An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
If a configuration is employed in which modulation schemes used for an optical communication system can be switched depending on transmission conditions, the power consumption increases and the control becomes complex; therefore, an optical transmitter according to an exemplary aspect of the present invention includes an encoding means for encoding digital signals to be transmitted under a predetermined transmission condition over an optical carrier wave by using one of a plurality of encoding methods; an encoding control means for selecting a predetermined encoding method corresponding to the predetermined transmission condition from among the plurality of encoding methods and causing the encoding means to operate in accordance with the predetermined encoding method; a mapping means for mapping output bit signals output from the encoding means to modulation symbols; and an optical modulation means for modulating the optical carrier wave based on symbol signals output from the mapping means.
Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods of controlling them
An optical transmission apparatus (1_1) according to the present invention includes a first transmission unit (11_1) that transmits a first optical transmission signal (21_1), a second transmission unit (11_2) that transmits a second optical transmission signal (21_2), and an output unit that outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) share a set of information, both the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a first path (26_1) and outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) do not share the set of information, one of the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a second path (26_2).
Provided is a wavelength path communication node device with no collision of wavelengths and routes, capable of outputting arbitrary wavelengths, and capable of outputting them to arbitrary routes. An add/drop multiplexer (11) includes a communication unit (101) that communicates an optical signal with at least one client device and at least one network and a control unit (102) that indicates a transfer destination of the optical signal according to an attribute of the received optical signal to the communication unit (101). The control unit (102) indicates an attenuation amount of the optical signal to the communication unit (101) for each connected device. When a connected device is changed, the control unit (102) instructs the communication unit (101) to change the attenuation amount. The communication unit (101) attenuates the optical signal with the attenuation amount indicated by the control unit (102) and transfers the attenuated optical signal to a transfer destination.
H04Q 3/52 - Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
5.
Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
An optical transmission apparatus (1_1) according to the present invention includes a first transmission unit (11_1) that transmits a first optical transmission signal (21_1), a second transmission unit (11_2) that transmits a second optical transmission signal (21_2), and an output unit that outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) share a set of information, both the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a first path (26_1) and outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) do not share the set of information, one of the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a second path (26_2).
An optical multiplexer/demultiplexer according to an example embodiment includes: an OCM configured to measure a strength of each of optical signals in a plurality of wavelength bands input to a WSS and to determine an optical signal wavelength band and a noise wavelength band based on the measured strengths; the OCM configured to pass the optical signal in the optical signal wavelength band determined by the OCM as a primary signal; a dummy light generation unit configured to generate dummy light in which the optical signal wavelength band has been extinguished; and an optical coupler configured to multiplex the primary signal output from the WSS with the dummy signal into a wavelength division multiplexing optical signal and to output the wavelength division multiplexing optical signal to an optical transmission path.
H04J 14/02 - Wavelength-division multiplex systems
H04B 10/077 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
7.
Optical signal monitor, optical wavelength multiplexing transmitter, and method for monitoring optical signal
An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
An object is to automatically detect a failure of an optical transmission line. A light source outputs a monitoring light. An optical detection unit detects a return light from an optical transmission line and outputs a detection signal indicating an intensity of the return light. An optical multiplexer/demultiplexer outputs the monitoring light input from the light source to the optical transmission line, and outputs the return light input from the optical transmission line to the optical detection unit. A comparator compares the detection signal with a threshold voltage and outputs a comparison signal indicating the comparison result. A processing unit detects a first timing at which the comparison signal changes, and detects a failure of the optical transmission line when the first timing is earlier than a reference timing.
H04B 10/07 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems
H04B 10/071 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
Provided is a wavelength path communication node device with no collision of wavelengths and routes, capable of outputting arbitrary wavelengths, and capable of outputting them to arbitrary routes. An add/drop multiplexer (11) includes a communication unit (101) that communicates an optical signal with at least one client device and at least one network and a control unit (102) that indicates a transfer destination of the optical signal according to an attribute of the received optical signal to the communication unit (101). The control unit (102) indicates an attenuation amount of the optical signal to the communication unit (101) for each connected device. When a connected device is changed, the control unit (102) instructs the communication unit (101) to change the attenuation amount. The communication unit (101) attenuates the optical signal with the attenuation amount indicated by the control unit (102) and transfers the attenuated optical signal to a transfer destination.
