A wearable AED patch for wearing by a subject, including: a flexible, stretchable outer ring that is adhered to the subject; a rigid or semi-rigid conductive portion partially separated from the outer ring by an air gap; and a flexible portion that extends over the outer ring and the air gap, and into the conductive portion such that the flexible portion and air gap enable the rigid or semi-rigid conductive portion to remain in conductive contact with the skin while the flexible, stretchable outer ring as well as the flexible stretchable portion contract and stretch as needed due to body movements and related skin movements.
A wearable AED patch for wearing by a subject, including: a flexible, stretchable outer ring that is adhered to the subject; a rigid or semi-rigid conductive portion partially separated from the outer ring by an air gap; and a flexible portion that extends over the outer ring and the air gap, and into the conductive portion such that the flexible portion and air gap enable the rigid or semi-rigid conductive portion to remain in conductive contact with the skin while the flexible, stretchable outer ring as well as the flexible stretchable portion contract and stretch as needed due to body movements and related skin movements.
Subcutaneous implantable string shaped defibrillator for providing cardiac resynchronization therapy (CRT), including a flexible elongated body, at least two defibrillation leads, at least one sensor, at least two transition units and at least one epicardial lead, the defibrillation leads for providing at least one cardioversion defibrillation shock, the sensor being positioned on at least one of the defibrillation leads, for determining at least one metric of a heart, the transition units for respectively coupling the defibrillation leads to opposite ends of the elongated body, and the epicardial lead, coupled with the elongated body via at least one of the transition units, for providing at least one CRT pulse, the elongated body including a plurality of linked units, the linked units encapsulating at least one capacitor, at least one power source and a processor, wherein the processor provides at least one signal to the epicardial lead for providing the CRT pulse.
An automated wearable belt cardiac defibrillator (BCD) for wearing by a subject, comprising: at least two patches adapted for adhering to the subject each comprising a defibrillation electrode and an ECG sensor; and a BCD controller connected to each of the patches, wherein the patches comprise an adhesive adapted for long-term adhering of the patches to the subject, wherein the adhesive is a biocompatible adhesive, wherein the patches and adhesive are adapted for movement of the subject while the patches are adhered to the subject, wherein the patches are replaceable, wherein the controller is housed in a belt for wearing by the subject, wherein the belt is adapted for being flexible, wherein the adaptation for being flexible comprises a plurality of compartments for housing components of the controller, wherein a method for usage of the BCD comprises: following completion of an operational period, positioning of the patches to alternative locations on the subject wherein each of the alternate locations represents an alternate shock vector.
A rapid removal mechanism for removing a medical patch when attached to the skin of a subject, the patch having an inner active area and an outer adhesive area, and including an opening on the exterior of the patch leading into a conduit fluidly connecting an exterior of the patch with an area under the patch adjacent to the skin. The conduit is for transferring an adhesive removal material from the opening on the exterior of the patch to the area under the patch adjacent to the skin
Pill-sized pacemaker system including a pill-size pacemaker and a lead connector, the pacemaker having a distal end including a first screw hook and a proximal end including a first magnetic coupler, the lead connector having a distal end including a second screw hook and a proximal end including a second magnetic coupler, the first and second magnetic couplers being disc-shaped, each including at least one depth-wise electrode, wherein the first screw hook is for screwing the pacemaker to inner heart tissue and for sensing at least one signal from the inner heart tissue, the second screw hook is for screwing the lead connector to inner heart tissue and for sensing at least one signal from the inner heart tissue, and the pacemaker and the lead connector are electrically coupled via each depth-wise electrode of the first and second magnetic couplers when the first and second magnetic couplers are magnetically coupled.
A61N 1/365 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/368 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential comprising more than one electrode co-operating with different heart regions
Percutaneous transvenous defibrillator and/or pacing devices with integrated cardiac assist devices and method of use. In some embodiments, a device may comprise a shared catheter, a defibrillator assembly, an automated external defibrillator (AED) and a cardiac assist assembly, wherein the defibrillator assembly includes at least two defibrillation coils in communication with the AED and wherein the defibrillator assembly and the cardiac assist assembly use the shared catheter for percutaneous and intravenous implantation into a patient. In some embodiments, a device may comprise a shared catheter, a pacing assembly, a pacing controller and a cardiac assist assembly, wherein the pacing assembly includes at least two electrodes in communication with the pacing controller, and wherein the pacer assembly and the cardiac assist assembly use the shared catheter for percutaneous and intravenous implantation into a patient.
