This invention relates to continuous process for preparing composite particles by continuous introduction of a porous particle feedstock and a silicon precursor gas into a first reaction zone and continuous withdrawal of a composite particles and an effluent gas from the first reaction zone, the composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework.
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
C01B 33/027 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
Provided is a process for manufacturing composite particles for use as an electroactive material for a metal-ion battery, comprising the steps of: (a) providing initial particulate porous frameworks comprising micropores and optionally mesopores; (b) infiltrating the pores of the initial particulate porous frameworks with a porosity modifier comprising Li or Na; (c) providing sufficient energy to the infiltrated particulate porous frameworks to cause a reaction involving the porosity modifier and the initial particulate porous frameworks; (d) washing the modified particulate porous frameworks to partially remove the reaction products from the pores; (e) depositing electroactive material domains in the pores of the washed particulate porous frameworks, thereby providing composite particles.
A process for preparing composite particles, the process comprises the steps of: (a) providing a plurality of porous particles in a reactor, the reactor having an outer wall defining an internal volume for containing the plurality of porous particles; (b) stirring the plurality of porous particles with a stirring element located in the internal volume, the stirring element having one or more stirring surfaces, each stirring surface being an area of the stirring element defining an oblique angle to its velocity vector during stirring and arranged such that movement of the stirring surface through the plurality of porous particles urges the plurality of porous particles along the outer wall at an angle to the velocity vector and/or away from the outer wall, wherein either: the outer wall is movable for causing the stirring of the plurality of particles and the one or more stirring surfaces of the stirring element protrude from an inner surface of the movable outer wall; or the stirring element defines a clearance between the stirring element and an inner surface of the outer wall of less than 10% of an internal dimension of the reactor measured along the direction of the clearance; herein the mass of the plurality of porous particles contained in the internal volume during stirring is dependent on the volume of the internal volume, being no more than 500 kg m-3, and is dependent on the surface area of the one or more stirring surfaces, being no more than 1000 kg m-2, and wherein the one or more stirring surfaces pass through a volume per second during stirring that depends on the mass of the plurality of porous particles contained in the internal volume, being between 0.001 and 0.1 m3s-1kg-1; and; and (c) during stirring the plurality of porous particles, contacting the plurality of porous particles with a silicon precursor gas at conditions effective to cause deposition of silicon in the pores of the porous particles to provide composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework.
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
C23C 16/442 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed processes
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
B01F 27/921 - Mixers with rotary stirring devices in fixed receptaclesKneaders with stirrers rotating about a substantially vertical axis with helices or screws with helices centrally mounted in the receptacle
4.
PROCESS FOR THE PREPARATION OF COMPOSITE PARTICLES
This invention relates to a process for preparing composite particles by chemical vapour infiltration of an electroactive material into the pores of porous particles. The chemical vapour infiltration is carried out in at least two distinct phases, comprising at least one discontinuous phase and at least one continuous phase.
The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g, where the volume fraction of micropores is in the range from 0.1 to 0.9 and the volume fraction of pores having a pore diameter no more than 20 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
This invention relates to a particulate material consisting of a plurality of composite particles comprising a porous particle framework and a plurality of nanoscale elemental silicon domains located within the pores of the porous particle framework. The porous particle framework comprises micropores and mesopores, wherein the total volume of micropores and mesopores in the porous particle framework as measured by gas adsorption is from 0.5 to 1.8 cm3/g. The composite particles comprise from 30 to 70 wt % silicon, wherein at least 30 wt % of the silicon is surface silicon as determined by thermogravimetric analysis (TGA); no more than 1.2 wt % of hydrogen; and have a weight ratio of oxygen to silicon of no more than 0.15. The BET surface area of the composite particles is no more than 40 m2/g.
The invention relates to a process for preparing composite particles, the process comprising the steps of: (a) providing a plurality of porous particles in a reactor; (b) contacting the plurality of porous particles with a silicon precursor gas at conditions effective to cause deposition of silicon in the pores of the porous particles; (c) measuring the composition of an effluent gas withdrawn from the reactor; (d) detecting a change in the composition of the effluent gas; (e) adjusting at least one gas outlet of the reactor to adjust the flow rate of the effluent gas to increase the pressure in the reactor in response to the detected change in the composition of the effluent gas and continuing deposition of silicon in the pores of the porous particles at the adjusted pressure; to provide composite particles comprising a porous particle framework and silicon within the pores of the porous particle framework; wherein the silicon precursor gas is introduced into the reactor continuously during steps (b) to (e).
