in taking out the wafer from a closed container and carrying the wafer by a carrier robot or in taking in the wafer carried by the carrier robot into the closed container, when a latchkey is rotationally driven for fixing and unfixing a lid relative to a container body of the closed container mounted on a load port frame by a latchkey-driving mechanism provided on a load port door that can fit with a wafer carrying-in/out port of a carrying room and that holds the lid of the closed container to enable removal from the wafer carrying-in/out port, the latchkey is rotationally driven at a rotation rate of 60 deg/sec or less. This provides a method for carrying a wafer and wafer-carrying apparatus that can reduce an amount of dust generated when the lid of the closed container is opened and closed or when the load port door is raised and lowered for carrying the wafer.
H01L 21/677 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants pour le transport, p.ex. entre différents postes de travail
The present invention provides a method for forming a thermal oxide film, comprising the steps of: a step of acquiring a first correlation between an amount of OH groups and thickness of the thermal oxide film by forming a thermal oxide film by thermal oxidation treatment under the same condition after preparing a plurality of semiconductor substrates having chemical oxide films formed by cleaning and having different amounts of OH groups; a step of acquiring a second correlation between an amount of OH groups and drying conditions by cleaning under the same cleaning condition followed by changed drying conditions to substrates and measuring amounts of OH groups; a step of acquiring a third correlation between drying condition and thickness of thermal oxide film by using the first correlation and the second correlation; a step of determining drying condition and thermal oxidation condition by using the third correlation; a step of cleaning the substrates; and a step of drying and a thermal oxide film formation after the cleaning step using the drying conditions and thermal oxidation treatment conditions determined in the drying and thermal oxidation treatment condition determination step. This provides a method for forming thermal oxide film in which a thermal oxide film can be formed with intended thickness with good reproducibility while without changing the composition of the cleaning chemical solution.
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
23.
WAFER MARKING METHOD, METHOD OF PRODUCING NITRIDE SEMICONDUCTOR DEVICE AND NITRIDE SEMICONDUCTOR SUBSTRATE
A wafer marking method uses a laser for performing a laser marking on a defect region of a nitride semiconductor substrate in which a nitride semiconductor layer contains at least a GaN layer formed by epitaxial growth on a single-crystal silicon substrate. The method includes that a surface of the GaN layer and a surface of the single-crystal silicon substrate are performed laser marking simultaneously by irradiating the defect region with a laser of a wavelength within ±10% of 365 nm, having a wavelength corresponding to a band gap energy of GaN.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/268 - Bombardement par des radiations ondulatoires ou corpusculaires par des radiations d'énergie élevée les radiations étant électromagnétiques, p.ex. des rayons laser
H01L 21/66 - Test ou mesure durant la fabrication ou le traitement
The present invention is an apparatus for manufacturing a single crystal by growing a single crystal according to a Czochralski method, the apparatus includes a main chamber configured to house a crucible configured to accommodate a raw-material melt and a heater configured to heat the raw-material melt, a pulling chamber being continuously provided at an upper portion of the main chamber and configured to accommodate a single crystal grown and pulled, and a cooling cylinder extends from at least a ceiling portion of the main chamber toward a surface of the raw material melt to surround the single crystal being pulled. The cooling cylinder is configured to be forcibly cooled with a coolant. The apparatus includes a first auxiliary cooling cylinder fitted inside of the cooling cylinder, and a second auxiliary cooling cylinder threadedly connected to the outside of the first auxiliary cooling cylinder from a side of a lower end. A gap between a bottom surface of the cooling cylinder and a top surface of the second auxiliary cooling cylinder is 0 mm or more to 1.0 mm or less. This provides an apparatus for manufacturing a single crystal which can increase growth rate of the single crystal by efficiently cooling the single crystal being grown.
A packaging member for packaging an object to be transported between clean rooms, the packaging member being used for packaging the object to be transported, being a FOUP or a FOSB, when transport thereof between the clean rooms each having a clean atmosphere of a semiconductor factory, in which the packaging member includes a dust-free cloth having dust-proof property and damp-proof property. The packaging member is capable of transporting an object to be transported between clean rooms at low cost while maintaining the high cleanness of the object to be transported, being the FOUP or the FOSB.
B65D 85/30 - Réceptacles, éléments d'emballage ou paquets spécialement adaptés à des objets ou à des matériaux particuliers pour objets particulièrement sensibles aux dommages par chocs ou compression
B65G 49/06 - Systèmes transporteurs caractérisés par leur utilisation à des fins particulières, non prévus ailleurs pour des matériaux ou objets fragiles ou dommageables pour des feuilles fragiles, p.ex. en verre
26.
EPITAXIAL WAFER FOR ULTRAVIOLET RAY EMISSION DEVICE AND METHOD FOR MANUFACTURING THE SAME
An epitaxial wafer for an ultraviolet ray emission device including: a first supporting substrate being transparent for ultraviolet ray and having heat resistance; a seed crystal layer of an AlxGa1-xN (0.5
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
H01L 33/06 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure à effet quantique ou un superréseau, p.ex. jonction tunnel au sein de la région électroluminescente, p.ex. structure de confinement quantique ou barrière tunnel
27.
METHOD FOR MANUFACTURING EPITAXIAL WAFER FOR ULTRAVIOLET RAY EMISSION DEVICE, METHOD FOR MANUFACTURING SUBSTRATE FOR ULTRAVIOLET RAY EMISSION DEVICE, EPITAXIAL WAFER FOR ULTRAVIOLET RAY EMISSION DEVICE, AND SUBSTRATE FOR ULTRAVIOLET RAY EMISSION DEVICE
The present invention is a method for manufacturing an epitaxial wafer for an ultraviolet ray emission device, the method including steps of: preparing a supporting substrate having at least one surface composed of gallium nitride; forming a bonding layer on the surface composed of the gallium nitride of the supporting substrate; forming a laminated substrate having a seed crystal layer by laminating a seed crystal composed of an AlxGa1-xN (0.5
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
H01L 33/06 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les corps semi-conducteurs ayant une structure à effet quantique ou un superréseau, p.ex. jonction tunnel au sein de la région électroluminescente, p.ex. structure de confinement quantique ou barrière tunnel
H01L 33/32 - Matériaux de la région électroluminescente contenant uniquement des éléments du groupe III et du groupe V de la classification périodique contenant de l'azote
28.
METHOD FOR MANUFACTURING BONDED WAFER, AND BONDED WAFER
A method for manufacturing a bonded wafer, the method including bonding a to-be-bonded wafer and a compound semiconductor wafer including a compound semiconductor epitaxially grown on a growth substrate. An area of a bonding surface of the to-be-bonded wafer is larger than an area of a bonding surface of the compound semiconductor wafer. The growth substrate is removed after the to-be-bonded wafer is bonded to the compound semiconductor wafer.
The present invention is a silicon wafer manufacturing method including a grinding step of grinding front and back surfaces of a raw wafer to obtain a wafer having an arithmetic surface roughness Sa per 2 μm2 of 10 nm or less; a dry-etching step of subjecting the wafer obtained in the grinding step to isotropic whole-surface dry-etching with an etching removal of 1 μm or less per surface to remove a mechanically damaged layer introduced into each of front and back surfaces of the wafer in the grinding step; and a double-side polishing step of, after the dry-etching step, polishing both surfaces of the wafer with a stock removal of 3 μm or less per surface. Thus, the silicon wafer manufacturing method that enables to manufacture a wafer having high flatness can be provided.
A method for manufacturing a semiconductor wafer, including: a chamfering step of grinding at least a periphery of a wafer to form a chamfered portion having a wafer edge portion and a wafer notch portion; a double-side polishing step; a mirror-surface chamfering step; and a mirror polishing step, wherein the mirror-surface chamfering step includes: a first mirror-surface chamfering process of polishing the wafer notch portion in the chamfered portion before the double-side polishing step; and a second mirror-surface chamfering process of polishing the wafer notch portion and the wafer edge portion after the double-side polishing step, and a polishing rate of the wafer notch portion in the second mirror-surface chamfering process is smaller than a polishing rate of the wafer notch portion in the first mirror-surface chamfering process.