An automated wearable belt cardiac defibrillator (BCD) for wearing by a subject, comprising: at least two patches adapted for adhering to the subject each comprising a defibrillation electrode and an ECG sensor; and a BCD controller connected to each of the patches, wherein the patches comprise an adhesive adapted for long-term adhering of the patches to the subject, wherein the adhesive is a biocompatible adhesive, wherein the patches and adhesive are adapted for movement of the subject while the patches are adhered to the subject, wherein the patches are replaceable, wherein the controller is housed in a belt for wearing by the subject, wherein the belt is adapted for being flexible, wherein the adaptation for being flexible comprises a plurality of compartments for housing components of the controller, wherein a method for usage of the BCD comprises: following completion of an operational period, positioning of the patches to alternative locations on the subject wherein each of the alternate locations represents an alternate shock vector.
Subcutaneous implantable medical device (IMD) recharging system, including a flexible rechargeable subcutaneous IMD and a charger transmitter, the flexible rechargeable subcutaneous IMD implanted in a patient and including at least one receiver antenna and at least one rechargeable battery, the charger transmitter including at least one transmitter antenna and a modulator, the charger transmitter for providing electromagnetic (EM) radiation to the receiver antenna wirelessly for recharging the rechargeable battery, the transmitter antenna being encased in a structure for temporarily coupling the transmitter antenna to the skin of the patient and the modulator being for modulating the EM radiation and for simultaneously transmitting programming information to the flexible rechargeable subcutaneous IMD as modulated EM radiation.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 7/04 - Regulation of the charging current or voltage
A61N 1/372 - Arrangements in connection with the implantation of stimulators
Flexible semi-hermetic implantable medical device (IMD) structure, including a flexible device body, at least one flexible lead and at least one respective transition unit, for respectively coupling each flexible lead to the flexible device body, the flexible device body including a plurality of hermetically sealed components, at least one electrical cable harness and an external flexible polymer structure, each one of the hermetically sealed components including at least one hermetically sealed electrical connection and at least some of the hermetically sealed components including at least one separation dome, the electrical cable harness for electrically and mechanically coupling the plurality of hermetically sealed components together and the external flexible polymer structure for encapsulating the hermetically sealed components, the electrical cable harness and the respective transition unit.
Subcutaneous implantable string shaped defibrillator for providing cardiac resynchronization therapy (CRT), including a flexible elongated body, at least two defibrillation leads, at least one sensor, at least two transition units and at least one epicardial lead, the defibrillation leads for providing at least one cardioversion defibrillation shock, the sensor being positioned on at least one of the defibrillation leads, for determining at least one metric of a heart, the transition units for respectively coupling the defibrillation leads to opposite ends of the elongated body, and the epicardial lead, coupled with the elongated body via at least one of the transition units, for providing at least one CRT pulse, the elongated body including a plurality of linked units, the linked units encapsulating at least one capacitor, at least one power source and a processor, wherein the processor provides at least one signal to the epicardial lead for providing the CRT pulse.
Rechargeable implantable cardioverter defibrillator including a hermetically sealed can and at least one lead, coupled with the hermetically sealed can, the hermetically sealed can including at least one high voltage capacitor, an electronic circuit, coupled with the high voltage capacitor and a rechargeable battery, coupled with the electronic circuit and the high voltage capacitor, an outer surface of the hermetically sealed can including an active section and a non-active section, the non-active section being electrically insulated from the active section, wherein a surface area of the active section acts as at least one of an electrode with the lead for forming an electric shock vector for applying a high voltage shock and a sensor for sensing electrical activity and wherein a surface area of the non-active section acts as at least one antenna for transmitting and receiving information wirelessly while also receiving electromagnetic energy to inductively charge the rechargeable battery.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
A61N 1/375 - Constructional arrangements, e.g. casings
H04B 5/00 - Near-field transmission systems, e.g. inductive or capacitive transmission systems
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H02J 7/34 - Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/365 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential
13.