The invention relates to a process for preparing composite particles, the process comprising the steps of: (a) providing a plurality of porous particles in a pressure reactor; (b) contacting the plurality of porous particles with a silicon precursor gas at conditions effective to cause deposition of silicon in the pores of the porous particles to provide composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework.
The invention relates to a particulate material and processes for the preparation thereof. The particulate material consists of a plurality of composite particles. The composite particles comprise a porous particle framework comprising micropores and/or mesopores. The total pore volume of micropores and mesopores as measured by gas adsorption is in the range from 0.4 to 2.2 cm3/g. The composite particles comprise a plurality of electroactive material domains and a plurality of modifier material domains disposed within the internal pore volume of the porous particle framework. At least a portion of the modifier material domains are located between adjacent electroactive material domains.
The invention relates to a process for preparing composite particles, the process comprising contacting the plurality of particles in the reaction zone with a gas comprising at least 25 vol % of a silicon-containing precursor at a temperature effective to cause deposition of silicon in the pores of the porous particles. A controlled temperature differential between the maximum temperature of the internal surfaces of the reaction zone and the simultaneous minimum temperature within the plurality of porous particles is maintained during the contacting step.
The invention relates to a process for preparing composite particles, the process comprising the steps of: (a) providing a plurality of porous particles in a pressure reactor; (b) contacting the plurality of porous particles with a silicon precursor gas at conditions effective to cause deposition of silicon in the pores of the porous particles to provide composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework; and (c) during step (b), withdrawing an effluent gas from the pressure reactor, wherein the silicon precursor gas is introduced into the pressure reactor continuously.
C01B 33/029 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
C23C 16/52 - Controlling or regulating the coating process
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
12.
PROCESS FOR PREPARING ELECTROACTIVE MATERIALS FOR METAL-ION BATTERIES
This invention relates a process for preparing composite particles. The process comprises a first step of providing a plurality of porous particles comprising micropores and/or mesopores, wherein the total pore volume of micropores and mesopores as measured by nitrogen gas adsorption is in the range from 0.4 to 2.2 cm3/g. The porous particles are contacted with a precursor of an electroactive material at a temperature effective to cause deposition of the electroactive material in the pores of the porous particles to form intermediate particles. Deposition of the electroactive material is discontinued and by-products are optionally separated from the intermediate particles. The intermediate particles are then contacted with a precursor of an electroactive material, at a temperature effective to cause further deposition of the electroactive material in the pores of the intermediate particles to form the composite particles. In at least one of the deposition steps, the reactor pressure is maintained at less than 200 kPa.
Provided is a process for preparing composite particles for use as an electroactive material for a metal-ion battery, the process comprising the steps of: (a) providing porous particle frameworks comprising micropores and/or mesopores and optionally a polyvalent metal; (b) optionally impregnating the porous particle frameworks with a polyvalent metal; (c) depositing elemental silicon and/or elemental germanium in the pores of the porous particle frameworks; wherein either the porous particle frameworks in step (a) comprise the polyvalent metal, step (b) is performed, or both; thereby providing impregnated porous particle frameworks comprising the polyvalent metal and the silicon and/or germanium; and (d) contacting the impregnated porous particle frameworks with a monovalent metal while applying an electric potential effective to cause the formation of an intermetallic phase which comprises the polyvalent metal, silicon and/or germanium, and the monovalent metal; thereby providing the composite particles.
Provided are composite particles for use as an electroactive material for a metal-ion battery, the composite particles comprising: particulate porous frameworks comprising micropores and optionally mesopores; and electroactive material domains located within the pores of the particulate porous frameworks; wherein: P1 is the total volume of micropores and mesopores in the particulate porous frameworks expressed in cm3/g, wherein P1 is at least 0.35; and VP07 is the volume of pores in the particulate porous frameworks with a pore diameter of 0.7 nm or less expressed as a percentage of P1, wherein VP07 is in the range of 5.1-40%; wherein P1 and VP07 are measured by nitrogen gas adsorption.
C01B 33/027 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
C01B 33/029 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
3090901010) of 4.0σ-12.0σ, wherein "effective size σ" refers to the value σ in the Lennard-Jones potential for the silicon precursor; wherein "PDn pore diameter" refers to the pore diameter below which n% of the total micropore and mesopore volume is found.