B24B 9/06 - Machines ou dispositifs pour meuler les bords ou les biseaux des pièces ou pour enlever des bavures; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière propre aux objets à meuler de matière inorganique non métallique, p.ex. de la pierre, des céramiques, de la porcelaine
B24B 7/22 - Machines ou dispositifs pour meuler les surfaces planes des pièces, y compris ceux pour le polissage des surfaces planes en verre; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière des objets non métalliques à meuler pour meuler de la matière inorganique, p.ex. de la pierre, des céramiques, de la porcelaine
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
A method for producing a nitride semiconductor wafer by forming a nitride semiconductor film on a silicon single-crystal substrate, including the steps of forming the nitride semiconductor film on the silicon single-crystal substrate and irradiating the silicon single-crystal substrate with electron beams with an irradiation dose of 1×1014/cm2 or more. A method produces a nitride semiconductor wafer in which a nitride semiconductor film is formed on a silicon single-crystal substrate, and in which a loss and a second harmonic characteristic due to the substrate are improved.
A seed substrate for epitaxial growth has a support substrate, a planarizing layer of 0.5 to 3 μm provided on the top surface of the support substrate, and a seed crystal layer provided on the top surface of the planarizing layer. The support substrate includes a core of group III nitride polycrystalline ceramics and a 0.05 to 1.5 μm encapsulating layer that encapsulates the core. The seed crystal layer is provided by thin-film transfer of 0.1 to 1.5 μm of the surface layer of Si<111> single crystal with oxidation-induced stacking faults (OSF) of 10 defects/cm2 or less. High-quality, inexpensive seed substrates with few crystal defects for epitaxial growth of epitaxial substrates and solid substrates of group III nitrides such as AlN, AlxGa1-xN (0
C23C 16/50 - Revêtement chimique par décomposition de composés gazeux, ne laissant pas de produits de réaction du matériau de la surface dans le revêtement, c. à d. procédés de dépôt chimique en phase vapeur (CVD) caractérisé par le procédé de revêtement au moyen de décharges électriques
C30B 31/22 - Dopage par irradiation au moyen de radiations électromagnétiques ou par rayonnement corpusculaire par implantation d'ions
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
33.
SINGLE CRYSTAL PULLING APPARATUS AND METHOD FOR PULLING SINGLE CRYSTAL
The present invention is a single crystal pulling apparatus which includes a pulling furnace having a central axis and a magnetic field generating apparatus having coils, and applies a horizontal magnetic field to a molten semiconductor raw material, wherein the coils are saddle-shaped, two pairs of the coils are provided with the coils of each pair arranged facing each other, two coil axes in the two pairs of coils are included in the same horizontal plane, when a magnetic force line direction on the central axis of the pulling furnace in the horizontal plane is defined as a X-axis, and a direction perpendicular to the X-axis in the horizontal plane is defined as a Y-axis, a center angle α between the two coil axes sandwiching the X-axis is 90 degrees or less and an inter-coil angle β between adjacent superconducting coils sandwiching the Y-axis is 20 degrees or less. As a result, the coil height can be reduced by increasing the magnetic field generation efficiency, the magnetic field center can be raised to near the melt surface of the semiconductor raw material, and it is possible to provide a single crystal pulling apparatus and a single crystal pulling method capable of pulling a single crystal with an even lower oxygen concentration than before and a defect-free crystal at a higher speed can be obtained.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
34.
METHOD FOR EVALUATING CRYSTAL DEFECTS IN SILICON CARBIDE SINGLE CRYSTAL WAFER
A method for evaluating crystal defects in a silicon carbide single crystal wafer, the method including steps of: etching a silicon carbide single crystal wafer with melted KOH so that a size of an etch pit due to a threading edge dislocation is 10 to 50 μm; obtaining microscopic images by automatic photographing at a plurality of positions on a surface of the silicon carbide single crystal wafer after the etching; determining presence or absence of a defect dense part in each of all the obtained microscopic images based on a continued length of the etch pit formed by the etching; and classifying all the obtained microscopic images into microscopic images having the defect dense part and microscopic images not having the defect dense part to evaluate a dense state of crystal defects in the silicon carbide single crystal wafer.
A method for processing a wafer including; surface-grinding front surface of the wafer and back surface opposite to the front surface with a grindstone having a size of 10000 or more and, double-side polishing both sides of the wafer that has been surface-ground so that removal on the back surface is ¼ or less than that on the front surface. This method can also process a wafer capable of selectively roughening the back surface of a wafer and suppressing warpage of the wafer due to stress, and a wafer having a sufficiently roughened back surface and having a small warpage.
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
36.
METHOD FOR EVALUATING SEMICONDUCTOR WAFER, METHOD FOR SELECTING SEMICONDUCTOR WAFER AND METHOD FOR FABRICATING DEVICE
An evaluation method including steps of: acquiring profile measurement data on an entire surface in a thickness direction of a mirror-polished wafer; identifying a slice-cutting direction by performing first-order or second-order differentiation on diameter-direction profile measurement data on the wafer to acquire differential profiles at predetermined rotation angles and pitches, and comparing the acquired differential profiles; acquiring x-y grid data by performing first-order or second-order differentiation on profile measurement data at a predetermined pitch in a y-direction at a predetermined interval in an x-direction perpendicular to the y-direction, which is the identified slice-cutting direction; acquiring, from the x-y grid data, a maximum derivative value in an intermediate region including the wafer center in the y-direction and a maximum derivative value in upper-end-side and lower-end-side regions located outside the intermediate region; and judging failure incidence possibility in a device fabrication process based on the maximum derivative values.
A method for detecting a surface state of a raw material melt in a crucible in single crystal production by a CZ method in which a single crystal is pulled from the raw material melt in the crucible including: photographing a predetermined same test region of the surface of the raw material melt in the crucible simultaneously in different directions with two CCD cameras to obtain measurement images; and automatically detecting, using parallax data of the measurement images from the two CCD cameras, one or more of the following: solidification timing when a state in which the raw material is completely melted becomes a state in which solidification is formed on the surface of the raw material melt; and melting complication timing when a state in which the raw material melt has solidification on the surface of the raw material melt becomes a completely melted state.
C30B 15/26 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal en utilisant des détecteurs photographiques ou à rayons X
C30B 15/14 - Chauffage du bain fondu ou du matériau cristallisé
C30B 15/30 - Mécanismes pour faire tourner ou pour déplacer soit le bain fondu, soit le cristal
38.
NITRIDE SEMICONDUCTOR SUBSTRATE AND METHOD FOR PRODUCING THE SAME
A nitride semiconductor substrate includes: a heat-resistant support substrate having a core including nitride ceramic enclosed in an encapsulating layer; a planarization layer provided on the heat-resistant support substrate; a silicon single crystal layer having a carbon concentration of 1×1017 atoms/cm3 or higher provided on the planarization layer; a carbonized layer containing silicon carbide as a main component and having a thickness of 4 to 2000 nm provided on the silicon single crystal layer; and a nitride semiconductor layer provided on the carbonized layer. This provides a high-quality nitride semiconductor substrate (a nitride semiconductor substrate particularly suitable for GaN-based high mobility transistors (HEMT) for high-frequency switches, power amplifiers, and power switching devices); and a method for producing the same.
A method of cleaning a silicon wafer in which the silicon wafer is roughened, including: forming an oxide film on the silicon wafer by SC1 cleaning, SC2 cleaning, or ozone water cleaning; cleaning the silicon wafer on which the oxide film is formed by using any one of: a diluted aqueous solution of ammonium hydroxide having an ammonium hydroxide concentration of 0.051% by mass or less; or a diluted aqueous solution containing ammonium hydroxide and hydrogen peroxide water and having an ammonium hydroxide concentration of 0.051% by mass or less and a hydrogen peroxide concentration of 0.2% by mass or less, the hydrogen peroxide concentration being four times or less the ammonium hydroxide concentration, to roughen front and rear faces of the silicon wafer.
A single crystal pulling apparatus includes: a pulling furnace having a central axis; and magnetic field generating apparatus around the pulling furnace and having coils, for applying a horizontal magnetic field to molten semiconductor raw material to suppress convection in crucible, in which, main coils and sub-coils are provided, as the main coils, two pairs of coils arranged facing each other are provided, two coil axes thereof are included in the same horizontal plane, a center angle α between the two coil axes sandwiching the X-axis, which is a magnetic force line direction on the central axis in the horizontal plane, is 100 degrees or more and 120 degrees or less, as the sub-coils, a pair of superconducting coils arranged to face each other is provided and its one coil axis is aligned with the X-axis, and current values of the main coils and the sub-coils can be set independently.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
A nitride semiconductor substrate, including a Ga-containing nitride semiconductor thin film formed on a substrate for film-forming in which a single crystal silicon layer is formed above a supporting substrate via an insulative layer, wherein the nitride semiconductor substrate has a region where the Ga-containing nitride semiconductor thin film is not formed inward from an edge of the single crystal silicon layer being a growth surface of the nitride semiconductor thin film. This provides: a nitride semiconductor substrate with inhibited generation of a reaction mark; and a manufacturing method therefor.
