09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Magnets; programmable magnets; magnetic attachment devices, namely, programmable magnets; downloadable computer software and downloadable computer programs for determining, manipulating, and programming the magnetic fields of magnets and/or magnetic structures; downloadable computer software and downloadable computer programs for use in designing magnets and/or magnetic structures; machines for magnetically imprinting patterns of magnetic elements and/or sources into magnetizable material; machines for magnetically imprinting patterns of magnetic elements and/or sources into magnetizable material for use as prototypes in a lab or engineering office setting; machines for magnetically imprinting patterns of magnetic elements and/or sources into magnetizable material using computer software and computer programs for determining, manipulating, and programming the magnetic fields of magnets or magnetic structures; machines for use in printing smart magnets; machines for use in programming magnets; magnetization equipment; magnetization equipment, namely, equipment that magnetizes permanent magnetic material Providing online and on-site training in the field of magnets; providing a website that features news and information in the field of magnets; providing online non-downloadable articles in the field of magnets; education services, namely, providing non-downloadable webinars in the field of magnets; providing online newsletters in the field of magnets Non-downloadable computer software and non-downloadable computer programs for determining, manipulating, and programming the magnetic fields of magnets and/or magnetic structures; non-downloadable computer software and non-downloadable computer programs for use in designing magnets and/or magnetic structures; custom design and development of magnets, smart magnets and/or magnetic structures based on personal selections made by the customer; custom design of prototypes; verification and testing of magnets
A dual-diaphragm loudspeaker driver assembly can include a multiple pole magnet structure, and first and second pole piece assemblies can be provided on opposite first and second sides of the multiple pole magnet structure. In an example, each pole piece assembly defines an airgap over a polarity transition region on a respective side of the magnet structure. First and second voice coils can be provided in respective ones of the airgaps, wherein each of the voice coils is coupled to a respective diaphragm assembly, and at least one acoustic tuning port can be configured to provide a damped acoustic communication path between first and opposite second sides of each diaphragm assembly.
H04R 9/00 - Transducers of moving-coil, moving-strip, or moving-wire type
H04R 9/02 - Transducers of moving-coil, moving-strip, or moving-wire type Details
H04R 1/28 - Transducer mountings or enclosures designed for specific frequency responseTransducer enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
A system for magnetizing magnetic sources into a rare earth permanent magnet material includes a first inductor coil, a second inductor coil, and at least one magnetizing circuit for supplying a first current having a first direction for a first duration to said first inductor coil to produce a first magnetic field and a second current having a second direction for a second duration to said second inductor coil to produce a second magnetic field. The first inductor coil comprises a first plurality of layers of a flat conductor about a first aperture positioned on a first side of the rare earth permanent magnet material at a first location where a magnetic source is to be magnetized into the rare earth permanent magnet material from the first side of the rare earth permanent magnet material. The second inductor coil comprising a second plurality of layers of a flat conductor coiled about a second aperture positioned on a second side of the rare earth permanent magnet material at a second location where a magnetic source is to be magnetized into the rare earth permanent magnet material from the second side of said rare earth permanent magnet material, where the second side is opposite the first side.
H01F 13/00 - Apparatus or processes for magnetising or demagnetising
H01F 41/02 - Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformersApparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils or magnets
A magnet and coil assembly comprises a multi-pole magnetic structure, a coil, an object associated with the coil, and a circuitry for applying a current through the coil. The multi-pole magnetic structure comprises a plurality of magnetic source regions that each extend from a first side of said multi-pole magnetic structure to a second side of said multi-pole magnetic structure and include a first magnetic source region having a first polarity and a second magnetic source region having a second polarity. The multi-pole magnetic structure has a polarity transition region having a polarity transition boundary corresponding to an outer perimeter of the first magnetic source region where a magnetic field measured on the first side or the second side of said multi-pole magnetic field structure transitions from the first polarity to said second polarity. The coil is configured proximate to the first side of said multi-pole magnetic structure and about the polarity transition boundary. When the current travels in a first current direction through the coil the object moves in a first movement direction and when the current travels in a second current direction through the coil the object moves in a second movement direction.
A magnetic system described herein includes first and second magnetic structures that simultaneously produce repel forces and attract forces that combine to produce a composite force that can be an attract force, a repel force, or a force that transitions from an attract force to a repel force.
An improved system for concentrating and controlling magnetic flux of a multi-pole magnetic structure at the surface of a ferromagnetic target uses first pole pieces having a magnet-to-pole piece interface with a first area and a pole piece-to-target interface with a second area substantially smaller than the first area for concentrating flux of the multi-pole magnetic structure at each pole piece-to-target interface, where the target can be a ferromagnetic material or complementary pole pieces. A magnetic circuit having second pole pieces located between the first pole pieces and the ferromagnetic target controls the flux directed from the first pole pieces to the ferromagnetic target.