H04Q 3/52 - Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
An optical detection unit detects a return light and outputs a detection signal. An optical multiplexer/demultiplexer outputs the monitoring light to the optical transmission line, and outputs the return light to the optical detection unit. A processing unit detects a first timing at which the detection signal becomes less than a first threshold value, detects a second timing at which the detection signal becomes less than a second threshold value, and calculates a first change rate of the detection signal in a period between the first and second timings. The processing unit changes the first and second threshold values to calculate the first change rate for a plurality of periods, and, when a second change rate between the first change rates in two adjacent periods is greater than a threshold value, either of the first and second timings in one period is detected as the breakage position.
H04B 10/071 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
G01M 11/00 - Testing of optical apparatusTesting structures by optical methods not otherwise provided for
12.
Optical signal demultiplexing device, optical signal reception device, and optical signal demultiplexing method
A branch units branches an optical signal by the number of wavelength intervals. Each band division unit generates a band division signal in which a signal band is divided into N division bands and an odd channel and an even channel are separated from each other. Multiplexing units multiplex band division signals of the same signal band, and branch means output the multiplexed signal to an optical receiver. A control unit controls the wavelength selective switch included in the band division units based on information indicating a signal arrangement of the signals in the respective wavelength intervals, thereby causing a signal of a signal band in which a signal of a corresponding wavelength interval is present to be included in each band division signal.
An optical transmitter includes: a plurality of client ports configured to receive a client signal from an end user device; a plurality of line ports configured to generate a line signal in which the client signal is stored, and transmit the line signal to an optical receiver; a switch configured to connect the plurality of client ports with the plurality of line ports; and a label provider configured to provide the client signal with a label for identifying a transmission destination in the optical receiver.
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
Optical transmission apparatus, optical reception apparatus, optical communications apparatus, optical communication system, and methods of controlling them
An optical transmission apparatus (1_1) according to the present invention includes a first transmission unit (11_1) that transmits a first optical transmission signal (21_1), a second transmission unit (11_2) that transmits a second optical transmission signal (21_2), and an output unit that outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) share a set of information, both the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a first path (26_1) and outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) do not share the set of information, one of the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a second path (26_2).
An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
H04B 10/80 - Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups , e.g. optical power feeding or optical transmission through water
H04B 10/291 - Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
Provided is a wavelength path communication node device with no collision of wavelengths and routes, capable of outputting arbitrary wavelengths, and capable of outputting them to arbitrary routes. An add/drop multiplexer (11) includes a communication unit (101) that communicates an optical signal with at least one client device and at least one network and a control unit (102) that indicates a transfer destination of the optical signal according to an attribute of the received optical signal to the communication unit (101). The control unit (102) indicates an attenuation amount of the optical signal to the communication unit (101) for each connected device. When a connected device is changed, the control unit (102) instructs the communication unit (101) to change the attenuation amount. The communication unit (101) attenuates the optical signal with the attenuation amount indicated by the control unit (102) and transfers the attenuated optical signal to a transfer destination.
H04Q 3/52 - Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
If a configuration is employed in which modulation schemes used for an optical communication system can be switched depending on transmission conditions, the power consumption increases and the control becomes complex; therefore, an optical transmitter according to an exemplary aspect of the present invention includes an encoding means for encoding digital signals to be transmitted under a predetermined transmission condition over an optical carrier wave by using one of a plurality of encoding methods; an encoding control means for selecting a predetermined encoding method corresponding to the predetermined transmission condition from among the plurality of encoding methods and causing the encoding means to operate in accordance with the predetermined encoding method; a mapping means for mapping output bit signals output from the encoding means to modulation symbols; and an optical modulation means for modulating the optical carrier wave based on symbol signals output from the mapping means.
A signal detection device including: a comparison unit that obtains data including central frequencies of optical signals respectively transmitted by a plurality of optical transmitters and a central frequency interval indicating the interval between the central frequencies, power measurement values obtained by measuring, at sampling point frequencies arranged at a prescribed sampling interval, the power of a WDM signal for which the wavelength of optical signals has been multiplexed, a sampling interval, and sampling point frequencies, that selects a selection value from among the power measurement values on the basis of the central frequency interval and the sampling interval, and that outputs a result of comparison between the selection value and a prescribed threshold; and an alarm generator that outputs a signal interruption alarm in a case where the comparison result indicates that the selection value is less than the threshold.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04J 14/02 - Wavelength-division multiplex systems
H04Q 11/00 - Selecting arrangements for multiplex systems
H04B 10/032 - Arrangements for fault recovery using working and protection systems
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
23.