SYSTEM AND METHOD FOR UNIPHASIC AND BIPHASIC SHOCK INVERSION TIME DOMAIN SHIFTING FOR SHOCK ENERGY VECTORING IN TRANSVENOUS AND SUBCUTANEOUS DEFIBRILLATORS WITH TWO OR MORE SHOCK VECTORS
Method for truncating and summating shock vector energy between at least two shock vectors in a defibrillator, including the procedures of applying at least two biphasic defibrillating shock vectors simultaneously via at least two electrode sets until a voltage inversion point, terminating at least a first one of the biphasic defibrillating shock vectors at the voltage inversion point, and directing a remaining energy of the first one of the biphasic defibrillating shock vectors to a second phase of at least a second one of the biphasic defibrillating shock vectors.
A method for subcutaneously implanting a heart device in a patient using an implantation device involves making a first incision in the vicinity of the sternum of the patient and a second incision in the lumbar region of the patient posterior to the vertebral column of the patient. The implantation device is inserted through the first incision to the second incision, and a guidewire is placed through the implantation device via the second incision to the first incision. An end of the guidewire is coupled to the heart device, and the guidewire is pulled through the implantation device until the guidewire is placed within the patient. The guidewire then is detached from the heart device, and the implantation device is removed. The first and second incisions are sutured such that the heart device is left positioned completely subcutaneously around the heart and outside of the ribcage of the patient.
Flexible semi-hermetic implantable medical device (IMD) structure, including a flexible device body, at least one flexible lead and at least one respective transition unit, for respectively coupling each flexible lead to the flexible device body, the flexible device body including a plurality of hermetically sealed components, at least one electrical cable harness and an external flexible polymer structure, each one of the hermetically sealed components including at least one hermetically sealed electrical connection and at least some of the hermetically sealed components including at least one separation dome, the electrical cable harness for electrically and mechanically coupling the plurality of hermetically sealed components together and the external flexible polymer structure for encapsulating the hermetically sealed components, the electrical cable harness and the respective transition unit.
Flexible subcutaneous implantable medical device (IMD), including an elongated and flexible body, a plurality of electronic components, at least one rechargeable battery, at least one antenna, at least one lead and at least one transition unit, the antenna for receiving and transmitting electromagnetic radiation and the lead for providing an electric shock, wherein the elongated and flexible body is structured from a plurality of units, wherein a first one of the plurality of units encapsulates the rechargeable battery, wherein each one of the other plurality of units respectively encapsulates a respective one of the plurality of electronic components, wherein the antenna is positioned in the transition unit, wherein the transition unit is covered with a biocompatible polymer, wherein the antenna receives electromagnetic radiation for recharging the rechargeable battery and wherein the antenna includes a copper coil having a generally cylindrical shape.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 7/04 - Regulation of the charging current or voltage
A61N 1/372 - Arrangements in connection with the implantation of stimulators
Flexible implantable subcutaneous heart device (HD) structure, including a flexible device body, at least one flexible lead and at least one respective transition unit, the transition unit for respectively coupling each flexible lead to the flexible device body, the flexible device body including a plurality of inner components and a respective plurality of hollow outer units, the hollow outer units for encasing and protecting the inner components, each one of the hollow outer units including at least one hollow rigid element and a hollow flexible element, the hollow flexible element coupled with the hollow rigid element for enabling the outer unit a degree of flexibility, wherein the hollow flexible element is covered with a covering and wherein the flexible device body is covered with a polymer.
Rechargeable implantable cardioverter defibrillator including a hermetically sealed can and at least one lead, coupled with the hermetically sealed can, the hermetically sealed can including at least one high voltage capacitor, an electronic circuit, coupled with the high voltage capacitor and a rechargeable battery, coupled with the electronic circuit and the high voltage capacitor, an outer surface of the hermetically sealed can including an active section and a non-active section, the non-active section being electrically insulated from the active section, wherein a surface area of the active section acts as at least one of an electrode with the lead for forming an electric shock vector for applying a high voltage shock and a sensor for sensing electrical activity and wherein a surface area of the non-active section acts as at least one antenna for transmitting and receiving information wirelessly while also receiving electromagnetic energy to inductively charge the rechargeable battery.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61N 1/372 - Arrangements in connection with the implantation of stimulators
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
A61N 1/375 - Constructional arrangements, e.g. casings
H04B 5/00 - Near-field transmission systems, e.g. inductive or capacitive transmission systems
H02J 7/34 - Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/365 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential
19.