H01L 27/12 - Dispositifs consistant en une pluralité de composants semi-conducteurs ou d'autres composants à l'état solide formés dans ou sur un substrat commun comprenant des éléments de circuit passif intégrés avec au moins une barrière de potentiel ou une barrière de surface le substrat étant autre qu'un corps semi-conducteur, p.ex. un corps isolant
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 21/76 - Réalisation de régions isolantes entre les composants
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
The present invention is a method for producing an epitaxial wafer forming a single crystal silicon layer on a single crystal silicon wafer, comprising, a step of removing native oxide film on surface of the single crystal silicon wafer with hydrofluoric acid, a step of forming an oxygen atomic layer on the surface of the single crystal silicon wafer from which the native oxide film has been removed, a step of epitaxially growing the single crystal silicon layer on the surface of the single crystal silicon wafer on which the oxygen atomic layer is formed, wherein the plane concentration of oxygen in the oxygen atomic layer is 1×1015 atoms/cm2 or less. As a result, a method for producing an epitaxial wafer, that an oxygen atomic layer can be stably and simply introduced into an epitaxial layer, and having a good-quality single crystal silicon epitaxial layer is provided.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
43.
METHOD FOR MEASURING DISTANCE BETWEEN LOWER END SURFACE OF HEAT SHIELDING MEMBER AND SURFACE OF RAW MATERIAL MELT, METHOD FOR CONTROLLING DISTANCE BETWEEN LOWER END SURFACE OF HEAT SHIELDING MEMBER AND SURFACE OF RAW MATERIAL MELT AND METHOD FOR MANUFACTURING SILICON SINGLE CRYSTAL
A method for measuring distance between lower end surface of heat shielding member and surface of raw material melt, the method including providing the member being located above the melt, when a silicon single crystal is pulled by the Czochralski method while a magnetic field is applied to the melt in a crucible, the method including: forming a through-hole in the member; measuring distance between the member and the melt surface, and observing position of mirror image of the through-hole with fixed point observation apparatus, the mirror image being reflected on the melt surface; then measuring a moving distance of the mirror image, and calculating distance between the member and the melt surface from a measured value and the moving distance of the mirror image, during the pulling of the crystal. The distance between the member and the melt can be precisely measured by the method.
C30B 15/26 - Stabilisation, ou commande de la forme, de la zone fondue au voisinage du cristal tiré; Commande de la section du cristal en utilisant des détecteurs photographiques ou à rayons X
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
C30B 15/14 - Chauffage du bain fondu ou du matériau cristallisé
The present invention is an inspection apparatus for inspecting a container including a light-transmittable transparent portion and configured to house a wafer, the apparatus including: a flat lamp provided to irradiate a portion to be inspected including at least a part of the transparent portion of the container with light; and a camera provided to face the flat lamp across the portion to be inspected of the container and configured to image the portion to be inspected so as to detect a foreign matter and/or a defect in the portion to be inspected of the container. This can provide an inspection apparatus and inspection method that can inspect whether a foreign matter or a defect is present inside a wafer container more certainly than visual inspection by a person.
The present invention is a polishing pad having a polishing layer for polishing surface of a wafer and a double-sided tape for attaching the polishing layer to an upper turn table of a double-side polishing apparatus, wherein, the double-sided tape has a 90° peeling adhesive strength A of 2000 g/cm or more, and a ratio A/B of the 90° peeling adhesive strength A to a 180° peeling adhesive strength B of 1.05 or more, the double-sided tape has a base material, a polishing-layer-side adhesive layer to be attached to the polishing layer, and an upper-turn-table-side adhesive layer to be attached to the upper turn table, and total thickness of the polishing-layer-side adhesive layer and the upper-turn-table-side adhesive layer is 80 μm or less. This provides a polishing pad capable of suppressing deterioration of flatness of the wafer when performing double-side polishing of the wafer.
B24B 37/22 - Tampons de rodage pour travailler les surfaces planes caractérisés par une structure multicouche
B24B 37/08 - Machines ou dispositifs de rodage; Accessoires conçus pour travailler les surfaces planes caractérisés par le déplacement de la pièce ou de l'outil de rodage pour un rodage double face
H01L 21/306 - Traitement chimique ou électrique, p.ex. gravure électrolytique
A single crystal manufacturing including: main chamber; pulling chamber; thermal shield member provided so as to face a silicon melt; rectifying cylinder provided on the thermal shield member so as to enclose the silicon single crystal being pulled up; cooling cylinder provided so as to encircle the silicon single crystal being pulled up and including an extending portion extending toward the silicon melt; and cooling auxiliary cylinder fitted to inside of the cooling cylinder. The extending portion of the cooling cylinder includes a bottom surface facing the silicon melt. The cooling auxiliary cylinder includes at least a first portion surrounding the bottom surface of the cooling cylinder and a second portion surrounding an upper end portion of the rectifying cylinder. This enables provision of the apparatus capable of manufacturing a single crystal with a carbon concentration lower than that according to the conventional technologies.
An epitaxial wafer cleaning method for cleaning a wafer having an epitaxial film formed on a front surface thereof, including: a first cleaning step of supplying a cleaning solution containing O3 to all surfaces, including front, back, and end surfaces, of the wafer to perform spin cleaning; a second cleaning step of supplying a cleaning solution to the back and end surfaces of the wafer to perform cleaning with a roll brush after the first cleaning step; a third cleaning step of supplying a cleaning solution containing O3 to the front surface of the wafer to perform spin cleaning after the second cleaning step; and a fourth cleaning step of supplying a cleaning solution containing HF to the front surface of the wafer to perform spin cleaning after the third cleaning step.
A substrate for group III nitride epitaxial growth and a method for producing the same. The substrate for group III nitride epitaxial growth includes: a supporting substrate having a structure in which a core consisting of nitride ceramics is wrapped in an encapsulating layer having a thickness of between 0.05 μm and 1.5 μm, inclusive; a planarizing layer provided on an upper surface of the supporting substrate, the planarizing layer having a thickness of between 0.5 μm and 3.0 μm, inclusive; and a seed crystal layer made of a single crystal of a group III nitride, the seed crystal layer being provided on an upper surface of the planarizing layer and having a thickness of between 0.1 μm and 1.5 μm, inclusive.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
49.
EPITAXIAL WAFER FOR ULTRAVIOLET LIGHT EMITTING DEVICE, METHOD FOR PRODUCING METAL BONDED SUBSTRATE FOR ULTRAVIOLET LIGHT EMITTING DEVICE, METHOD FOR PRODUCING ULTRAVIOLET LIGHT EMITTING DEVICE, AND METHOD FOR PRODUCING ULTRAVIOLET LIGHT EMITTING DEVICE ARRAY
An epitaxial wafer for an ultraviolet light emitting device, including, a heat-resistant first support substrate, a planarization layer with a thickness of 0.5 to 3 μm on at least upper surface of the first support substrate, a group III nitride single crystal seed crystal layer with a thickness of 0.1 to 1.5 μm, bonds to upper surface of the planarization layer by bonding, on the seed crystal layer, an epitaxial layer including at least a first conductivity type cladding layer containing AlxGa1-xN (0.5
A single-side polishing apparatus including: a base turntable having a groove for vacuum suction; a detachable polishing turntable immobilized by vacuum suction; a polishing pad; and a polishing head configured to hold a wafer. The single-side polishing apparatus brings a surface of a wafer held by the polishing head into sliding contact with the polishing pad for polishing. The polishing pad includes a polishing layer configured to polish the wafer surface, a first adhesive layer, a PET sheet layer, a second adhesive layer, an elastic layer, and a third adhesive layer for attachment to the polishing turntable. The layers are sequentially stacked. The polishing pad has a compressibility of 16% or more.
The present invention is a nitride semiconductor wafer, including: a silicon single-crystal substrate; and a device layer composed of a nitride semiconductor above the silicon single-crystal substrate, wherein the silicon single-crystal substrate is a CZ silicon single-crystal substrate, and has a resistivity of 1000 Ω·cm or more, an oxygen concentration of 5.0×1016 atoms/cm3 (JEIDA) or more and 2.0×1.017 atoms/cm3 (JEIDA) or less, and a nitrogen concentration of 5.0×1014 atoms/cm3 or more. This provides a nitride semiconductor wafer that hardly causes plastic deformation even using a high-resistant low-oxygen silicon single-crystal substrate produced by the CZ method, which is suitably used for a high-frequency device, and that can reduce warpage of the substrate.