A system and method for tailoring a polarity transition of a magnetic structure is provided that involves printing one or more reinforcing maxels alongside one side or both sides of a polarity transition boundary between a first polarity region of the magnetic structure having a first polarity and a second polarity region of the magnetic structure having a second polarity, where printing reinforcing maxels alongside the polarity transition boundary improves the magnetic field characteristics of the polarity transition.
H02K 1/02 - Details of the magnetic circuit characterised by the magnetic material
H02K 15/03 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
Magnetic structure production may relate, by way of example but not limitation, to methods, systems, etc. for producing magnetic structures by printing magnetic pixels (aka maxels) into a magnetizable material. Disclosed herein is production of magnetic structures having, for example: maxels of varying shapes, maxels with different positioning, individual maxels with different properties, maxel patterns having different magnetic field characteristics, combinations thereof, and so forth. In certain example implementations disclosed herein, a second maxel may be printed such that it partially overwrites a first maxel to produce a magnetic structure having overlapping maxels. In certain example implementations disclosed herein, a magnetic printer may include a print head comprising multiple parts and having various properties. In certain example implementations disclosed herein, various techniques for using a magnetic printer may be employed to produce different magnetic structures. Furthermore, description of additional magnet-related technology and example implementations thereof is included herein.
Magnetic structure production may relate, by way of example but not limitation, to methods, systems, etc. for producing magnetic structures by printing magnetic pixels (aka maxels) into a magnetizable material. Disclosed herein is production of magnetic structures having, for example: maxels of varying shapes, maxels with different positioning, individual maxels with different properties, maxel patterns having different magnetic field characteristics, combinations thereof, and so forth. In certain example implementations disclosed herein, a second maxel may be printed such that it partially overwrites a first maxel to produce a magnetic structure having overlapping maxels. In certain example implementations disclosed herein, a magnetic printer may include a print head comprising multiple parts and having various properties. In certain example implementations disclosed herein, various techniques for using a magnetic printer may be employed to produce different magnetic structures. Furthermore, description of additional magnet-related technology and example implementations thereof is included herein.
An improved field emission system and method is provided that involves field emission structures having electric or magnetic field sources. The magnitudes, polarities, and positions of the magnetic or electric field sources are configured to have desirable correlation properties, which may be in accordance with a code. The correlation properties correspond to a desired spatial force function where spatial forces between field emission structures correspond to relative alignment, separation distance, and the spatial force function.
Magnetic structure production may relate, by way of example but not limitation, to methods, systems, etc. for producing magnetic structures by printing magnetic pixels (aka maxels) into a magnetizable material. Disclosed herein is production of magnetic structures having, for example: maxels of varying shapes, maxels with different positioning, individual maxels with different properties, maxel patterns having different magnetic field characteristics, combinations thereof, and so forth. In certain example implementations disclosed herein, a second maxel may be printed such that it partially overwrites a first maxel to produce a magnetic structure having overlapping maxels. In certain example implementations disclosed herein, a magnetic printer may include a print head comprising multiple parts and having various properties. In certain example implementations disclosed herein, various techniques for using a magnetic printer may be employed to produce different magnetic structures. Furthermore, description of additional magnet-related technology and example implementations thereof is included herein.
A multilevel magnetic system described herein includes first and second magnetic structures that produce a net force that transitions from an attract force to a repel force as a separation distance between the first and second magnetic structures increases. The multi-level magnetic system is configured to maintain a minimum separation distance between a transition distance where the net force is zero and a separation distance at which a peak repel force is produced.
A system and method for tailoring a polarity transition of a magnetic structure is provided that involves printing one or more reinforcing maxels alongside one side or both sides of a polarity transition boundary between a first polarity region of the magnetic structure having a first polarity and a second polarity region of the magnetic structure having a second polarity, where printing reinforcing maxels alongside the polarity transition boundary improves the magnetic field characteristics of the polarity transition.
A magnetic force profile system and related methods and devices based on a sequence of magnets arranged according to a code and acting on a complementary sequence of non-polarized magnetic attraction elements, for example, iron, soft iron, steel, and others. Variations include the addition of polarity codes to the first sequence of magnets, and operation with electromagnets. Exemplary attachment devices and lock and key devices are disclosed.
An improved field emission system and method is provided that involves field emission structures having electric or magnetic field sources. The magnitudes, polarities, and positions of the magnetic or electric field sources are configured to have desirable correlation properties, which may be in accordance with a code. The correlation properties correspond to a desired spatial force function where spatial forces between field emission structures correspond to relative alignment, separation distance, and the spatial force function.