C01B 33/027 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
C01B 33/029 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
H01M 4/133 - Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
This invention relates to a process for preparing composite particles suitable as anode active materials in metal ion batteries. Thermal decomposition of a silicon-containing precursor material is used to deposit a plurality of nanoscale silicon domains into the pore network of porous particles comprising micropores and mesopores. The composite particles are subsequently subjected to a stabilisation treatment using liquid water or water vapour at elevated temperature which is found to reduce the problem of hydrogen evolution during the processing of the composite particles to form electrodes.
C01B 32/05 - Preparation or purification of carbon not covered by groups , , ,
C01B 33/029 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
C01B 33/035 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
18.
Process for preparing electroactive materials for metal-ion batteries
50 particle diameter of at least 20 μm; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapour infiltration process in a fluidised bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise a plurality of silicon nanoparticles dispersed within a conductive carbon matrix. The particulate material comprises 40 to 65 wt % silicon, at least 6 wt % and less than 20% oxygen, and has a weight ratio of the total amount of oxygen and nitrogen to silicon in the range of from 0.1 to 0.45 and a weight ratio of carbon to silicon in the range of from 0.1 to 1. The particulate electroactive materials are useful as an active component of an anode in a metal ion battery.
C04B 35/532 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
C04B 35/626 - Preparing or treating the powders individually or as batches
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
This invention relates to a process for preparing composite particles, the process comprising the deposition of a plurality of electroactive material domains in the pores of porous particles, wherein the porous particles comprise micropores and mesopores and have a D1 particle diameter of at least 0.5 µm and a D50 particle diameter in the range from 1 to 20 µm.
The invention relates to a process for preparing composite particles. The process comprises the steps of providing a plurality of porous particles comprising micropores and/or mesopores; contacting the porous particles with a silicon-containing precursor at a temperature effective to cause deposition of a plurality of silicon domains in the pores of the porous particles; subjecting the particles to heat treatment at a temperature of at least 400 °C and in the presence of an inert gas; and contacting the particles with a silicon-containing precursor at a temperature effective to cause deposition of further silicon domains in the pores of the porous particles.
The invention relates to a process for preparing composite particles. The process comprises the steps of providing a plurality of porous particles comprising micropores and/or mesopores; contacting the porous particles with a silicon-containing precursor at a temperature effective to cause deposition of a plurality of silicon domains in the pores of the porous particles; and subjecting the particles to heat treatment at a temperature of at least 400 °C and in the presence of an inert gas.
This invention relates to a particulate material consisting of a plurality of composite particles comprising a porous particle framework and a plurality of nanoscale elemental silicon domains located within the pores of the porous particle framework. The porous particle framework comprises micropores and mesopores, wherein the total volume of micropores and mesopores in the porous particle framework as measured by gas adsorption is from 0.5 to 1.8 cm3/g. The composite particles comprise from 30 to 70 wt% silicon, wherein at least 30 wt% of the silicon is surface silicon as determined by thermogravimetric analysis (TGA); no more than 1.2 wt% of hydrogen; and have a weight ratio of oxygen to silicon of no more than 0.15. The BET surface area of the composite particles is no more than 40 m2/g.
3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
27.
PROCESS FOR PREPARING SILICON-CONTAINING COMPOSITE PARTICLES
Silicon-containing composite particles, the process comprising the steps of:
(a) providing a plurality of porous particles comprising micropores and/or mesopores, wherein the D50 particle diameter of the porous particles from 0.5 to 200 μm; the total pore volume of micropores and mesopores is from 0.4 to 2.2 cm3/g; and the PD50 pore diameter is no more than 30 nm; c
(b) combining a charge of the porous particles with a charge of a silicon-containing precursor in a batch pressure reactor, wherein the charge of porous particles has a volume of at least 20 cm3 per litre of reactor volume (cm3/LRV), and wherein the charge of the silicon-containing precursor comprises at least 2 g of silicon per litre of reactor volume (g/LRV); and
(c) heating the reactor to a temperature effective to cause deposition of silicon in the pores of the porous particles, thereby providing the silicon-containing composite particles.
C04B 35/528 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/1395 - Processes of manufacture of electrodes based on metals, Si or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
C23C 16/04 - Coating on selected surface areas, e.g. using masks
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework. The porous carbon framework is an activated carbon material obtained by the pyrolysis of a plant source comprising at least 25 wt% lignin on a dry weight basis followed by activation with steam or carbon dioxide.