Optical transmitter, optical communication system, and optical communication method
If a configuration is employed in which modulation schemes used for an optical communication system can be switched depending on transmission conditions, the power consumption increases and the control becomes complex; therefore, an optical transmitter according to an exemplary aspect of the present invention includes an encoding means for encoding digital signals to be transmitted under a predetermined transmission condition over an optical carrier wave by using one of a plurality of encoding methods; an encoding control means for selecting a predetermined encoding method corresponding to the predetermined transmission condition from among the plurality of encoding methods and causing the encoding means to operate in accordance with the predetermined encoding method; a mapping means for mapping output bit signals output from the encoding means to modulation symbols; and an optical modulation means for modulating the optical carrier wave based on symbol signals output from the mapping means.
An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/075 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal
In order to provide an extended branch device in which construction work is easy and communication is not significantly affected by construction work, and a method for controlling the extended branch device, the extended branch device of the present invention is provided with: a first branch unit provided with a first port coupled to a first terminal station, a second port coupled to a second terminal station, a third port, a fourth port, and a switch for coupling the first port with the second or third port and coupling the second port with the fourth port; and a first separation unit provided with a fifth port coupled to the third port, a sixth port coupled to the fourth port, and a seventh port coupled to a third terminal station, the first separation unit outputting, from the sixth port, an optical signal having a first wavelength among the optical signals inputted from the fifth port, and outputting, from the seventh port, an optical signal having a second wavelength among the optical signals inputted from the fifth port. The extended branch device is further provided with a second branch unit configured so as to be separable from the first branch unit.
G02B 6/293 - Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
Provided is a wavelength path communication node device with no collision of wave lengths and routes, capable of outputting arbitrary wavelengths, and capable of outputting them to arbitrary routes. An add/drop multiplexer (11) includes a communication unit (101) that communicates an optical signal with at least one client device and at least one network and a control unit (102) that indicates a transfer destination of the optical signal according to an attribute of the received optical signal to the communication unit (101). The control unit (102) indicates an attenuation amount of the optical signal to the communication unit (101) for each connected device. When a connected device is changed, the control unit (102) instructs the communication unit (101) to change the attenuation amount. The communication unit (101) attenuates the optical signal with the attenuation amount indicated by the control unit (102) and transfers the attenuated optical signal to a transfer destination.
H04Q 3/52 - Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
28.
Optical transmitter, optical communication system, and optical communication method
If a configuration is employed in which modulation schemes used for an optical communication system can be switched depending on transmission conditions, the power consumption increases and the control becomes complex; therefore, an optical transmitter according to an exemplary aspect of the present invention includes an encoding means for encoding digital signals to be transmitted under a predetermined transmission condition over an optical carrier wave by using one of a plurality of encoding methods; an encoding control means for selecting a predetermined encoding method corresponding to the predetermined transmission condition from among the plurality of encoding methods and causing the encoding means to operate in accordance with the predetermined encoding method; a mapping means for mapping output bit signals output from the encoding means to modulation symbols; and an optical modulation means for modulating the optical carrier wave based on symbol signals output from the mapping means.
A signal detection device including: a comparison unit that obtains data including central frequencies of optical signals respectively transmitted by a plurality of optical transmitters and a central frequency interval indicating the interval between the central frequencies, power measurement values obtained by measuring, at sampling point frequencies arranged at a prescribed sampling interval, the power of a WDM signal for which the wavelength of optical signals has been multiplexed, a sampling interval, and sampling point frequencies, that selects a selection value from among the power measurement values on the basis of the central frequency interval and the sampling interval, and that outputs a result of comparison between the selection value and a prescribed threshold; and an alarm generator that outputs a signal interruption alarm in a case where the comparison result indicates that the selection value is less than the threshold.
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04J 14/02 - Wavelength-division multiplex systems
A server device having a server module and a cooling fan in a chassis includes: a single management unit configured to control the server module and the cooling fan; and a monitoring unit configured to monitor the running status of the management unit. The monitoring unit is configured to execute thermal control of the inside of the chassis on the basis of the result of monitoring of the management unit.