Wireless recharging system and method for flexible implantable subcutaneous medical device
Flexible subcutaneous implantable medical device (IMD), including an elongated and flexible body (256), a plurality of electronic components, at least one rechargeable battery (426), at least one antenna (260, 422), at least one lead (254) and at least one transition unit (252), the antenna for receiving and transmitting electromagnetic radiation and the lead for providing an electric shock, wherein the elongated and flexible body is structured from a plurality of units, wherein a first one of the plurality of units encapsulates the rechargeable battery, wherein each one of the other plurality of units respectively encapsulates a respective one of the plurality of electronic components, wherein the antenna is positioned in the transition unit, wherein the transition unit is covered with a biocompatible polymer, wherein the antenna receives electromagnetic radiation for recharging the rechargeable battery and wherein the antenna includes a copper coil having a generally cylindrical shape.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 7/04 - Regulation of the charging current or voltage
A61N 1/372 - Arrangements in connection with the implantation of stimulators
Flexible implantable subcutaneous heart device (HD) structure, including a flexible device body, at least one flexible lead and at least one respective transition unit, the transition unit for respectively coupling each flexible lead to the flexible device body, the flexible device body including a plurality of inner components and a respective plurality of hollow outer units, the hollow outer units for encasing and protecting the inner components, each one of the hollow outer units including at least one hollow rigid element and a hollow flexible element, the hollow flexible element coupled with the hollow rigid element for enabling the outer unit a degree of flexibility, wherein the hollow flexible element is covered with a covering and wherein the flexible device body is covered with a polymer.
A method for operating a pacemaker comprises the procedures of building a database of a cardiac cycle of a patient suffering from bundle branch block and artificially pacing a ventricle of the patient using the pacemaker according to anticipative atrioventricular (AV) delays in the database which are based on measured P-P intervals in the database.
A61N 1/368 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential comprising more than one electrode co-operating with different heart regions
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/365 - Heart stimulators controlled by a physiological parameter, e.g. by heart potential
A61N 1/375 - Constructional arrangements, e.g. casings
A61B 5/0452 - Detecting specific parameters of the electrocardiograph cycle
Injectable subcutaneous heart device (ISHD) for regulating arrhythmias in a heart of a patient, including a plurality of linked structures, each one of the linked structures being hollow, an interconnecting bus, a biocompatible coating, at least two electrodes and a plurality of sensors, the interconnecting bus for electrically coupling the linked structures and the biocompatible coating for hermetically sealing and electrically insulating the linked structures, one of the linked structures encapsulating a power source, another one of the linked structures encapsulating at least one capacitor and a third one of the linked structures encapsulating electronics, the electrodes and the sensors being respectively placed on an outer surface of the linked structures located at opposite ends of the ISH D, for detecting arrhythmias and providing electrical shocks to the heart, the electrodes and the sensors being electrically coupled with the interconnecting bus and the ISHD being positioned subcutaneously around the heart.
Encapsulation configuration for electronic components in a flexible implantable medical device, including a first encapsulation section and a second encapsulation section, the first encapsulation section including a plurality of circuit boards (CBs), each CB including at least one electronics component and a plurality of connection cables, wherein each CB has a generally circular shape and wherein each connection cable electrically couples adjacent ones of the plurality of CBs alternatively at opposite ends, thereby giving the encapsulation configuration an accordion-like shape when folded, the second encapsulation section including a flat CB, including a plurality of electronics components, wherein the flat CB has a generally rectangular shape, wherein the plurality of electronics components are positioned on both sides of the flat CB with taller ones of the plurality of electronics components positioned closer to the center of the flat CB and shorter ones of the plurality of electronics components positioned closer to the edges of the flat CB, thereby achieving optimal volume consumption in the flat CB, wherein the first encapsulation section is coupled with the second encapsulation section with a flat connection cable, and wherein the encapsulation configuration has a cylindrical shape.