The invention relates to a process for preparing composite particles, the process comprising the steps of: (a) providing a plurality of porous particles in a pressure reactor; (b) contacting the plurality of porous particles with a silicon precursor gas at conditions effective to cause deposition of silicon in the pores of the porous particles to provide composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework; and (c) during step (b), withdrawing an effluent gas from the pressure reactor, wherein the silicon precursor gas is introduced into the pressure reactor continuously.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise a plurality of silicon nanoparticles dispersed within a conductive carbon matrix. The particulate material comprises 40 to 65 wt % silicon, at least 6 wt % and less than 20% oxygen, and has a weight ratio of the total amount of oxygen and nitrogen to silicon in the range of from 0.1 to 0.45 and a weight ratio of carbon to silicon in the range of from 0.1 to 1. The particulate electroactive materials are useful as an active component of an anode in a metal ion battery.
C04B 35/532 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
C04B 35/626 - Preparing or treating the powders individually or as batches
The invention relates to a process for preparing composite particles, the process comprising contacting the plurality of particles in the reaction zone with a gas comprising at least 25 vol% of a silicon-containing precursor at a temperature effective to cause deposition of silicon in the pores of the porous particles. A controlled temperature differential between the maximum temperature of the internal surfaces of the reaction zone and the simultaneous minimum temperature within the plurality of porous particles is maintained during the contacting step.
This invention relates to continuous process for preparing composite particles by continuous introduction of a porous particle feedstock and a silicon precursor gas into a first reaction zone and continuous withdrawal of a composite particles and an effluent gas from the first reaction zone, the composite particles comprising a porous particle framework and elemental silicon within the pores of the porous particle framework.
C01B 33/027 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
C01B 32/05 - Preparation or purification of carbon not covered by groups , , ,
C23C 28/00 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and
C23C 28/04 - Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of main groups , or by combinations of methods provided for in subclasses and only coatings of inorganic non-metallic material
This invention relates in general to electroactive materials and a process for the preparation thereof. The electroactive particles comprise a comprise a porous particle framework, wherein the total pore volume of pores having pore diameter in the range from 3.5 to 100 nm is in the range from 0.3 to 2.4 cm3 per gram of the porous particle framework. The pores of the porous particle are at least partially occupied by a multilayer coating that is disposed on the internal pore surfaces of the porous particle framework. The multilayer coating comprises at least a first electroactive material layer, a second electroactive material layer, and a first interlayer material disposed between the first and second electroactive material layers.
01 - Chemical and biological materials for industrial, scientific and agricultural use
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Silicon; Silicon, namely, pillared silicon; silicon fibers for use in the manufacture of batteries; carbon and carbon composite materials consisting of carbon based materials and powders and silicon-carbon composite materials for use in batteries and battery manufacturing; silicon-carbon composite materials for increasing energy density or charge capacity of batteries. Custom manufacturing of Silicon, pillared silicon, silicon fibres, silicon fibre mat and felt, carbon and carbon composites and silicon-carbon composite materials
35.
Negative electrode active material for secondary battery and manufacturing method thereof
The present invention relates to a negative electrode active material for a secondary battery and a manufacturing method thereof. A negative electrode active material, according to one embodiment of the present invention, comprises silicon-based primary particles, and a particle size distribution of the silicon-based primary particles is D10≥50 nm and D90≤150 nm. The negative electrode active material suppresses or reduces tensile hoop stress generated in lithiated silicon particles during a charging of a battery to thus suppress a crack due to a volume expansion of the silicon particles and/or an irreversible reaction caused by the crack, such that the lifetime and capacity of the battery can be improved.
The invention relates to a particulate material and processes for the preparation thereof. The particulate material consists of a plurality of composite particles. The composite particles comprise a porous particle framework comprising micropores and/or mesopores. The total pore volume of micropores and mesopores as measured by gas adsorption is in the range from 0.4 to 2.2 cm3/g. The composite particles comprise a plurality of electroactive material domains and a plurality of modifier material domains disposed within the internal pore volume of the porous particle framework. At least a portion of the modifier material domains are located between adjacent electroactive material domains.
This invention relates a process for preparing composite particles. The process comprises a first step of providing a plurality of porous particles comprising micropores and/or mesopores, wherein the total pore volume of micropores and mesopores as measured by nitrogen gas adsorption is in the range from 0.4 to 2.2 cm3/g. The porous particles are contacted with a precursor of an electroactive material at a temperature effective to cause deposition of the electroactive material in the pores of the porous particles to form intermediate particles. Deposition of the electroactive material is discontinued and by- products are optionally separated from the intermediate particles. The intermediate particles are then contacted with a precursor of an electroactive material, at a temperature effective to cause further deposition of the electroactive material in the pores of the intermediate particles to form the composite particles. In at least one of the deposition steps, the reactor pressure is maintained at less than 200 kPa.