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 29/04 - Corps semi-conducteurs caractérisés par leur structure cristalline, p.ex. polycristalline, cubique ou à orientation particulière des plans cristallins
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
52.
METHOD FOR PRODUCING NITRIDE SEMICONDUCTOR WAFER AND NITRIDE SEMICONDUCTOR WAFER
A method for producing a nitride semiconductor wafer, in which a nitride semiconductor thin film is grown on a silicon single crystal substrate by vapor phase growth, includes, by using a silicon single crystal substrate having a resistivity of 1000 Ω·cm or more, an oxygen concentration of less than 1×1017 atoms/cm3 and a thickness of 1000 μm or more, growing the nitride semiconductor thin film on the silicon single crystal substrate by vapor phase growth. As a result, a method produces a nitride semiconductor wafer in which plastic deformation and warpage are suppressed even in the case of a high-resistivity, ultra-low oxygen concentration silicon single crystal substrate, which is promising as a support substrate for high frequency devices.
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
53.
METHOD FOR PRODUCING SEMICONDUCTOR APPARATUS FOR QUANTUM COMPUTER
A method produces a semiconductor apparatus for a quantum computer. The apparatus includes: a semiconductor substrate; a quantum computer device formed on the semiconductor substrate; and a peripheral circuit formed on the semiconductor substrate and connected to the quantum computer device. The apparatus is to be used as a quantum computer. The method includes: a step of forming the quantum computer device and the peripheral circuit on the semiconductor substrate; and a step of deactivating a carrier in the semiconductor substrate by irradiation of a particle beam to at least a formation part for the quantum computer device and a formation part for the peripheral circuit in the semiconductor substrate. The method for producing a semiconductor apparatus for a quantum computer can produce a semiconductor apparatus for a quantum computer having excellent 3HD characteristics.
The present invention is a method for forming a thermal oxide film on a semiconductor substrate, including: a correlation acquisition step of providing a plurality of semiconductor substrates each having a chemical oxide film having a different constitution formed by cleaning, performing a thermal oxidization treatment under identical thermal oxidization treatment conditions to form a thermal oxide film, and determining a correlation between the constitution of the chemical oxide film and a thickness of the thermal oxide film in advance; a cleaning condition determination step of determining the constitution of the chemical oxide film based on the correlation obtained in the correlation acquisition step so that a thickness of a thermal oxide film to be formed on a semiconductor substrate is a predetermined thickness, and determining cleaning conditions for forming a chemical oxide film having the determined constitution of the chemical oxide film; a substrate cleaning step of cleaning the semiconductor substrate under the determined cleaning conditions; and a thermal oxide film formation step of performing a thermal oxidization treatment on the cleaned semiconductor substrate under conditions identical to the thermal oxidization treatment conditions in the correlation acquisition step to form a thermal oxide film on a surface of the semiconductor substrate. Consequently, a thermal oxide film is formed with the target film thickness with excellent reproducibility.
A method for manufacturing an SOI wafer including: a step of forming a silicon oxide film by thermal oxidation on an entire surface of a base wafer containing a dopant; and bonding a main surface of a bond wafer to a first main surface via the silicon oxide film, wherein, prior to the thermal oxidation step, a step of forming a CVD insulator film on a second main surface; and a step of forming, on the first main surface, a barrier silicon layer containing a dopant at a lower concentration than a dopant concentration of the base wafer, and in the thermal oxidation step, the barrier silicon layer is thermally oxidized to produce a barrier silicon oxide film, and in the bonding step, the bond wafer is bonded to the base wafer via the barrier silicon oxide film as a part of the silicon oxide film.
A substrate for group-III nitride epitaxial growth and a method for producing the same is capable of fabricating a high-quality group III nitride single crystal at low cost. The substrate for group-III nitride epitaxial growth includes: a supporting substrate having a structure in which a core consisting of nitride ceramics is wrapped in an encapsulating layer having a thickness of between 0.05 μm and 1.5 μm, inclusive; a planarizing layer provided on an upper surface of the supporting substrate, the planarizing layer having a thickness of between 0.5 μm and 3.0 μm, inclusive; and a seed crystal layer consisting of a single crystal with a thickness of between 0.1 μm and 1.5 μm, inclusive, provided on an upper surface planarizing layer and having an uneven pattern on the surface.
An edge portion measuring apparatus for measuring shape of an edge portion of a wafer, including, a holding portion that holds the wafer, a rotating means for rotating the wafer, a sensor including a light projecting portion for projecting a laser light from a light source onto the edge portion of the wafer held by the holding portion, and a light receiving detection unit receiving diffuse reflected light that the laser light projected is reflected at the edge portion of the wafer, wherein, rotating the wafer while holding the wafer, at least in a range from normal direction of a held surface of the wafer to normal direction of a surface opposite to the held surface, projecting the laser light and detecting the diffuse reflected light by the sensor, being able to measure the shape of an entire area of the edge portion of the wafer by a triangulation method.
A silicon single crystal substrate for vapor phase growth, having the silicon single crystal substrate being made of an FZ crystal having a resistivity of 1000 Ωcm or more, wherein the surface of the silicon single crystal substrate is provided with a high nitrogen concentration layer having a nitrogen concentration higher than that of other regions and a nitrogen concentration of 5×1015 atoms/cm3 or more and a thickness of 10 to 100 μm.
H01L 29/20 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, uniquement des composés AIIIBV
59.
METHOD FOR PRODUCING SEMICONDUCTOR APPARATUS AND SEMICONDUCTOR APPARATUS
A method for producing a semiconductor apparatus capable of producing a semiconductor apparatus with improved transmission loss characteristic using an interposer substrate in which semiconductor devices formed on a silicon single crystal substrate are connected to each other by a through electrode, the method including: a step of providing the silicon single crystal substrate containing a dopant; a step of forming the semiconductor devices and the through electrode on the silicon single crystal substrate to obtain the interposer substrate; and a step of irradiating a particle beam to at least around a formation part for the through electrode on the silicon single crystal substrate to deactivate the dopant in a region around the formation part for the through electrode.
H01L 23/538 - Dispositions pour conduire le courant électrique à l'intérieur du dispositif pendant son fonctionnement, d'un composant à un autre la structure d'interconnexion entre une pluralité de puces semi-conductrices se trouvant au-dessus ou à l'intérieur de substrats isolants
H01L 23/48 - Dispositions pour conduire le courant électrique vers le ou hors du corps à l'état solide pendant son fonctionnement, p.ex. fils de connexion ou bornes
H01L 21/48 - Fabrication ou traitement de parties, p.ex. de conteneurs, avant l'assemblage des dispositifs, en utilisant des procédés non couverts par l'un uniquement des groupes
H01L 21/768 - Fixation d'interconnexions servant à conduire le courant entre des composants distincts à l'intérieur du dispositif
60.
METHOD FOR MANUFACTURING SILICON SINGLE-CRYSTAL SUBSTRATE AND SILICON SINGLE-CRYSTAL SUBSTRATE
A method for manufacturing a silicon single-crystal substrate having a carbon diffusion layer on a surface, proximity gettering ability, and high strength near the surface, and hardly generating dislocation or extending dislocation, includes: a step of adhering carbon on a surface of a silicon single-crystal substrate by an RTA treatment of the silicon single-crystal substrate in a carbon-containing gas atmosphere; a step of forming a 3C-SiC single-crystal film on the surface of the silicon single-crystal substrate by reacting the carbon and the silicon single-crystal substrate; a step of oxidizing the 3C-SiC single-crystal film to be an oxide film and diffusing carbon inward the silicon single-crystal substrate by an RTA treatment of the silicon single-crystal substrate on which the 3C-SiC single-crystal film is formed, the RTA treatment being performed in an oxidative atmosphere; and a step of removing the oxide film.
C30B 31/06 - Procédés de diffusion ou de dopage des monocristaux ou des matériaux polycristallins homogènes de structure déterminée; Appareillages à cet effet par contact avec la substance de diffusion à l'état gazeux
C30B 33/12 - Gravure dans une atmosphère gazeuse ou un plasma
A bonded semiconductor device including an epitaxial layer, and a support substrate made of a material different from that of the epitaxial layer and bonded to the epitaxial layer. Any one of the epitaxial layer and the support substrate has a bonding surface with a radial pattern including recesses or protrusions radially spreading from a certain point on the bonding surface as a center.