A detachment system includes a first piece of ferromagnetic material, a shunt plate, and at least one simple machine. The first piece of ferromagnetic material has a first side and a second side opposite the first side and has magnetically printed field sources that extend from the first side to the second side. The magnetically printed field sources have a first multi-polarity pattern. The first side of the first piece of ferromagnetic material is magnetically attached to a second piece of ferromagnetic material. The shunt plate is disposed on the second side of the first piece of ferromagnetic material. The shunt plate routes magnetic flux through the first piece of ferromagnetic material from the second side to the first side of the first ferromagnetic material. The at least one simple machine is configured to amplify an applied force into a detachment force to create an angled spacing between the first piece of ferromagnetic material and the second piece of ferromagnetic material.
An improved field emission system and method is provided that involves field emission structures having electric or magnetic field sources. The magnitudes, polarities, and positions of the magnetic or electric field sources are configured to have desirable correlation properties, which may be in accordance with a code. The correlation properties correspond to a desired spatial force function where spatial forces between field emission structures correspond to relative alignment, separation distance, and the spatial force function.
An improved field emission system and method. The invention pertains to field emission structures comprising electric or magnetic field sources having magnitudes, polarities, and positions corresponding to a desired spatial force function where a spatial force is created based upon the relative alignment of the field emission structures and the spatial force function. The spatial force function may be based on one or more codes. In various embodiments, the code may be modified or varied. The code may be combined with another code. One or more aspects of the code, including spacing and amplitude, may be modulated or dithered according to a predefined pattern. Multiple magnet arrays may be combined, each based on a different code or portion of a code, resulting in a combination spatial force function. Magnet structures having differing field patterns may be used to generate a desired spatial force function related to a cross correlation of the two field patterns.
An improved magnetic attachment system is provided that involves field emission structures having electric or magnetic field sources. The magnitudes, polarities, and positions of the magnetic or electric field sources are configured to have desirable correlation properties, which may be in accordance with a code. The correlation properties correspond to a desired spatial force function where spatial forces between field emission structures correspond to relative alignment, separation distance, and the spatial force function.
A magnetic attachment system for attaching a first object to a second object. A first magnet structure is attached to the first object and a second magnet structure is attached to the second object. The first and second objects are attached by virtue of the magnetic attraction between the first magnet structure and second magnet structure. The magnet structures comprise magnetic elements arranged in accordance with patterns based on various codes. In one embodiment, the code has certain autocorrelation properties. In further embodiments the specific type of code is specified. In a further embodiment, an attachment and a release configuration may be achieved by a simple movement of the magnet structures. In a further embodiment, the magnetic pattern may include a non-magnetic region.
A magnetic attachment system for attaching a first object to a second object. A first magnet structure is attached to the first object and a second magnet structure is attached to the second object. The first and second objects are attached by virtue of the magnetic attraction between the first magnet structure and second magnet structure. The magnet structures comprise magnetic elements arranged in accordance with patterns based on various codes. In one embodiment, the code has certain autocorrelation properties. In further embodiments the specific type of code is specified. In a further embodiment, an attachment and a release configuration may be achieved by a simple movement of the magnet structures. In a further embodiment, the magnetic field structure may comprise multiple structures based on multiple codes.
Magnetic structure production may relate, by way of example but not limitation, to methods, systems, etc. for producing magnetic structures by printing magnetic pixels (aka maxels) into a magnetizable material. Disclosed herein is production of magnetic structures having, for example: maxels of varying shapes, maxels with different positioning, individual maxels with different properties, maxel patterns having different magnetic field characteristics, combinations thereof, and so forth. In certain example implementations disclosed herein, a second maxel may be printed such that it partially overwrites a first maxel to produce a magnetic structure having overlapping maxels. In certain example implementations disclosed herein, a magnetic printer may include a print head comprising multiple parts and having various properties. In certain example implementations disclosed herein, various techniques for using a magnetic printer may be employed to produce different magnetic structures. Furthermore, description of additional magnet-related technology and example implementations thereof is included herein.
An improved system and method for moving an object includes a first correlated magnetic structure associated with a first object and a second correlated magnetic structure associated with a second object. The first and second correlated magnetic structures are complementary coded to achieve a peak attractive tensile force and a peak shear force when their code modulos are aligned thereby enabling magnetic attachment of the two objects whereby movement of one object causes movement of the other object as if the two objects were one object. Applying an amount of torque to one correlated magnetic structures greater than a torque threshold causes misalignment and decorrelation of the code modulos enabling detachment of the two objects. The number, location, and coding of the correlated magnetic structures can be selected to achieve specific torque characteristics, tensile force characteristics, and shear force characteristics.