The invention relates to a process for preparing silicon-containing composite particles in a fluidized bed. Porous conductive particles having a defined particle size and pore structure are combined with a particulate additive having defined particle size, density and BET surface area. The combined porous conductive particles and particulate additive are subjected to chemical vapour infiltration in a fluidised bed to cause deposition of silicon in the pores of the porous conductive particles.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
C04B 35/528 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous conductive particle framework including micropores and/or mesopores having a total volume of at least 0.4 to 2.2 cm3/g; (b) an electroactive material disposed within the porous conductive particle framework; and (c) a lithium-ion permeable filler penetrating the pores of the porous conductive particle framework and disposed intermediate the nanoscale silicon domains and the exterior of the composite particles.
The invention provides methods for providing composite particles with a carbon coating and the resulting core-shell particulate material. The process comprises subjecting a plurality of precursor composite particles to a heat treatment in contact with a pyrolytic carbon precursor such that an outer shell of a pyrolytic conductive carbon material is formed on the precursor composite particles, wherein the heat treatment is carried out at a temperature of no more than 700° C.
An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
3/g, wherein the micropore volume fraction is in the range of 0.5 to 0.85 based on the total volume of micropores and mesopores; and (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores.
This invention relates in general to electroactive materials and a process for the preparation thereof. The electroactive particles comprise a comprise a porous particle framework, wherein the total pore volume of pores having pore diameter in the range from 3.5 to 100 nm is in the range from 0.3 to 2.4 cm3 per gram of the porous particle framework. The pores of the porous particle are at least partially occupied by a multilayer coating that is disposed on the internal pore surfaces of the porous particle framework. The multilayer coating comprises at least a first electroactive material layer, a second electroactive material layer, and a first interlayer material disposed between the first and second electroactive material layers.
3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 5 nm; and (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/133 - Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
45.
PROCESS FOR PREPARING SILICON-CONTAINING COMPOSITE PARTICLES
5050 particle diameter of the porous particles is in the range from 0.5 to 200 µm; (ii) the total pore volume of micropores and mesopores as measured by gas adsorption is in the range from 0.4 to 2.2 cm35050 pore diameter as measured by gas adsorption is no more than 30 nm; (b) combining a charge of the porous particles with a charge of a silicon-containing precursor in a batch pressure reactor, wherein the charge of the porous particles has a volume of at least 20 cm3 per litre of reactor volume (cm3/LRV), preferably at least 200 cm3 per litre of reactor volume (cm3/LRV), and wherein the charge of the silicon-containing precursor comprises at least 2 g of silicon per litre of reactor volume (g/LRV); and (c) heating the reactor to a temperature effective to cause deposition of silicon in the pores of the porous particles, thereby providing the silicon-containing composite particles.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and/or mesopores having a total volume of at least 0.6 cm 3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 2 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D 90 particle diameter of the composite particles is no more than 10 nm.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/133 - Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/587 - Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
H01M 4/02 - Electrodes composed of, or comprising, active material
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
50 particle diameter of at least 20 μm; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapour infiltration process in a fluidised bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores. At least 20 wt% of the silicon is characterized as surface silicon by thermogravimetric analysis.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework. The porous carbon framework is an activated carbon material obtained by the pyrolysis of a plant source comprising at least 25 wt% lignin on a dry weight basis followed by activation with steam or carbon dioxide.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores. At least 20 wt % of the silicon is characterized as surface silicon by thermogravimetric analysis.
3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework. The porous carbon framework is an activated carbon material obtained by the pyrolysis of a plant source comprising at least 25 wt % lignin on a dry weight basis followed by activation with steam or carbon dioxide.
3/g; and (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores. At least 20 wt % of the silicon is characterized as surface silicon by thermogravimetric analysis.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous conductive particle framework including micropores and/or mesopores having a total volume of at least 0.4 to 2.2 cm3/g; (b) an electroactive material disposed within the porous conductive particle framework; and (c) a lithium-ion permeable filler penetrating the pores of the porous conductive particle framework and disposed intermediate the nanoscale silicon domains and the exterior of the composite particles.