H01L 33/22 - Surfaces irrégulières ou rugueuses, p.ex. à l'interface entre les couches épitaxiales
H01L 33/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails
H01L 33/44 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails caractérisés par les revêtements, p.ex. couche de passivation ou revêtement antireflet
H01L 33/56 - Matériaux, p.ex. résine époxy ou silicone
62.
BONDED SEMICONDUCTOR LIGHT-RECEIVING DEVICE AND METHOD FOR MANUFACTURING BONDED SEMICONDUCTOR LIGHT-RECEIVING DEVICE
A bonded semiconductor light-receiving device including an epitaxial layer to serve as a device-functional layer, and a support substrate made of a material different from that of the device-functional layer and bonded to the epitaxial layer via a bonding material layer. The device-functional layer has a bonding surface with an uneven pattern formed thereon.
H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
A method for dry-etching a semiconductor substrate having an oxide film, including: evaluating a film quality of the oxide film and determining a time for performing the dry-etching on a basis of results of the evaluation in advance. This provides a method for controlling the etching amount of an oxide film accurately and suppressing over-etching and insufficient etching without influence from variation in the film quality of the oxide film when dry-etching the oxide film on the surface of the semiconductor substrate.
G01N 21/3563 - Couleur; Propriétés spectrales, c. à d. comparaison de l'effet du matériau sur la lumière pour plusieurs longueurs d'ondes ou plusieurs bandes de longueurs d'ondes différentes en recherchant l'effet relatif du matériau pour les longueurs d'ondes caractéristiques d'éléments ou de molécules spécifiques, p.ex. spectrométrie d'absorption atomique en utilisant la lumière infrarouge pour l'analyse de solides; Préparation des échantillons à cet effet
G01N 23/20 - Recherche ou analyse des matériaux par l'utilisation de rayonnement [ondes ou particules], p.ex. rayons X ou neutrons, non couvertes par les groupes , ou en utilisant la réflexion de la radiation par les matériaux
A method for evaluating a peripheral strain of a wafer having a polycrystalline film formed on a surface, the method including: using, as the wafer having the polycrystalline film formed on the surface, a wafer of a silicon single crystal substrate having a polycrystalline film formed on a surface; performing a pre-treatment of removing a surface of the polycrystalline film; subsequently allowing an infrared laser to enter a periphery of the wafer from a back surface; and evaluating the peripheral strain of the wafer from a polarization degree of the infrared laser transmitted through the wafer.
A manufacturing method for a substrate wafer, including: a wafer having a first and second main surface; forming a flattening resin layer on second main surface; with the flattening resin layer adsorbed and held as a reference surface, grinding or polishing first main surface as a first processing; removing flattening resin layer from the wafer; with the wafer's first main surface subjected to the first processing adsorbed and held, grinding or polishing second main surface as a second processing; with the second main surface subjected to second processing adsorbed and held, further grinding or polishing first main surface as a third processing; with first main surface subjected to third processing adsorbed and held, further grinding or polishing second main surface as a fourth processing to obtain a substrate wafer, wherein first processing and/or third processing is executed such that the wafer has a central concave or central convex thickness distribution.
B24B 7/02 - Machines ou dispositifs pour meuler les surfaces planes des pièces, y compris ceux pour le polissage des surfaces planes en verre; Accessoires à cet effet comportant une table porte-pièce se déplaçant suivant un mouvement de va-et-vient
B24B 7/22 - Machines ou dispositifs pour meuler les surfaces planes des pièces, y compris ceux pour le polissage des surfaces planes en verre; Accessoires à cet effet caractérisés par le fait qu'ils sont spécialement étudiés en fonction des propriétés de la matière des objets non métalliques à meuler pour meuler de la matière inorganique, p.ex. de la pierre, des céramiques, de la porcelaine
A method for etching a silicon wafer, the method including a spin etching step in which while an acid etching solution is supplied to a front or back side surface of a silicon wafer through a supply nozzle, the silicon wafer is rotated to expand a supply range of the acid etching solution to perform acid etching throughout the front or back side surface of the silicon wafer. Before the rotation of the silicon wafer is started, an acid mixture containing at least hydrofluoric acid and nitric acid is added dropwise within an impinging jet area which is located immediately below the supply nozzle, and in which the acid etching solution supplied through the supply nozzle impinges on the surface of the silicon wafer. After the impinging jet area is covered with the acid mixture, the rotation of the silicon wafer is started to perform the spin etching step.
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
H01L 21/306 - Traitement chimique ou électrique, p.ex. gravure électrolytique
67.
SINGLE-CRYSTAL PULLING APPARATUS AND SINGLE-CRYSTAL PULLING METHOD
The present invention is a single-crystal pulling apparatus including: a pulling furnace which has a heater and a crucible arranged and which has a central axis; and a magnetic field generation device having superconducting coils, where the magnetic field generation device has four of the superconducting coils, two of the superconducting coils are arranged in each of two regions divided by a cross section that includes an X axis, the X axis being a direction of lines of magnetic force at the central axis in the horizontal plane including all the coil axes of the four superconducting coils, and includes the central axis of the pulling furnace so as to have line symmetry about the cross section, the four superconducting coils are all arranged so that the coil axes have an angle within a range of more than −30° and less than 30° relative to a Y axis, the direction of the lines of magnetic force thereof have line symmetry about the cross section, and in each of the regions, the two superconducting coils generate lines of magnetic force in opposite directions. This provides a single-crystal pulling apparatus with which there is no need to move the magnetic field generation device when dismantling and setting up the single-crystal pulling apparatus, and the oxygen concentration in the single crystal to be grown can be reduced, and at the same time, growth striations in the single crystal to be grown can be suppressed.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
A method for forming a thermal oxide film on a semiconductor substrate, including: a correlation acquisition step of providing a plurality of semiconductor substrates; a substrate cleaning step of cleaning a semiconductor substrate; a thermal oxide film thickness estimation step of determining a constitution of a chemical oxide film formed on the semiconductor substrate by the cleaning in the substrate cleaning step and, based on the correlation, estimating a thickness of a thermal oxide film on a hypothesis that the semiconductor substrate has been subjected to a thermal oxidization treatment conditions in the correlation acquisition step; a thermal oxidization treatment condition determination step of determining thermal oxidization treatment conditions based on the thermal oxidization treatment conditions in the correlation acquisition step so that the thermal oxide film is a predetermined thickness; and a thermal oxide film formation step of forming a thermal oxide film on the semiconductor substrate.
A method for manufacturing a semiconductor substrate by forming an insulator film and a semiconductor single crystal layer on a surface of a silicon single crystal substrate to manufacture a semiconductor substrate having the semiconductor single crystal layer on the insulator film, the method including at least the steps of: forming a silicon nitride film having an epitaxial relationship with the silicon single crystal substrate on the surface of the silicon single crystal substrate as the insulator film by subjecting the silicon single crystal substrate to a heat treatment under a nitrogen gas-containing atmosphere; and forming the semiconductor single crystal layer on the silicon nitride film by epitaxial growth. This makes it possible to obtain a semiconductor substrate by simple method with high productivity at low cost even when the insulator film provided between the silicon single crystal substrate and the semiconductor single crystal layer is a silicon nitride film.
A method for cleaning a semiconductor wafer to clean a semiconductor wafer after polishing, including: performing a first ozone-water treatment step of cleaning the polished semiconductor wafer with ozone water to form an oxide film; performing a brush cleaning step of brush-cleaning the semiconductor wafer with carbonated water after the first ozone-water treatment step; and then performing a second ozone-water treatment step including cleaning the semiconductor wafer with hydrofluoric acid to remove the oxide film, followed by cleaning with ozone water to form an oxide film again. This second ozone-water treatment step is performed one or more times.
A method for manufacturing an SOI wafer including a step of performing an adjustment to a film thickness of an SOI layer of the SOI wafer by wet etching. In the step of performing the adjustment to the film thickness of the SOI layer, a first etching step of etching a surface of the SOI layer using an SC1 solution; and a second etching step of etching the surface of the SOI layer by bringing the SOI layer into contact with ozone water to form an oxide film on the surface of the SOI layer and then bringing the formed oxide film into contact with an HF-containing aqueous solution to remove the oxide film, are performed in combination. The etchings are performed such that a removal amount of the SOI layer in the first etching step is smaller than that in the second etching step.
