Provided methods of obtaining a plurality of T cell receptors specifically recognizing a target tumor antigen peptide from an individual that has clinically benefitted from an immunotherapy, such as Multiple Antigen Specific Cell Therapy. Also provided tumor-specific TCRs, engineered immune cells expressing the TCRs and methods of treating a disease using the engineered immune cells.
Provided methods of obtaining a plurality of T cell receptors specifically recognizing a target tumor antigen peptide from an individual that has clinically benefitted from an immunotherapy, such as Multiple Antigen Specific Cell Therapy. Also provided tumor-specific TCRs, engineered immune cells expressing the TCRs and methods of treating a disease using the engineered immune cells.
Provided methods of obtaining a plurality of T cell receptors specifically recognizing a target tumor antigen peptide from an individual that has clinically benefitted from an immunotherapy, such as Multiple Antigen Specific Cell Therapy. Also provided tumor-specific TCRs, engineered immune cells expressing the TCRs and methods of treating a disease using the engineered immune cells.
The present invention provides methods of preparing a population of activated T cells by co-culturing T cells with dendritic cells loaded with a plurality of tumor antigen peptides. Also provided are methods of treating cancer in an individual using the activated T cells, pharmaceutical compositions and kits for cell-based cancer immunotherapy.
The present invention provides a method of treating a cancer in an individual using activated T cells or PBMCs induced by antigen presenting cells (such as dendritic cells) loaded with a plurality of tumor antigen peptides. The method may further comprise administration of the antigen presenting cells loaded with the plurality of tumor antigen peptides to the individual. The methods may be used singly or in combination with an immune checkpoint inhibitor. Precision therapy methods customized for the individual using neoantigen peptides or based on the mutation load in the tumor of the individual are provided. Methods of preparing the activated T cells, methods of monitoring the treatment, and methods of cloning tumor-specific T cell receptors are further disclosed. An isolated population of cells comprising the activated T cells, as well as compositions and kits useful for cancer immunotherapy are also provided.
The present application provides methods of preparing tumor antigen-specific T cells comprising enriching activated T cells from a first co-culture comprising a first population of antigen-loaded dendritic cells loaded and a population of T cells, and co-culturing the enriched activated T cells with a second population of antigen-loaded dendritic cells. Also provided are methods of treating cancer in an individual using the tumor antigen-specific T cells, pharmaceutical compositions and kits for cell-based cancer immunotherapy.
Provided is a method of treating a cancer in an individual using activated T cells or PBMCs induced by antigen presenting cells (such as dendritic cells) loaded with a plurality of tumor antigen peptides. The method may further comprise administration of the antigen presenting cells loaded with the plurality of tumor antigen peptides to the individual. The methods may be used singly or in combination with an immune checkpoint inhibitor. Also provided are precision therapy methods customized for the individual using neoantigen peptides or based on the mutation load in the tumor of the individual, methods of preparing the activated T cells, methods of monitoring the treatment, methods of cloning tumor-specific T cell receptors, an isolated population of cells comprising the activated T cells, and compositions and kits useful for cancer immunotherapy.
Provided methods of obtaining a plurality of T cell receptors specifically recognizing a target tumor antigen peptide from an individual that has clinically benefitted from an immunotherapy, such as Multiple Antigen Specific Cell Therapy. Also provided tumor-specific TCRs, engineered immune cells expressing the TCRs and methods of treating a disease using the engineered immune cells.
The present application provides methods of preparing tumor antigen-specific T cells comprising enriching activated T cells from a first co-culture comprising a first population of antigen-loaded dendritic cells loaded and a population of T cells, and co-culturing the enriched activated T cells with a second population of antigen-loaded dendritic cells. Also provided are methods of treating cancer in an individual using the tumor antigen-specific T cells, pharmaceutical compositions and kits for cell-based cancer immunotherapy.
Provided is a method of treating a cancer in an individual using activated T cells or PBMCs induced by antigen presenting cells (such as dendritic cells) loaded with a plurality of tumor antigen peptides. The method may further comprise administration of the antigen presenting cells loaded with the plurality of tumor antigen peptides to the individual. The methods may be used singly or in combination with an immune checkpoint inhibitor. Also provided are precision therapy methods customized for the individual using neoantigen peptides or based on the mutation load in the tumor of the individual, methods of preparing the activated T cells, methods of monitoring the treatment, methods of cloning tumor-specific T cell receptors, an isolated population of cells comprising the activated T cells, and compositions and kits useful for cancer immunotherapy.
The present invention provides methods of preparing a population of activated T cells by co-culturing T cells with dendritic cells loaded with a plurality of tumor antigen peptides. Also provided are methods of treating cancer in an individual using the activated T cells, pharmaceutical compositions and kits for cell-based cancer immunotherapy.
Provided is a method of treating a cancer in an individual using activated T cells or PBMCs induced by antigen presenting cells (such as dendritic cells) loaded with a plurality of tumor antigen peptides. The method may further comprise administration of the antigen presenting cells loaded with the plurality of tumor antigen peptides to the individual. The methods may be used singly or in combination with an immune checkpoint inhibitor. Also provided are precision therapy methods customized for the individual using neoantigen peptides or based on the mutation load in the tumor of the individual, methods of preparing the activated T cells, methods of monitoring the treatment, methods of cloning tumor-specific T cell receptors, an isolated population of cells comprising the activated T cells, and compositions and kits useful for cancer immunotherapy.
A61K 35/15 - Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cellsMyeloid precursor cellsAntigen-presenting cells, e.g. dendritic cells
A61K 35/17 - LymphocytesB-cellsT-cellsNatural killer cellsInterferon-activated or cytokine-activated lymphocytes
A61K 39/00 - Medicinal preparations containing antigens or antibodies
C12N 5/0783 - T cellsNK cellsProgenitors of T or NK cells
Provided is a method of treating a cancer in an individual using activated T cells or PBMCs induced by antigen presenting cells (such as dendritic cells) loaded with a plurality of tumor antigen peptides. The method may further comprise administration of the antigen presenting cells loaded with the plurality of tumor antigen peptides to the individual. The methods may be used singly or in combination with an immune checkpoint inhibitor. Also provided are precision therapy methods customized for the individual using neoantigen peptides or based on the mutation load in the tumor of the individual, methods of preparing the activated T cells, methods of monitoring the treatment, methods of cloning tumor-specific T cell receptors, an isolated population of cells comprising the activated T cells, and compositions and kits useful for cancer immunotherapy.
A61K 38/17 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from animalsPeptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from humans