H01G 11/24 - Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosityElectrodes characterised by the structural features of powders or particles used therefor
H01G 11/28 - Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collectorLayers or phases between electrodes and current collectors, e.g. adhesives
H01G 11/36 - Nanostructures, e.g. nanofibres, nanotubes or fullerenes
H01G 11/42 - Powders or particles, e.g. composition thereof
H01G 11/50 - Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
H01G 11/56 - Solid electrolytes, e.g. gelsAdditives therein
H01M 4/1391 - Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
H01M 4/1393 - Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/1395 - Processes of manufacture of electrodes based on metals, Si or alloys
H01M 4/02 - Electrodes composed of, or comprising, active material
C01B 33/029 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
C01B 33/03 - Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
The invention provides methods for providing composite particles with a carbon coating and the resulting core-shell particulate material. The process comprises subjecting a plurality of precursor composite particles to a heat treatment in contact with a pyrolytic carbon precursor such that an outer shell of a pyrolytic conductive carbon material is formed on the precursor composite particles, wherein the heat treatment is carried out at a temperature of no more than 700 ºC.
The invention relates to a process for preparing silicon-containing composite particles in a fluidized bed. Porous conductive particles having a defined particle size and pore structure are combined with a particulate additive having defined particle size, density and BET surface area. The combined porous conductive particles and particulate additive are subjected to chemical vapour infiltration in a fluidised bed to cause deposition of silicon in the pores of the porous conductive particles.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.4 to 0.75 cm3/g, wherein the micropore volume fraction is in the range of 0.5 to 0.85 based on the total volume of micropores and mesopores; and 5 (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores.
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm35050 particle size of less than 20 µm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
5050 particle diameter of at least 20 μm; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapour infiltration process in a fluidised bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
H01M 4/1393 - Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/1395 - Processes of manufacture of electrodes based on metals, Si or alloys
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
C04B 35/52 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01B 1/22 - Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
H01M 4/36 - Selection of substances as active materials, active masses, active liquids
H01B 1/18 - Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon, or silicon
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 4/02 - Electrodes composed of, or comprising, active material
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and/or mesopores having a total volume of at least 0.6 cm 3 /g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 2 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D 90 particle diameter of the composite particles is no more than 10 nm.
This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and/or mesopores having a total volume of at least 0,7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 5 nm; and (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise a plurality of silicon nanoparticles dispersed within a conductive carbon matrix. The particulate material comprises 40 to 65 wt % silicon, at least 6 wt % and less than 20% oxygen, and has a weight ratio of the total amount of oxygen and nitrogen to silicon in the range of from 0.1 to 0.45 and a weight ratio of carbon to silicon in the range of from 0.1 to 1. The particulate electroactive materials are useful as an active component of an anode in a metal ion battery.
C04B 35/532 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxides based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
C04B 35/626 - Preparing or treating the powders individually or as batches
50 particle diameter of at least 50 μm; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapor infiltration process in a fluidized bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
The present invention relates to a cathode active material for a secondary battery and a manufacturing method thereof. A cathode active material, according to one embodiment of the present invention, comprises silicon-based primary particles, and a particle size distribution of the silicon-based primary particles is D10≥50 nm and D90≤150 nm. The cathode active material suppresses or reduces tensile hoop stress generated in lithiated silicon particles during a charging of a battery to thus suppress a crack due to a volume expansion of the silicon particles and/or an irreversible reaction caused by the crack, such that the lifetime and capacity of the battery can be improved.
The present invention relates to a method for producing silicon-based active material particles for a secondary battery and silicon-based active material particles. A method for producing silicon-based active material particles for a secondary battery according to an embodiment of the present invention may comprise: a step of providing silicon powder; a step of providing a pre-pulverization mixture in which the silicon powder is dispersed in a solvent for dispersion comprising an antioxidant; a step of applying mechanical compression and shear stress to the silicon powder of the pre-pulverization mixture to refine the silicon powder, thereby forming silicon particles having an oxygen content controlled by the antioxidant; and a step of drying the resulting material comprising the silicon particles to obtain silicon-based active material particles.
50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
A powder comprising pillared particles for use as an active component of a metal ion battery, the pillared particles comprising a particle core and a plurality of pillars extending from the particle core, wherein the pillared particles are formed from a starting material powder wherein at least 10% of the total volume of the starting material powder is made up of starting material particles having a particle size of no more than 10 microns.
H01M 4/136 - Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
H01M 4/1397 - Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
H01M 4/583 - Carbonaceous material, e.g. graphite-intercalation compounds or CFx
H01M 4/02 - Electrodes composed of, or comprising, active material
This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise a plurality of silicon nanoparticles dispersed within a conductive carbon matrix. The particulate material comprises 40 to 65 wt% silicon, at least 6 wt% and less than 20% oxygen, and has a weight ratio of the total amount of oxygen and nitrogen to silicon in the range of from 0.1 to 0.45 and a weight ratio of carbon to silicon in the range of from 0.1 to 1. The particulate electroactive materials are useful as an active component of an anode in a metal ion battery.