A single-crystal pulling apparatus including: a pulling furnace having a central axis; and a magnetic field generation device arranged around the pulling furnace and having superconducting coils, the apparatus applying a horizontal magnetic field to the molten semiconductor raw material, two coil axes in the two pairs of the superconducting coils are included in a single horizontal plane, and when a direction of lines of magnetic force at the central axis of the pulling furnace in the horizontal plane is determined as an X axis, a center angle α having the X axis between the two coil axes is 100 degrees or more and 120 degrees or less. This makes it possible to reduce the height of the coils, to raise the magnetic field center close to the melt surface of the semiconductor raw material, and to obtain a single crystal having a lower oxygen concentration than conventional single crystals.
C30B 30/04 - Production de monocristaux ou de matériaux polycristallins homogènes de structure déterminée, caractérisée par l'action de champs électriques ou magnétiques, de l'énergie ondulatoire ou d'autres conditions physiques spécifiques en utilisant des champs magnétiques
A method for polishing a wafer in order to correct a shape of a polished wafer subjected to polishing, by pressing the wafer to a polishing pad while continuously supplying a composition for polishing containing water to perform correction-polishing, the method including the steps of: measuring the shape of the polished wafer before performing the correction-polishing; determining, in accordance with the measured shape of the polished wafer, a kind and concentration of a surfactant to be contained in the composition for polishing; and performing the correction-polishing while supplying the composition for polishing adjusted on a basis of the determined kind and concentration of the surfactant. This provides a method and apparatus for polishing a wafer that make it possible to reduce, in the latter polishing step, a variation in the shape of the wafer that occurred in a preceding polishing step.
A method for measuring a DIC defect shape on a silicon wafer, the method including steps of: detecting a DIC defect on a main surface of the silicon wafer with a particle counter; specifying position coordinates of the detected DIC defect; and measuring a shape including at least a height or depth of the detected DIC defect by utilizing the specified position coordinates according to phase-shifting interferometry. The method for measuring a DIC defect shape by which the shape including size of DIC defect generated on a main surface of a silicon wafer is easily and precisely measured.
G01N 21/95 - Recherche de la présence de criques, de défauts ou de souillures caractérisée par le matériau ou la forme de l'objet à analyser
G01N 21/94 - Recherche de souillures, p.ex. de poussières
H01L 21/67 - Appareils spécialement adaptés pour la manipulation des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide pendant leur fabrication ou leur traitement; Appareils spécialement adaptés pour la manipulation des plaquettes pendant la fabrication ou le traitement des dispositifs à semi-conducteurs ou des dispositifs électriques à l'état solide ou de leurs composants
75.
Method for producing a silicon single crystal doped with nitrogen and having a controlled amount of carbon impurities
A method for producing a silicon single crystal, wherein a silicon nitride powder is introduced into a raw material before start of melting and the silicon single crystal doped with nitrogen is pulled by Czochralski method, wherein nitrogen doping is performed while an upper limit amount of usable silicon nitride powder is limited based on an amount of carbon impurities contained in the silicon nitride powder so that a carbon concentration in the silicon single crystal is equal to or less than allowable value. This makes it possible to achieve the required nitrogen doping amount at low cost while achieving the low carbon-concentration specification.
C30B 15/04 - Croissance des monocristaux par tirage hors d'un bain fondu, p.ex. méthode de Czochralski en introduisant dans le matériau fondu le matériau à cristalliser ou les réactifs le formant in situ avec addition d'un matériau de dopage, p.ex. pour une jonction n–p
A method for manufacturing an epitaxial wafer by forming a single crystal silicon layer on a wafer containing a group IV element including silicon, the method including the steps of: removing a natural oxide film on a surface of the wafer containing the group IV element including silicon in an atmosphere containing hydrogen; forming an oxygen atomic layer by oxidizing the wafer after removing the natural oxide film; and forming a single crystal silicon by epitaxial growth on the surface of the wafer after forming the oxygen atomic layer, where a planar density of oxygen in the oxygen atomic layer is set to 4×1014 atoms/cm2 or less. A method for manufacturing an epitaxial wafer having an epitaxial layer of good-quality single crystal silicon while also allowing the introduction of an oxygen atomic layer in an epitaxial layer stably and simply.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
H01L 21/20 - Dépôt de matériaux semi-conducteurs sur un substrat, p.ex. croissance épitaxiale
77.
Apparatus for manufacturing a single crystal by the Czochralski method comprising a cooling cylinder with an auxiliary cooling cylinder fitted inside the cooling cylinder
An apparatus for manufacturing a single crystal by growing a single crystal according to a Czochralski method, the apparatus including: main chamber configured to house crucible configured to accommodate raw-material melt, and heater configured to heat raw-material melt; pulling chamber continuously provided at upper portion of main chamber and configured to accommodate single crystal grown and pulled; cooling cylinder extending from at least ceiling portion of main chamber toward raw-material melt so as to surround single crystal being pulled, cooling cylinder configured to be forcibly cooled with coolant; and auxiliary cooling cylinder fitted in an inside of cooling cylinder. Auxiliary cooling cylinder is made of any one or more materials of graphite, carbon composite, stainless steel, molybdenum, and tungsten. The auxiliary cooling cylinder has structure covering bottom surface of cooling cylinder facing raw-material melt. Gap between auxiliary cooling cylinder and bottom surface of cooling cylinder is 1.0 mm or less.
The present invention is a substrate for an electronic device, including a nitride semiconductor film formed on a joined substrate including a silicon single crystal, where the joined substrate has at least a bond wafer including a silicon single crystal joined on a base wafer including a silicon single crystal, the base wafer includes CZ silicon having a resistivity of 0.1 Ωcm or lower and a crystal orientation of <100>, and the bond wafer has a crystal orientation of <111>. This provides a substrate for an electronic device, having a suppressed warp.
H01L 21/18 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives les dispositifs présentant au moins une barrière de potentiel ou une barrière de surface, p.ex. une jonction PN, une région d'appauvrissement, ou une région de concentration de porteurs de charges les dispositifs ayant des corps semi-conducteurs comprenant des éléments du groupe IV de la classification périodique, ou des composés AIIIBV, avec ou sans impuretés, p.ex. des matériaux de dopage
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
79.
Method for measuring film thickness distribution of wafer with thin films
A method includes: determining height Z1 of a focus by an optical microscope having autofocus function which uses irradiation light of wavelength λ0 to adjust the focus; determining a wavelength λ1 of irradiation light used for obtaining observation image of second thin film; obtaining observation image of second thin film by using irradiation light of the wavelength λ1, while altering heights of the focus with the Z1 as reference point; calculating standard deviation of reflected-light intensity distribution within the observation image, obtaining height Z2 of the focus corresponding to a peak position where standard deviation is greatest, and calculating a difference ΔZ between Z1 and Z2; correcting the autofocus function with ΔZ as a correction value; and using the corrected autofocus function to adjust the focus, obtaining the observation image of the second thin film, and calculating the film thickness distribution from the reflected-light intensity distribution within the observation image.
G01B 11/06 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
A method for measuring a wafer profile while holding a periphery of the wafer by using a flatness measurement system, including first and second optical systems respectively located on first and second main surfaces of the wafer, the method including: a first step measuring each surface variation on the main surfaces using one of the optical systems; a second step of calculating a periphery-holding deformation amount, caused by holding the wafer periphery, through utilization of the surface variations measured with the optical system; and a third step of calculating an actual wafer Warp value through subtraction of the periphery-holding deformation amount from a Warp value outputted by the flatness measurement system. This provides a method for measuring a wafer profile to enable measurement of actual wafer Warp value by using a flatness measurement system, and to successfully acquire a Warp value with little influence from a difference among systems.
G01B 11/24 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des contours ou des courbes
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
A method for evaluating electrical characteristics of a semiconductor substrate, the method including the steps of: forming a p-n junction on a surface of the semiconductor substrate; mounting the semiconductor substrate on a wafer chuck provided with an equipment for performing light irradiation on the surface of the semiconductor substrate and an equipment for measuring the quantity of the light for the irradiation; performing light irradiation on the surface of the semiconductor substrate for a predetermined time; and measuring an amount of carriers generated after the light irradiation of the p-n junction at least after turning off the light irradiation. This provides a method for evaluating a semiconductor substrate that allows the same evaluation in a wafer state as when an actual solid-state image sensor has been formed without producing a device by using process equipment when evaluating characteristics corresponding to residual image characteristics of a wafer.