An optical relay device is provided which is capable of outputting control signal light without equipping a light source for the control signal light and capable of flexibly managing and changing a wavelength of the control signal light in accordance with a state of a network. The optical relay device includes an optical receiving unit that receives a wavelength multiplexed optical signal, a control unit that specifies a first wavelength and outputting notification information, and a processing unit that selects an optical signal having the first wavelength from the received wavelength multiplexed optical signal, applying intensity-modulation in accordance with the notification information to the selected optical signal, adding the intensity-modulated optical signal back to the wavelength multiplexed optical signal, and outputting the wavelength multiplexed optical signal.
H04B 10/299 - Signal waveform processing, e.g. reshaping or retiming
H04B 10/079 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
H04B 10/296 - Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
H04J 14/02 - Wavelength-division multiplex systems
32.
Optical transmission/reception device, optical communication system, and optical communication method
[Problem] To provide an optical transmission/reception device, an optical communication system, an optical communication method, and a program which are capable of securing the confidentiality of information included in an optical signal even when the optical signal is transferred to a device that is not an original transmission destination device.
[Solution] This optical transmission/reception device is provided with: a wave separation unit for receiving a wavelength-multiplexed optical signal and separating the same into a plurality of optical signals; a plurality of reception units for receiving each of the plurality of optical signals separated by the wave separation unit; a plurality of output units for outputting optical signals differing in wavelength from each other; a control unit for requesting, in response to the inclusion in the received wavelength-multiplexed optical signal of an optical signal to which a prescribed process has been applied, that a prescribed change be applied to the optical signal outputted by at least one of the plurality of output units; and a wave combining unit for combining the plurality of optical signals outputted from the plurality of output units and outputting the combined signal.
H04B 10/07 - Arrangements for monitoring or testing transmission systemsArrangements for fault measurement of transmission systems
H04B 10/80 - Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups , e.g. optical power feeding or optical transmission through water
H04J 14/02 - Wavelength-division multiplex systems
33.
Optical reception apparatus, optical transmission apparatus, optical communication system, optical communication method, and storage medium storing program
An optical signal transmitted by another terminal device that was used for compensation could be received by a device that is not the intended destination of said optical signal, resulting in the problem that confidentiality cannot be guaranteed for the information in said optical signal. This optical reception device is characterized by the provision of the following: a receiving means via which wavelength-multiplexed signal light is inputted; and a transmitting means that, in accordance with an identifier in an optical signal of a prescribed wavelength in the inputted wavelength-multiplexed signal light, forwards said optical signal.
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
H04J 14/02 - Wavelength-division multiplex systems
H04B 10/038 - Arrangements for fault recovery using bypasses
H04B 10/66 - Non-coherent receivers, e.g. using direct detection
Optical transmission apparatus, optical reception apparatus, optical communication apparatus, optical communication system, and methods of controlling them
An optical transmission apparatus (1_1) according to the present invention includes a first transmission unit (11_1) that transmits a first optical transmission signal (21_1), a second transmission unit (11_2) that transmits a second optical transmission signal (21_2), and an output unit that outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) share a set of information, both the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a first path (26_1) and outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) do not share the set of information, one of the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a second path (26_2).
An optical transmission system includes an optical transmitting device (8) and an optical receiving device (9). The optical transmitting device (8) includes an operating channel transmitting unit (81) that transmits a first optical signal to an operating channel, and a redundant channel transmitting unit (82) that transmits a second optical signal having the same information as the first optical signal to a redundant channel. The optical receiving device (9) includes a local selection function unit (91) that has a function of selecting a wavelength of the first optical signal or the second optical signal transmitted from the optical transmitting device (8), a channel setting control unit (92) that sets a wavelength to be selected by the local selection function unit (91), and a receiving unit (93) that receives the first optical signal or the second optical signal having the wavelength selected by the local selection function unit (91).
H04B 10/00 - Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
H04J 14/02 - Wavelength-division multiplex systems
36.
Modular colorless and directionless multi-degree reconfigurable optical add/drop multiplexer node with in-service upgradeability
In a dense wavelength division multiplexed optical network, an upgradeable, modular, colorless, directionless, reconfigurable add/drop multiplexer having a small form factor. By using wavelength selective switches and couplers, the above features are achieved without the need for photonic cross connects.