B01J 13/00 - Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided forMaking microcapsules or microballoons
79.
Functionalised electrochemically active material and method of functionalisation
An electrochemically active material comprising a surface is provided, wherein at least part of the surface is functionalised with a grafted heteroatom-functionalised oligomer. A method of functionalising the surface with the oligomer is also provided.
An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
The present invention relates to a silicon-based anode active material and a method of fabricating the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, wherein a carbon-based conductive layer is coated with on outermost surface of the particles; and phosphorus doped in the particles, wherein a content of the phosphorus with respect to a total weight of the particles and the phosphorus doped in the particles have a range of 0.01 wt % to 15 wt %, and a content of the oxygen has a range of 9.5 wt % to 25 wt %.
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/58 - Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFySelection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
The present invention relates to a method for producing silicon-based active material particles for a secondary battery and silicon-based active material particles. A method for producing silicon-based active material particles for a secondary battery according to an embodiment of the present invention may comprise: a step of providing silicon powder; a step of providing a pre-pulverization mixture in which the silicon powder is dispersed in a solvent for dispersion comprising an antioxidant; a step of applying mechanical compression and shear stress to the silicon powder of the pre-pulverization mixture to refine the silicon powder, thereby forming silicon particles having an oxygen content controlled by the antioxidant; and a step of drying the resulting material comprising the silicon particles to obtain silicon-based active material particles.
The present invention relates to a cathode active material for a secondary battery and a manufacturing method thereof. A cathode active material, according to one embodiment of the present invention, comprises silicon-based primary particles, and a particle size distribution of the silicon-based primary particles is D10 ≥ 50 nm and D90 ≤ 150 nm. The cathode active material suppresses or reduces tensile hoop stress generated in lithiated silicon particles during a charging of a battery to thus suppress a crack due to a volume expansion of the silicon particles and/or an irreversible reaction caused by the crack, such that the lifetime and capacity of the battery can be improved.
The present invention relates to a silicon anode active material capable of high capacity and high output, and a method for fabricating the same. A silicon anode active material according to an embodiment of the present invention includes a silicon core including silicon particles; and a double clamping layer having a silicon carbide layer on the silicon core and a silicon oxide layer between the silicon core and the silicon carbide layer.
An electrode for a metal-ion battery is provided wherein the active layer of the electrode comprises a plurality of low porosity particles comprising an electroactive material selected from silicon, silicon oxide germanium, tin, aluminium and mixtures thereof and a plurality of carbon particles selected from one or more of graphite, soft carbon and hard carbon. The ratio of the D50 particles size of the carbon particles to the D50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
The present invention relates to a silicon-based anode active material and a method for manufacturing the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, and having a carbon-based conductive film coated on the outermost periphery thereof; and boron doped inside the particles, wherein with respect to the total weight of the particles and the doped boron, the boron is included in the amount of 0.01 weight % to 17 weight %, and the oxygen is included in the amount of 16 weight % to 29 weight %.
50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
An electrochemically active material comprising a surface is provided, wherein at least part of the surface is functionalised with a grafted heteroatom- functionalised oligomer. A method of functionalising the surface with the oligomer is also provided.
An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
A composition for use in a lithium ion battery includes a plurality of elongate elements and a plurality of particles. The elongate elements and particles each include a metal or semi-metal selected from one or more of the group including silicon, tin, germanium, aluminum or mixtures thereof. The composition may include additional ingredients such as a binder, a conductive material and a further electro-active material, such as graphite. The compositions can be used for the fabrication of electrodes, preferably anodes in the manufacture of lithium ion batteries and optionally batteries based on magnesium ions or sodium ions. The composition is able to intercalate and release lithium during the charging and discharging cycles respectively of a battery into which it has been incorporated. Methods of fabricating the composition and electrodes including the composition are included as well as electrodes thus prepared and devices including such electrodes.
H01M 4/134 - Electrodes based on metals, Si or alloys
H01M 4/1395 - Processes of manufacture of electrodes based on metals, Si or alloys
H01M 4/38 - Selection of substances as active materials, active masses, active liquids of elements or alloys
H01M 4/48 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
H01M 4/58 - Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFySelection of substances as active materials, active masses, active liquids of polyanionic structures, e.g. phosphates, silicates or borates
H01M 4/62 - Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 10/0568 - Liquid materials characterised by the solutes
H01M 4/505 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
H01M 4/525 - Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
H01M 4/587 - Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
H01M 10/054 - Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
H01M 4/02 - Electrodes composed of, or comprising, active material
92.