A method for manufacturing a carbon-doped silicon single crystal wafer, including steps of: preparing a silicon single crystal wafer not doped with carbon; performing a first RTA treatment on the silicon single crystal wafer in an atmosphere containing compound gas; performing a second RTA treatment at a higher temperature than the first RTA treatment; cooling the silicon single crystal wafer after the second RTA treatment; and performing a third RTA treatment. The crystal wafer is modified to a carbon-doped silicon single crystal wafer, sequentially from a surface thereof: a 3C-SiC single crystal layer; a carbon precipitation layer; a diffusion layer of interstitial carbon and silicon; and a diffusion layer of vacancy and carbon. A carbon-doped silicon single crystal wafer having a surface layer with high carbon concentration and uniform carbon concentration distribution to enable wafer strength enhancement; and a method for manufacturing the carbon-doped silicon single crystal wafer.
B32B 9/00 - Produits stratifiés composés essentiellement d'une substance particulière non couverte par les groupes
C30B 31/02 - Procédés de diffusion ou de dopage des monocristaux ou des matériaux polycristallins homogènes de structure déterminée; Appareillages à cet effet par contact avec la substance de diffusion à l'état solide
A method for producing an electronic device having a drive circuit including a solar cell structure, the method including the steps of: having a first wafer having solar cell structures on a starting substrate and a second wafer having drive circuits formed, so that either one of the first wafer or the second wafer has a plurality of independent diode circuits and capacitor-function laminated portions; obtaining a bonded wafer by bonding so that the solar cell structures, the diode circuits, the capacitor-function laminated portions, and the drive circuits are superimposed; wiring; and dicing the bonded wafer; thus creating a method for producing an electronic device including a drive circuit, a solar cell structure, and a capacitor-function portion in one chip and having a suppressed production cost; and such an electronic device.
H01L 31/02 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails
H01L 31/0443 - Modules PV ou matrices de cellules PV individuelles comprenant des diodes de dérivation comportant des diodes de dérivation intégrées ou directement associées aux dispositifs, p.ex. diodes de dérivation intégrées ou formées dans ou sur le même substrat que les cellules PV
H01L 31/053 - Moyens de stockage d’énergie directement associés ou intégrés à la cellule PV, p.ex. condensateur intégré avec une cellule PV
H01L 31/0735 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails adaptés comme dispositifs de conversion photovoltaïque [PV] caractérisés par au moins une barrière de potentiel ou une barrière de surface les barrières de potentiel étant uniquement du type PN à hétérojonction comprenant uniquement des composés semiconducteurs AIIIBV, p.ex. cellules solaires en GaAs/AlGaAs ou InP/GaInAs
H01L 31/18 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives
84.
Substrate for electronic device and method for producing the same
A substrate for an electronic device, including a nitride semiconductor film formed on a joined substrate including a silicon single crystal, where the joined substrate has a plurality of silicon single crystal substrates that are joined and has a thickness of more than 2000 μm, and the plurality of silicon single crystal substrates are produced by a CZ method and have a resistivity of 0.1 Ωcm or lower. This provides: a substrate for an electronic device having a nitride semiconductor film formed on a silicon substrate, where the substrate for an electronic device can suppress a warp and can also be used for a product with a high breakdown voltage; and a method for producing the same.
H01L 21/02 - Fabrication ou traitement des dispositifs à semi-conducteurs ou de leurs parties constitutives
H01L 29/26 - Corps semi-conducteurs caractérisés par les matériaux dont ils sont constitués comprenant, à part les matériaux de dopage ou autres impuretés, des éléments couverts par plusieurs des groupes , , , ,
85.
Method for manufacturing silicon single crystal wafer and silicon single crystal wafer
3 or higher from the silicon single crystal wafer surface. During device formation, the silicon wafer surface stress is absorbed immediately below a surface layer, distortion defects are absorbed by the BMD layer, device formation region strength is enhanced, and surface layer dislocation occurrence and extension is suppressed.
H01L 21/322 - Traitement des corps semi-conducteurs en utilisant des procédés ou des appareils non couverts par les groupes pour modifier leurs propriétés internes, p.ex. pour produire des défectuosités internes
86.
Method for producing electronic device comprising solar cell structure along with drive circuit
The present invention is a method for producing an electronic device having a drive circuit including a solar cell structure, the method including the steps of: obtaining a bonded wafer by bonding a first wafer having a plurality of independent solar cell structures including a compound semiconductor, the solar cell structures being formed on a starting substrate by epitaxial growth, and a second wafer having a plurality of independent drive circuits formed, so that the plurality of solar cell structures and the plurality of drive circuits are respectively superimposed; wiring the bonded wafer so that electric power can be supplied from the plurality of solar cell structures to the plurality of drive circuits respectively; and producing an electronic device having the drive circuit including the solar cell structure by dicing the bonded wafer. This provides a method for producing an electronic device including a drive circuit and a solar cell structure in one chip and having a suppressed production cost.
H01L 31/02 - Dispositifs à semi-conducteurs sensibles aux rayons infrarouges, à la lumière, au rayonnement électromagnétique d'ondes plus courtes, ou au rayonnement corpusculaire, et spécialement adaptés, soit comme convertisseurs de l'énergie dudit rayonnement e; Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives; Leurs détails - Détails
H01L 23/00 - DISPOSITIFS À SEMI-CONDUCTEURS NON COUVERTS PAR LA CLASSE - Détails de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide
H01L 25/16 - Ensembles consistant en une pluralité de dispositifs à semi-conducteurs ou d'autres dispositifs à l'état solide les dispositifs étant de types couverts par plusieurs des groupes principaux , ou dans une seule sous-classe de , , p.ex. circuit hybrides
H01L 31/18 - Procédés ou appareils spécialement adaptés à la fabrication ou au traitement de ces dispositifs ou de leurs parties constitutives
87.
METHOD FOR MEASURING RESISTIVITY OF SILICON SINGLE CRYSTAL
A method for measuring a resistivity of a silicon single crystal by a four-point probe method including: a first grinding step of grinding at a surface of the silicon single crystal on which the resistivity is measured; a cleaning step of cleaning the silicon single crystal subjected to the first grinding step; a donor-annihilation heat treatment step of heat-treating the silicon single crystal subjected to the cleaning step; and a second grinding step of grinding at least the surface of the silicon single crystal subjected to the donor-annihilation heat treatment step on which the resistivity is to be measured, where the resistivity of the silicon single crystal is measured by the four-point probe method after performing the second grinding step. This provides a method for measuring a resistivity of a silicon single crystal by which stable measurement is possible over a long period of time after a donor-annihilation heat treatment.
G01N 27/04 - Recherche ou analyse des matériaux par l'emploi de moyens électriques, électrochimiques ou magnétiques en recherchant l'impédance en recherchant la résistance
G01N 1/28 - Préparation d'échantillons pour l'analyse
An apparatus for manufacturing a single crystal according to a Czochralski method, including: a main chamber housing crucibles for a raw-material melt and heater for heating the raw-material melt; a pulling chamber at an upper portion of the main chamber and a single crystal pulled from the raw-material melt; a cooling cylinder extending from a ceiling portion of the main chamber toward a surface of the raw-material melt to surround the single crystal; an auxiliary cooling cylinder inside the cooling cylinder; and a diameter-enlargement member to fit into the auxiliary cooling cylinder. The auxiliary cooling cylinder has a slit penetrating in an axial direction to come into close contact with the cooling cylinder by pushing the diameter-enlargement member into the auxiliary cooling cylinder to enlarge the diameter of the auxiliary cooling cylinder. This enables efficient cooling of a growing single crystal and increases the growth rate of the single crystal.
A method for cleaning a semiconductor silicon wafer including: an ozone water treatment step after polishing in ozone water, a step of performing a first ultrasonic-wave-ozone-water treatment of cleaning at room temperature while immersing in ozone water and applying ultrasonic waves; and a step of performing a second ultrasonic-wave-ozone-water treatment of, after the step of performing the first ultrasonic-wave-ozone-water treatment, pulling out the semiconductor silicon wafer from the ozone water, performing rotation process, and cleaning at room temperature while immersing in ozone water and applying ultrasonic waves; wherein the step of performing the second ultrasonic-wave-ozone-water treatment is performed, and a hydrofluoric acid treatment step and an ozone water treatment step are performed. Accordingly, a method for cleaning a semiconductor silicon wafer and an apparatus for cleaning by which projecting defects on the wafer surface and the degradation of surface roughness can be suppressed to improve wafer quality reduce costs.