Method for operating a pacemaker comprising the procedures of building a database of a cardiac cycle of a patient suffering from bundle branch block and artificially pacing a ventricle of the patient using the pacemaker according to anticipative atrioventricular (AV) delays in the database which are based on measured P-P intervals in the database.
Injectable subcutaneous heart device (ISHD) for regulating arrhythmias in a heart of a patient, including a plurality of linked structures, each one of the linked structures being hollow, an interconnecting bus, a biocompatible coating, at least two electrodes and a plurality of sensors, the interconnecting bus for electrically coupling the linked structures and the biocompatible coating for hermetically sealing and electrically insulating the linked structures, one of the linked structures encapsulating a power source, another one of the linked structures encapsulating at least one capacitor and a third one of the linked structures encapsulating electronics, the electrodes and the sensors being respectively placed on an outer surface of the linked structures located at opposite ends of the ISH D, for detecting arrhythmias and providing electrical shocks to the heart, the electrodes and the sensors being electrically coupled with the interconnecting bus and the ISHD being positioned subcutaneously around the heart.
Flexible implantable subcutaneous heart device (HD) structure, including a flexible device body, at least one flexible lead and at least one respective transition unit, the transition unit for respectively coupling each flexible lead to the flexible device body, the flexible device body including a plurality of inner components and a respective plurality of hollow outer units, the hollow outer units for encasing and protecting the inner components, each one of the hollow outer units including at least one hollow rigid element and a hollow flexible element, the hollow flexible element coupled with the hollow rigid element for enabling the outer unit a degree of flexibility, wherein the hollow flexible element is covered with a covering and wherein the flexible device body is covered with a polymer.
Flexible subcutaneous implantable medical device (IMD), including an elongated and flexible body, a plurality of electronic components, at least one rechargeable battery, at least one antenna, at least one lead and at least one transition unit, the antenna for receiving and transmitting electromagnetic radiation and the lead for providing an electric shock, wherein the elongated and flexible body is structured from a plurality of units, wherein a first one of the plurality of units encapsulates the rechargeable battery, wherein each one of the other plurality of units respectively encapsulates a respective one of the plurality of electronic components, wherein the antenna is positioned in the transition unit, wherein the transition unit is covered with a biocompatible polymer, wherein the antenna receives electromagnetic radiation for recharging the rechargeable battery and wherein the antenna includes a copper coil having a generally cylindrical shape.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/23 - Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
An automated wearable belt cardiac defibrillator (BCD) for wearing by a subject, comprising: at least two patches adapted for adhering to the subject each comprising a defibrillation electrode and an ECG sensor; and a BCD controller connected to each of the patches, wherein the patches comprise an adhesive adapted for long-term adhering of the patches to the subject, wherein the adhesive is a biocompatible adhesive, wherein the patches and adhesive are adapted for movement of the subject while the patches are adhered to the subject, wherein the patches are replaceable, wherein the controller is housed in a belt for wearing by the subject, wherein the belt is adapted for being flexible, wherein the adaptation for being flexible comprises a plurality of compartments for housing components of the controller, wherein a method for usage of the BCD comprises: following completion of an operational period, positioning of the patches to alternative locations on the subject wherein each of the alternate locations represents an alternate shock vector.
Injectable subcutaneous heart device (ISHD) for regulating arrhythmias in a heart of a patient, including a plurality of linked structures, each one of the linked structures being hollow, an interconnecting bus, a biocompatible coating, at least two electrodes and a plurality of sensors, the interconnecting bus for electrically coupling the linked structures and the biocompatible coating for hermetically sealing and electrically insulating the linked structures, one of the linked structures encapsulating a power source, another one of the linked structures encapsulating at least one capacitor and a third one of the linked structures encapsulating electronics, the electrodes and the sensors being respectively placed on an outer surface of the linked structures located at opposite ends of the ISH D, for detecting arrhythmias and providing electrical shocks to the heart, the electrodes and the sensors being electrically coupled with the interconnecting bus and the ISHD being positioned subcutaneously around the heart.