Negative electrode active material and lithium secondary battery comprising same
where A denotes a projected area of the silicon particle that is two-dimensionally projected, and P denotes a circumferential length of the silicon particle that is two-dimensionally projected.
Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
A process is provided for preparing a particulate material consisting of a plurality of porous particles comprising an electroactive material selected from silicon, tin, germanium, aluminium or a mixture thereof, wherein the particles are assembled from a plurality of particle fragments comprising the electroactive material wherein the fragments are obtained by the fragmentation of a porous precursor. The fragmentation step may be realized e.g. by wet ball milling and the later assembling step is preferably realized by spray-drying. Also provided are particulate materials obtainable according to the process of the invention, compositions comprising the particulate materials, and electrodes and electrochemical cells comprising the particulate materials. The materials and compositions are especially useful as anode materials in the context of a metal-ion battery such as a lithium-ion battery.
An electrode for a metal-ion battery is provided wherein the active layer of the electrode comprises a plurality of porous particles comprising an electroactive material selected from silicon, germanium, tin, aluminium and mixtures thereof and a plurality of carbon particles selected from one or more of graphite, soft carbon and hard carbon. The ratio of the D50 particles size of the carbon particles to the D50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
Provided are active materials for electrochemical cells. The active materials include silicon containing structures and treatment layers covering at least some surface of these structures. The treatment layers may include aminosilane, a poly(amine), and a poly(imine). These layers are used to increase adhesion of the structures to polymer binders within active material layers of the electrode. As such, when the silicon containing structures change their size during cycling, the bonds between the binder and the silicon containing structure structures or, more specifically, the bonds between the binder and the treatment layer are retained and cycling characteristics of the electrochemical cells are preserved. Also provided are electrochemical cells and fabricated with such active materials, methods of fabricating these active materials and electrochemical cells and devices containing electrochemical cells fabricated with such active materials.
Provided are active materials for electrochemical cells. The active materials include silicon containing structures and treatment layers covering at least some surface of these structures. The treatment layers may include aminosilane, a poly(amine), and a poly(imine). These layers are used to increase adhesion of the structures to polymer binders within active material layers of the electrode. As such, when the silicon containing structures change their size during cycling, the bonds between the binder and the silicon containing structure structures or, more specifically, the bonds between the binder and the treatment layer are retained and cycling characteristics of the electrochemical cells are preserved. Also provided are electrochemical cells fabricated with such active materials and methods of fabricating these active materials and electrochemical cells.
A particulate material is provided consisting of a plurality of porous particles comprising an electroactive material selected from silicon, germanium or a mixture thereof, wherein the porous particles have a D50 particle diameter in the range of greater than 5 to 25µm, an intra-particle porosity in the range of from 30 to 90%, and a pore diameter distribution having a peak in the range of from 50 to less than 400 nm as determined by mercury porosimetry. Also provided are electrodes and electrode compositions comprising the particulate material, a rechargeable metal-ion battery comprising the particulate material, and a process for the preparation of the particulate material.
A particulate material is provided consisting of a plurality of porous particles comprising an electroactive material selected from silicon, germanium or a mixture thereof (especially a silicon-aluminium alloy), wherein the porous particles have a D50 particle diameter in the range of 0.5 to 7 µm, an intra-particle porosity between 50 and 90%, and a pore diameter distribution having at least one peak in the range of 30 to 400 nm as determined by mercury porosimetry. Also provided are electrodes (especially anodes) and electrode compositions comprising the particulate material, a rechargeable metal-ion battery (especially a Li-ion battery) comprising the particulate material, and a process for the preparation of the particulate material. It is suggested that the claimed particulate material can be repeatedly lithiated without fracturing, allows easy access to the electrolyte and can be easily dispersed in an electrode slurry.
A particulate material is provided consisting of a plurality of porous particles comprising a mixture of silicon and germanium, wherein the mole fraction of germanium is from 0.01 to 50%, wherein the porous particles have a D50 particle diameter in the range of from 500 nm to 25 µm, and wherein the porous particles have an intra-particle porosity in the range of from 30 to 90%. Also provided are electrodes and electrode compositions comprising the particulate material, a rechargeable metal-ion battery comprising the particulate material, and a process for the preparation of the particulate material.