A method for slicing a workpiece includes feeding and slicing a workpiece held by a workpiece holder with a bonding member therebetween, while reciprocatively traveling a fixed abrasive grain wire wound around multiple grooved rollers to form a wire row, so that the workpiece is sliced at multiple positions simultaneously. The bonding member has a grindstone part. The method includes, after the workpiece is sliced and before it is drawn out from the wire row, a fixed-abrasive-grain removal step of pressing the wire against the grindstone to remove fixed abrasive grains from the wire while reciprocatively traveling. In the fixed-abrasive-grain removal step, the wire rate is 100 m/min. or less, and the load on each line of the wire is 30 g or more. The method prevents a sliced workpiece from catching a wire and from causing saw mark and wire break in drawing out the wire after slicing.
B28D 5/00 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
A wire saw apparatus including: a plurality of wire guides; a wire row formed of a wire which is wound around the plurality of wire guides and configured to reciprocatively travel in an axial direction; a nozzle configured to supply a coolant or slurry to the wire; a workpiece-holding portion configured to suspend and hold a workpiece plate having a workpiece bonded thereto with a beam interposed therebetween; a workpiece-feeding mechanism configured to press the workpiece against the wire row; and a mechanism configured to adjust a parallelism of axes of the plurality of wire guides around which the wire row is formed. Thereby, a wire saw apparatus and a method for manufacturing a wafer are provided which enable manufacturing of a wafer having any warp shape by controlling a warp in a wire travelling direction of a sliced workpiece.
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
A method for manufacturing an epitaxial wafer including the steps of: preparing a silicon-based substrate having a chamfered portion in a peripheral portion; forming an annular trench in the chamfered portion of the silicon-based substrate along an internal periphery of the chamfered portion; and performing an epitaxial growth on the silicon-based substrate having the trench formed. This provides a method for manufacturing an epitaxial wafer by which a crack generated in a peripheral chamfered portion can be suppressed from extending towards the center.
A method for manufacturing a bonded SOI wafer, the method using a silicon single crystal wafer having a resistivity of 100 Ω·cm or more as the base wafer, and including steps of: forming an underlying insulator film on a bonding surface side of the base wafer; depositing a polycrystalline silicon layer on a surface of the underlying insulator film; polishing a surface of the polycrystalline silicon layer; modifying the polycrystalline silicon layer by performing ion implantation on the polished polycrystalline silicon layer to form a modified silicon layer; forming the insulator film on a bonding surface of the bond wafer; bonding the bond wafer and a surface of the modified silicon layer of the base wafer with the insulator film interposed therebetween; and thinning the bonded bond wafer to form an SOI layer. This provides a bonded SOI wafer excellent in harmonic wave characteristics.
An anodic-oxidation equipment for forming a porous layer on a substrate to be treated, including: an electrolytic bath filled with an electrolytic solution; an anode and a cathode disposed in the electrolytic solution; and a power supply for applying current between the anode and the cathode in the electrolytic solution, wherein the anode is the substrate to be treated, and the cathode is a silicon substrate having a surface on which a nitride film is formed. This provides a cathode material in anodic-oxidation for forming porous silicon by an electrochemical reaction in an HF solution, the cathode material having a resistance to electrochemical reaction in an HF solution and no metallic contamination, etc., and furthermore, being less expensive than a conventional cathode material. Furthermore, high-quality porous silicon is provided at a lower cost than has been conventional.
A wafer is prepared, and a thickness shape of the prepared wafer at each position in a radial direction is measured for each of a predetermined number of angles into which 360 degrees of a circumference around the center of the wafer are divided. The thickness shape obtained by a measuring machine for each angle is approximated with a sixth or higher order polynomial, and a function of the wafer thickness at the position in the radial direction is created. The thickness shape outputted by the measuring machine and a thickness shape outputted by the function are compared with each other, and an error on the entire surface of the wafer is confirmed to be not greater than a predetermined error. After the confirmation, information of the function for each angle is attached to the wafer as data representing the wafer shape and supplied to a user.
G06F 17/17 - Opérations mathématiques complexes Évaluation de fonctions par des procédés d'approximation, p.ex. par interpolation ou extrapolation, par lissage ou par le procédé des moindres carrés
G01B 11/06 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la longueur, la largeur ou l'épaisseur pour mesurer l'épaisseur
G01B 11/30 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la rugosité ou l'irrégularité des surfaces
G01B 21/30 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative pour mesurer la rugosité ou l'irrégularité des surfaces
G06F 17/18 - Opérations mathématiques complexes pour l'évaluation de données statistiques
96.
Silicon single crystal substrate and silicon epitaxial wafer for solid-state image sensor and solid-state image sensor
3 or less. This provides a silicon single crystal substrate and a silicon epitaxial wafer for a solid-state image sensor that can suppress the residual image characteristics of a solid-state image sensor.
A method for slicing an ingot, including: forming a wire row by a wire spirally wound between a plurality of wire guides and configured to travel in an axial direction; and pressing an ingot against the wire row while supplying a contact portion between the ingot and the wire with a slurry from a nozzle, thereby slicing the ingot into wafers. The slurry is supplied such that slurries whose temperatures are separately controlled by two or more lines of heat exchangers are respectively supplied from two or more sections of the nozzle which are orthogonal to a travelling direction of the wire row. Consequently, a wire saw and a method for slicing an ingot are provided which enable separate control of wafer shapes depending on ingot-slicing positions.
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
B28D 5/00 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet
98.
Method for heat-treating silicon single crystal wafer
A method for heat-treating a silicon single crystal wafer to control a BMD density thereof to achieve a predetermined BMD density by performing an RTA heat treatment on a silicon single crystal wafer composed of an Nv region in a nitriding atmosphere, and then performing a second heat treatment, the method including: formulating a relational equation for a relation between BMD density and RTA temperature in advance; and determining an RTA temperature for achieving the predetermined BMD density according to the relational equation. Consequently, a method for heat-treating a silicon single crystal wafer for manufacturing an annealed wafer or an epitaxial wafer each having defect-free surface and a predetermined BMD density in a bulk portion thereof.
−0.73, and the carbon concentration is evaluated. A method for evaluating a carbon concentration makes it possible to measure with high sensitivity, a carbon concentration in a surface layer of 1 to 2 μm, which is a photodiode region in an image sensor.
A method for slicing a workpiece with a wire saw which includes a wire row formed by winding a fixed abrasive grain wire having abrasive grains secured to a surface thereof around multiple grooved rollers, the method including feeding a workpiece to the wire row for slicing while allowing the fixed abrasive grain wire to reciprocatively travel in an axial direction thereof, thereby slicing the workpiece at multiple positions aligned in an axial direction of the workpiece simultaneously. The method includes: supplying a coolant for workpiece slicing onto the wire row when the workpiece is sliced with the fixed abrasive grain wire; and supplying a coolant for workpiece drawing, which differs from and has a higher viscosity than the coolant for workpiece slicing, onto the wire row when the workpiece is drawn out from the wire row after the slicing of the workpiece.
B24B 55/02 - Dispositifs de sécurité pour machines de meulage ou de polissage; Accessoires adaptés aux machines à meuler ou à polir pour maintenir les outils ou les parties de machines en bon état de marche Équipement pour refroidir les surfaces abrasives, p.ex. dispositifs d'alimentation en agent de refroidissement
B23D 57/00 - Machines à scier ou dispositifs de sciage non couverts par l'un des groupes
B23D 59/04 - Dispositifs pour la lubrification ou le refroidissement des lames de scies droites ou à ruban
B23D 61/18 - Outils particuliers pour scier, p.ex. fil coupant comportant des dents de scie, lames de scie ou fil à scier comportant des diamants ou d'autres particules abrasives disposés individuellement dans des positions choisies
B24B 41/00 - MACHINES, DISPOSITIFS OU PROCÉDÉS POUR MEULER OU POUR POLIR; DRESSAGE OU REMISE EN ÉTAT DES SURFACES ABRASIVES; ALIMENTATION DES MACHINES EN MATÉRIAUX DE MEULAGE, DE POLISSAGE OU DE RODAGE Éléments constitutifs des machines ou dispositifs à meuler, tels que bâtis, bancs, chariots ou poupées
B28D 5/00 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet
B28D 5/04 - Travail mécanique des pierres fines, pierres précieuses, cristaux, p.ex. des matériaux pour semi-conducteurs; Appareillages ou dispositifs à cet effet par outils autres que ceux du type rotatif, p.ex. par des outils animés d'un mouvement alternatif
B28D 7/02 - Accessoires spécialement conçus pour leur utilisation avec les machines ou les dispositifs des autres groupes de la présente sous-classe pour refroidir les pièces travaillées